uPD30401 VR4000SC 64-Bit
Microprocessor Preliminary Hardware
User’s Manual

Publication ID: IEU-1331
Publication Date: December 1, 1992

Company: N E C ELECTRONICS INC

This title page is provided as a service by Information Handling Services and displays
the publication title, publication ID and publication date when they are available.

BB L4y27525 0083567 buH9 -‘

The information contained in this document is being issued in advance of the production cycle for the device. The
parameters for the device may change before final production or NEC Electronics Inc., at its own discretion, may
withdraw the device prior to production.

The information in this document is subject to change without notice. NEC Electronics Inc. assumes no responsibility for
any errors or omissions that may appear in this document. Devices sold by NEC Electronics Inc. are covered by the
warranty and patent indemnification provisions appearing in NEC Electronics Inc. Terms and Conditions of Sale only.
NEC Electronics Inc. makes no wamanty, express, statutory, implied, or by description, regarding the information set
forth herein or regarding the freedom of the described devices from patent infringement. NEC Electronics Inc. makes
no warranty of merchantability or fitness for any purpose. NEC Electronics Inc. makes no commitment to update or to
keep current the information contained in this document. No part of this document may be copied or reproduced in any
form or by any means without the prior written consent of NEC Electronics Inc.

B Lu427525 DDA35LA 585 WM

CHAPTER 1 GENERAL

1.1
1.2
13
14
15

CHAPTER2 CACHE COHERENCY

2.1
2.2
23
2.4
25

CHAPTER3 SECONDARY CACHE INTERFACE

3.1
3.2

3.3

CHAPTER 4 SYSTEM INTERFACE

4.1
4.2

4.3
4.4
4.5
4.6

CONTENTS

Introduction

Operation Fundamentals

Clocking Fundamentals

Ordering Information

Pin Configuration

Cache States

Cache State Changes During Processor Execution
Cache Line Write Back

Manipulation of the Caches by an External Agent
Cache Line Ownership

Secondary Cache Overview

Secondary Cache Interface Signal Description

3.2.1 Secondary Cache interface Signal Summary

322 Details of Secondary Cache Interface Signals

Control of Secondary Cache Interface

3.3.1 Read Cycles

3.3.2 Write Cycles

System Interface Overview

Processor Request Sequencing

42.1 Primary and Secondary Cache Miss on a Load

4.2.2 Primary and Secondary Cache Miss on a Store

423 Secondary Cache Hit on a Store to a Shared Line

4.2.4 Uncached Load or Store

425 Cache Instructions

External Request Handling

Load Linked Store Conditional Considerations

System Interface Endianess
System Interface Protocol

4.6.1 Introduction

4.6.2 System Interface Arbitration

4.6.3 System Interface Signal Descriptions

4.6.4 System Interface Maintenance Signals

4.6.5 System Interface Signal Summary

4.6.6 System interface Request Descriptions

4.6.7 Arbitration Protocot

4.6.8 Processor Read Request Protocel

4.6.9 Procassor Write Request Protocol

4.6.10 Processor Null Write Request Protocol

B Luy27525 0083569 41l N

N ad md b ad

Wwewwvwo

10

1
11
11
12
13
13
"

17
17
20

SN NRNRRNERES

4.6.11
4.6.12
4.6.13
4.6.14
4.6.15
4.6.16

4.7 Cycle Counts for System Interface Interactions
4.8 System Interface Syntax

4.8.1

49 System Interface Addresses
4.10 Processor Interndl Address Map
4.11 Coherence Conflicts
4.12 System Implications of Coherence Conflicts

4.12.1

CHAPTERS5 ERROR CHECKING AND CORRECTING (ECC)
5.1 Single Error Correcting Double Error Detecting Codes

CHAPTER 6 BOOT TIME MODE CONTROL INTERFACE
6.1 Boot Time Mode Control Interface Signal Summary
6.2 Boot Time Mode Control interface Operation
6.3 Boot Time Modes

Processor Cluster Protocol

External Request Protocol

External Snoop Request Protocol

Processor Request and Cluster Flow Control

Data Rate Control

Multiple Drivers on the SysAD Bus

System Interface Command and Data Identifier Syntax

System Model

CHAPTER 7 RESET SEQUENCE FOR THE Va4000SC PROCESSOR

CHAPTER 8 PROCESSOR INTERRUPTS
CHAPTER 9 PROCESSOR STATUS OUTPUTS
CHAPTER 10 CLOCKING
10.1 Clock Interfacing to a Phase Locked System
10.2 Clock Interfacing to a System Without Phase Lock
CHAPTER 11 OUTPUT BUFFER di/dt CONTROL MECHANISM

CHAPTER 12 PLL PASSIVE COMPONENTS

CHAPTER 13 JTAG INTERFACE

13.1 JTAG Interface Signal Summary
13.2 JTAG Functionality

1321
1322
1323
13.24
1325

13.3 Implementation Specific Details

CHAPTER 14 PIN SUMMARY

JTAG Test Access Port (TAP)

JTAG TAP Controller

Instruction Register

Bypass Register

Boundary Scan Register

B L427525 D0DA3570 133 WA

N

Skoaggn

46
52
53
53
54

55
58

61
61
61
61

3 222288288 8§

APPENDIX A SUB-BLOCK ORDERING

APPENDIX B EVEN PARITY

APPENDIX C JTAG ORDERING

B L4y2?525 0083571 07T WA

9N

93

95

CONTENTS OF FIGURES

Fig. Number Title, Page

1-1 Pin Configuration (BOtOM VIEW) ... cceeececrresresresasaesseesssassasssasas st snnanes 2
1-2 Pad Configuration (TOP VIBW) ..ccceeeiiiiiiieienniectcesrecesstnneseseensens Leveeereerererenrresannenteas 6
341 SCTag Fields oot . 12
3-2 Four-Word Read Cycle ..o 13
33 Eight-Word Read Cycleccoevenr e 14
34 * Four-Word Write CYCIe .u.crereecer.er. 15
3-5 Eight-Word Write Cycle 15
441 Arbitration Protocol for External Requests 27
4-2 Processor Read Request ProtoCol meiccrcnesenrentseesssesssseeeeeaenssnseneenas 28
4-3 Processor Read Request Protocol. Change 1o Slave State Delayedccccevvevncrnnnnne. 28
4-4 Processor Single Word Write Reques? Protocolcocceenuen. 29
45 Processor Block Write ReqUueSst ProtoCO! ()cc.coceereicrieernereerveeesserssesrnssssssnssnsssussnraseeses 29
4-6 Processor Block Write Request Protoco!l ID)ccceceecerccereerenrisnessansssseeraesssssssassessassssenees 30
4-7 Processor Null Write Request Protocol 30
4-8 Processor Cluster Protocol 31
4-9 External Read Request, System interface in Master State 32
4-10 Secondary Cache Release External Null Request 33
4-11 System Interface Release External Null Request 33
412 External Write Request 34
4-13 External invalidate Request Following an Uncompelled Change to Slave State 35
4-14 Processor Word Read Request Followed by 8 Word Read Response...........cccevverveernenen 36
4-15 Block Read Response, System Interface Already in Slave State 36
4-16 External intervention Request,.Shared Line, System Interface in Master State 37
4-17 External intervention Request, Dirty Exclusive Line, System interface in Slave State.... 38
4-18 External Snoop Request, System Interface in Master State 38
4-19 External Snoop Request, System Interface in Slave State 39
4-20 ~ Two Processor Write Requests, Second Write Delayed for the Assertion of WrRdy 40
4-21 Processor Read Request Within a Cluster Delayed for the Assertion of RARdy.............. 40
4-22 Write Request Within a Cluster Delayed for the Assertion of WIRGYccec.evwereeeccrencs 4
423 Processor Write Request Delayed for the Assertion of WrRdy and the Completion

of an External Invalidate Request 41
4-24 Read Response, Reduced Data Rate, System Interface in Slave Statecccveeveeeneenes 42
4-25 Processor Write Request, Transmit Data Rate Reduced 43
51 Parity Check Matrix for the Data ECC Code 59
5-2 Parity Check Matrix for the Tag ECC Code 60
1041 Processor Clocks, PClock to SClock Divisor of 2 74
10-2 Processor Clocks, PClock to SClock Divisor of 4 75
10-3 Phase Locked System Employing the Vr4000SC Processor 76
104 System Without Phase Lock Employing the VR4000SC Processor (a)ccoeeveeeeeecsssnsecees 78

-y -

B Lu27525 0083572 TOL EM

Fig. Number

Title, Page

10-5

111

1241

System Without Phase Lock Employing the Vr4000SC Processor (b)

10_INfIO_Out BOArd TraCeccoiieieicieeecceecceeestrrceeeeseesteesesessesnens e

PLL Passive Components

-—Vi-

B Luy2?525 0083573 que WM

- ---|4 L.

Table Number

CONTENTS OF TABLES

Title, Page

11
1-2

241

4-1
4-2
43

4-5

4-7

4-9
4-10
4-11
4-12
4-13
4-14
415
4-16
417
4-18
4-18
4-20
4-21
4-22
4-23

51
52

6-1

91

A2
A3

Pin CONFIQUIATION .ovoevi e ettt be bbb s b s e e as b
Path CONTIQUIBTION ...eevveciee it rresecenssensassssemsasmsasns s easaessasts s ssmssassasemessrsssrsseassensssnsasmsanases

Coherency Attributes and Processor Behavior ...

Maximum Processor Data REIESccccicierrireierinirireren e certerre s vesessresserssesssenssisessassasesssses
TTANSITUL D18 RALES .ovveeerreireererrresrresasaesesesoressssetssessosasssssesisanssoessostassssssssetsresssonssrsasssaasass
Unused Cycles Separating Requests Within a Cluster.............ooos
Release Latency for Category (1), (2) and (3) External Requests ...,
intervention Response Latency and Snoop Response Latency ...,
External Read Response LAtBNCYcuiiermrmimenien ettt
Encoding of SysCmd(7:5} for System Interface Commands
Encoding of SysCmd{4:3) for Read Requests........ccoueeeneeene
Encoding of SysCmd(2:0) for Block Read REQUESTSccceicinnniiniineinnseneonscnncnae
Encoding of SysCmd(2:0) for Double Word, Word, or Partial Word Read Requests
Encoding of SysCmd(4:3) for Write REQUESES ..o
Encoding of SysCmd{2:0) for Block Write REQUESESc...ccoercrinieineiecnnsnrecreennesainns
Encoding of SysCmd{2:0) for Double Word, Word, or Partial Word Write Requests.......
Encoding of SysCmdi{4:3} for Processor Null Requestsccvvievicennennens

Encoding of SysCmd{4:3) for External Null Requestscoorieernnncnnnininicnnncnnnnn,
Encoding of SysCmdi(4:0) for External Invalidate or Update Requestsc.eceeceeucnnece
Encoding of SysCmd{4:0) for intervention Requests
Encoding of SysCmd(4:0) for Snoop Requests..........ceeeeceiciininnssnnninae
Encoding of SysCmd(7:3) for Processor Data ldentifiers
Encoding of SysCmd(7:3) for External Data identifiers
Encoding of SysCmd(2:0) for Coherent Data identifiers
Coherence Conflicts Summary {a) rreeetesreseessssasasees
Coherence Confiicts Summary (b)

Error Checking and Correcting Summary for internal Transactions
Error Checking and Correcting Summary for External Transactions

Boot Time Modes.....

Encoding of Processor Internal State for Status(7:4) or Status(3:0)cvweeeesrresecssienness

Sequence of Double Words Transferred Using Sub-block Ordering (a)
Sequence of Double Words Transferred Using Sub-block Ordering (b)
Sequence of Double Words Transferred Using Sub-block Ordering (c)

- Vii =

B Lu27525 0083574 489 MR

56
57

62

CHAPTER 1 GENERAL

1.1 Introduction

The Va4000SC processor supports interfaces to secondary cache, system interface, and boot time mode control.
This document describes the connectivity and operation of each of these interfaces.

1.2 Operation Fundamentals

A word is the basic data element of the Vs4000SC processor. A word is a thirty-two bit data element. A sixty-
four bit data element is referred to as a double word, 2 sixteen bit data element is referred to as a half word and
an eight bit data element is referred to as a byte.

1.3 Clocking Fundamentals

The Va4000SC processor bases all clocking methodology on the single clock input MasterClock at the desired
operational frequency for the processor. MasterClock is multiplied by two internally, using phase locked ioop
technigues, to generate the processor internal clock, PClock. PClock is used by the processor's execution units,
and to sequence the secondary cache interface. All secondary cache interface transaction protocol and parameters
are specified in terms of PCycles, where a PCycle is the period of PClock or half the period of MasterClock.

PClock is divided by a programmable divisor to generate the processor internal clock, SClock, and the system .

interface clocks, TClock and RClock. SClock is used by the processor to clock all internal registers that sample

system interface inputs and drive system interface outputs. TClock and RClock are driven off the processor for

use by an external agent. The PClock to SClock divisor is programmed via the boot time mode control interface

as described in the Boot Time Mode Control Interface section. All system interface transaction protocol and

parameters are specified in terms of SCycles, where a SCycle is the period of SClock, unless otherwise specified.
See CHAPTER 10 CLOCKING for further details on the clocking behavior of the Vr4000SC processor.

1.4 Ordering Information

Part Number Package - Quality Grade
uPD30401RJ-60 447-pin ceramic PGA (without heatsink) Standard
uPD30401RM-50 447-pin ceramic PGA (with heatsink) Standard
pPD30401RS-50 447-pin ceramic LGA (without heatsink) Standard
uPD30401RT-50 447-pin ceramic LGA {with heatsink) Standard

Remark LGA: Land Grid Array

Please refer to "Quality grade on NEC Semiconductor Devices” {(Document number 1E1-1209) published by
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

B Luy27?525 0083575 715 N

CHAPTER 1 GENERAL

1.5 Pin Configuration

Fig. 1-1 Pin Configuration (Bottom View)

e o
¢« o
* o
e o
o o
e o
[] L]
L L]
L] ®
L] L
e L]
e o
e e
e o
e e
e o
e e
o o
¢ e
e e
AW AU

.
AR

.
AN

.
AL

e o
A) AG

.
AE

g .

.
AA

AV AT AP AM AK AH AF AD AB Y

.
w

cC o

e 39
38
e 37

e 35

B Lu2?7525 0083576 651 M

CHAPTER 1 GENERAL

Tabie 1-1 Pin Configuration (1/3)

No. Name No. Name No. Name No. Name
AW37 | ColdReset AA3 SCAddr11 G25 SCData10 AF4 SCDatad8
AV2 ExtRast w3 SCAddr12 E29 SCData11 AJ3 SCData49
C39 Fault Y6 SCaddr13 G31 SCData12 AJ7 SCData50
Av24 | GrpRun W5 SCAddr14 C35 SCData13 AP8 SCData51
AV20 | GrpStall W7 SCAddr15 K36 SCData14 AT10 | SCData52
AV32 | IOIn W1 SCAddri6 N35 SCData15 AR13 | SCData53
AV28 | 100ut U3 SCAddr17 AE3 SCData16 AR15 | SCData54
ALl into AN7 SCAddrow AG5 SCData17 AT18 | SCData55
AA35 | IC(H) Note1 ANS SCAddroX AK4 SCData18 AU23 | SCData56
AA39 | IC(H) Note 1 AMS6 SCAddroY AN9 SCData19 AT26 | SCData57
U39 JTCK AL7 SCAddr0Z AU9 SCData20 AR27 | SCData58
N39 JTDI M6 SCDCS AN13 | SCData21 AN29 | SCData59
J39 JTDO G19 SCDChk0 AT14 | SCData22 AP32 | SCDatab0
G37 JTMS T34 SCDChk1 AR17 | SCData23 AN35 | SCData61
AA37 MasterClock AP20 SCDChk2 AT22 SCData24 AJ35 SCData62
AJ39 | MasterOut AD34 | SCDChk3 AU25 | SCData25 AE33 | SCData63
B8 ModeClock ci19 SCDChk4 AN27 SCData26 V4 SCDatab4

S AVB Modeln R37 SCDChkS AR29 | SCData27 RS SCData65
.‘ Avie | NMi AU19 | SCDChké AN31 | SCData28 N5 SCData66
AM34 | RClock0 AE37 | SCDChk? AR35 | SCData29 ES SCData67
AL33 | RClock1 c17 SCDChk8 AK36 | SCData30 G9 SCData68
AW7 RdRdy N37 SCDChk9 AG35 | SCData31 E11 SCData69
AV1i2 Release AU17 SCDChk10 T6 SCData32 G13 SCData70
AU39 | Reset AG37 | scDChk11 L3 SCData33 D14 SCData71
Y2 Open Note 2 E19 SCDChk12 L7 SCData34 lc21 $CData72
us SCAPar0 R35 SCDChk13 E? SCData35 D22 SCData73
U1 SCAPar1 AR19 | SCDChk14 G11 SCData36 E25 SCData74
P4 SCAPar2 AE35 | SCDChk15 E13 SCData37 G27 SCData75
ALS SCAddr1 R3 SCData0 E15 SCData38 C31 SCData76
AG1 SCAddr2 R7 SCData G17 SCData39 F32 SCData77
AE7 SCAddr3 L5 SCData2 c23 SCData40 J3s SCData78
AC1 SCAddr4 F8 SCData3 F24 SCData41 M34 SCData79
ACS SCAddr5 co SCData4 E27 SCData42 AC7 SCData80
AC3 SCAddré F12 SCData5 D30 SCData43 AES SCData81
AA1 SCAddr7 G15 SCDatab c33 SCDatad4 AG7 SCData82
AB4 SCAddr8 E17 SCData7 E35 SCDatad5 AR5 SCData83
AAS SCAddr9 G21 SCData8 L35 SCData46 AR9 SCData84
AA7 SCAddr10 C25 SCData9 R33 SCData4d7 AR11 SCData85

Remark See CHAPTER 14 PIN SUMMARY for pin functions.

2. Leave unconnected.

" ‘Note 1. Be sure to connect this pin to Voo.

B Luy2?525 0083577 598 I

CHAPTER 1 GENERAL

Table 1-1 Pin Configuration (2/3)

No. Name No. Name No. Name No. Name
AN15 | SCData86 AL37 | SCData126 us3 Status0 AM38 | SysAD30
AP16 | SCDatag7 AG33 | SCData127 u3s Status1 AH38 | SysAD31
AU21 | SCData88 N1 SCOE V36 Status2 R1 SysAD32
AN23 | SCData89 J SCTCS w35 | Staws3 L1 SysAD33
AR25 | SCData90 AN21 | SCTChkO W37 | Status4 H2 SysAD34
AP28 | SCDatad1 AN19 | SCTChk1 AC37 | Statust E1 SysAD35
AU31 | SCData92 AU15 | SCTChk2 AC35 | Statusé C3 SysAD36
AR33 | SCData93 AP12 | SCTChk3 AC33 | Status? A5 SysAD37
AL35 | SCData94 AU7 SCTChk4 w38 | Syncin Al SysAD38
AH34 | SCDatag5 AR7 SCTChk5 AN39 | SyncOut A15 SysAD39
U7 SCDatag6 AHB SCTChk6 T2 SysADO A23 SysAD40
N3 SCData97 K4 SCTag0 M2 SysAD1 A27 SysAD41
N7 SCData98 G7 SCTag! J3 SysAD2 A31 SysAD42
C5 SCData%99 c7 SCTag2 G3 SysAD3 A35 SysAD43
E9 SCData100 D10 SCTag3 c1 SysAD4 c37 SysAD44
cn SCData101 Cib SCTag4 A3 SysADS E39 SysAD45
c13 SCData102 D18 SCTag5 A9 SysAD6 H38 SysAD46
F16 SCData103 F20 SCTag6 A13 SysAD7 M38 | SysAD47
E21 SCData104 E23 SCTag7 A1 SysAD8 AE1 SysADA48
G23 SCData105 D26 SCTag8 A25 SysAD9 A SysAD49
c27 SCData106 c29 SCTag9 A29 SysAD10 AM2 | SysADS0
F28 SCData107 G29 SCTag10 A33 SysAD11 AR1 SysAD51
E31 SCData108 E33 SCTag11 B38 SysAD12 AU3 SysAD52
G33 SCData109 G35 SCTag12 E37 SysAD13 AWS SysADS3
J37 SCData110 -~ | L33 SCTag13 G39 | SysAD14 AW11 | SysADS4
N33 SCData111 L37 SCTagl4 L39 SysAD15 AWI15 | SysADSS
AD6 SCData112 P36 SCTag15 AD2 SysAD16 AW23 | SysADS56
AG3 SCData113 AF36 | SCTag16 AH2 SysAD17 AW27 | SysADS57
AJ5 SCData114 AJ37 | SCTag17 AL3 SysAD18 AW31 | SysADSS
AUB SCData115 AJ33 | SCTag18 AN3 | SysAD19 AW35 | SysADS9
AN11 | SCData116 AN37 | SCTag19 AU1 SysAD20 AU37 | SysADE0
AU11 | SCDatal17 AU35 | SCTag20 AW3 | SysAD21 AR39 | SysAD61
AU13 | SCData118 AR31 | SCTag21 AWS | SysAD22 AL39 | SysAD62
AN17 | SCData118 AU29 | SCTag22 AW13 | SysAD23 AG39 | SysAD63
AR21 | SCDeta120 AN25 | sCTag23 AW21 | SysAD24 A17 SysADCO
AP24 | SCData121 AR23 | SCTag24 AW25 | SysAD25 R39 SysADC1
AU27 | SCData122 J5 SCWiW AW29 | SysAD26 AW17 | SysADC2
AT30 | SCData123 J7 SCWIX _ AW33 | SysAD27 AD38 | SysADC3
AU33 | SCData124 H6 SCWrY Av3g8 | SysAD28 A19 SysADC4
AN33 | SCData125 G5 SCWIZ AR37 | SysAD29 T38 | SysADCS

Remark See CHAPTER 14 PIN SUMMARY for pin functions.

B L4Y27525 DD83578 u2y WM

CHAPTER 1 GENERAL

Table 1-1 Pin Configuration {3/3)

No. Name No. Name No. Name No. Name
AW19 | SysADC6E H36 Voo B22 Gnd AP30 Gnd
AC39 SysADC? K6 Vbp B30 Gnd AP34 Gnd
G1 SysCmd0 K38 Vop B36 Gnd AP36 Gnd
E3 SysCmd1 P2 Voo D2 Gnd AT2 Gnd
B2 SysCmd2 P34 Voo D6 Gnd AT6 Gnd
B12 SysCmd3 T4 Voo D12 Gnd AT12 Gnd
B16 SysCmd4 T36 . | Voo D20 Gnd AT20 Gnd
B20 SysCmd5 V6 Voo D28 Gnd AT28 Gnd
B24 SysCmd6 v3s Voo D34 Gnd AT34 Gnd
B28 SysCmd7 Y38 Voo D38 Gnd AT38 Gnd
B32 SysCmd8 AB2 Vob F4 Gnd Av4 Gnd
A37 SysCmdP AB34 Vob F6 Gnd AV10 Gnd
H34 TClock0 AD4 Voo F'0 Gnd AV18 Gnd
J33 TClock1 AD36 Vob F18 Gnd AV26 Gnd
AE39 VooOk AF86 Voo F26 Gnd AV36 Gnd
AN1 Validin AF38 Vop F34 Gnd
AR3 ValidOut AK2 Voo F36 Gnd
A7 WrRdy AK34 | Voo K2 Gnd
W33 VooSense AM4 Voo K34 Gnd
u37 GndSense AM36 | Voo M4 Gnd
AA33 VooP AP2 Voo M36 Gnd
Y34 GndP AP10 Vop P6 Gnd
A39 |'Voo AP18 Voo P38 Gnd
B6 Voo AP26 Voo V2 Gnd
B10 Voo AP38..}.Vopo. - ™. : V34 Gnd - -

B18 Voo AT4 Voo Y4 Gnd
B26 Voo AT8 Voo Y36 Gnd
B34 Voo AT16 Voo AB6 Gnd
Da Voo AT24 Voo AB36 Gnd
D8 Voo AT32 Voo AB38 Gnd
D16 Voo AT36 Voo AF2 Gnd
D24 Voo AV6 Voo AF34 Gnd
D32 Voo AVi4 Voo AH4 Gnd
D36 Voo AV22 Voo AH36 Gnd
F2 Voo AV30 Voo AKGE Gnd
F14 Voo AvV34 Vop AK38 Gnd
F22 Voo AW1 Voo AP4 Gnd
F30 Voo AW39 | Voo APS Gnd
F38 Voo B4 Gnd AP14 Gnd
H4 Voo B14 Gnd AP22 Gnd

Remark See CHAPTER 14 PIN SUMMARY for pin functions.

B Ly27?525 0083579 360 W

CHAPTER 1 GENERAL'

Fig. 1-2 Pad Configuration {Top View)

10]
9 [
s 1
7 4
6 3
5§ 1
N m——
3
2 3
I |

)

Vad000SC

15
—16

—3 117
—s

’,

Table 1-2 Pad Configuration

No. Name No. Name No. Name No. Name
1 Voo 7 VooP 13 Voo 19 Voo

2 Gnd 8 PLLCapl 14 | Gnd 20 {Gnd

3 PLLCap0 9 Voo 15 Voo 21 Voo

4 GndP 10 Gnd 16 Gnd 22 Gnd

5 GndP 1 Voo 17 Voo

6 VooP 12 Gnd 18 Gnd

B L427525 0083540 082 WE

CHAPTER 2 CACHE COHERENCY

The Vr4D00SC processor manages its primary and secondary caches using a write back methodology, that is,
stores write data into the caches, but a modified cache line is not written back to memory until the cache line is
replaced, or until the cache line is exported or flushed from the secondary cache. When the contents of a cache
line is not consistent with memory, it is said to be dirty. Many systems, in particular multiprocessor systems, or
systems that employ input/output (IO} devices that are capable of direct memory access (DMA), may require the
system to behave as if the caches are always consistent with memory and each other. Schemes for maintaining
consistency between multiple write back caches or between write back caches and memory are referred to as cache
coherency protocols.

The processor, in its secondary cache mode provides a set of cache states and mechanisms for manipulating the
contents and state of the cache that are sufficient to implement a variety of cache coherency protocols both snoopy
and directory based. in particular, the processor supports both the write invalidate and write update protocols
simuitaneously.

The coherency protocol for lines in the cache is controllable via bits in the translation look-aside buffer (TLB) on
a per TLB page basis. Specifically, the TLB contains three bits per entry that control the coherency attributes of a
page. The three bits are encoded to provide five possible coherency attributes per page, uncached, sharable, update,
exclusive, and noncoherent. A processor in the no-secondary cache mode supports only the uncached and
noncoherent coherency attributes.

If a page has the coherency attribute uncached, the processor will issue a word or partial word read or write directly
to main memory for any load or store 1o a location within that page. Lines within an uncached page are assumed
never to be cache resident.

If the coherency attribute is sharable, the processor will issue a coherent block read for a load miss to a location
within the page, and a coherent block read that requests exclusivity for a store miss to a location with the page. In
most systems, coherent reads require snoops or directory checks to occur while noncoherent reads do not. A
coherent read that requests exclusivity implies that the processor will function most efficiently if the requested cache
line is returned to it in an exclusive state.

If the coherency attribute is exclusive, the processor will issue a coherent block read the requests exclusivity for
a load or store miss to a location within the page.. Cache lines within the page will be managed with awrite invalidate
protocol. Load linked store conditional instruction sequences must insure that the link location is not in a page
managed with the exclusive coherency attribute.

If the coherency attribute is noncoherent, the processor will issue a noncoherent block read for a load or store
miss 10 a location within the page.

The encoding of the coherency attributes in the TLB is specified in Vn4000 USER'S MANUAL (PRELIMINARY)
ARCHITECTURE. The behavior of the processor on load misses, store misses, and store hits to shared cache lines
for each of the coherency attributes is summarized in Table 2-1 Coherency Attributes and Processor Behavior.

Table 2-1 Coherency Attributes and Processor Behavior

Attribute Load Miss Store Miss Store Hit Shared
uncached Main memory read Main memory write NA
noncoherent Noncoherent read Noncoherent write Invalidate Note
exclusive Coherent read exclusive Coherent read exclusive Invalidate Note
sharable Coherent read Coherent read exclusive Invalidate
update Coherent read Coherent read Update

~ Note This should not occur under normal circumstances.

B L42?525 0043581 T1°9 WM 7

CHAPTER 2 CACHE COHERENCY

The following sections describe the primary and secondary cache states provided by the processor, the cache
state transitions performed by the processor during execution, and the mechanisms provided for an external agent
to manipulate the state and contents of the primary and secondary cache.

2.1 Cache States

The Vr4000SC maintains four primary cache states-and five secondary cache states. The five secondary cache
states are:

* |nvalid

* Shared

¢ Dirty Shared

* Clean Exclusive

e Dirty Exclusive

The four primary cache states are:
* |nvalid

® Shared

¢ Clean Exclusive

® Dirty Exclusive

The primary cache state shared corresponds to the secondary cache states shared and dirty shared.

The cache state of a line in the processor’s primary or secondary cache indicates the validity, shared, dirty and
ownership attributes of the cache line. A cache line that does not contain valid information must be marked invalid,
a cache line in any state other than invalid contains valid information. A cache line that is present in more than one
cache in the system is said to be shared and must be in one of the shared states. A cache line that is present in
exactly one cache in the system is said to be exclusive and may be in one of the exclusive states. A cache line
that contains data that is consistent with memory is saidto be clean and may be in one of the clean states. A cache
line that contains data that is not consistent with memory is said to be dirty and must be in one of the dirty states,
or in the shared state. The processor has a concept of ownership for cache lines. When the processor is the owner
of a particular cache line it is responsible for writing the cache line back to memory when it is replaced in the course
of satisfying a cache miss, or during the execution of a cache instruction. A cache line is owned by the processor
if its secondary cache state is dirty exclusive or dirty shared.

The primary and secondary cache states have been chosen to maintain all of the state information that the
processor may need during execution in the primary cache, while maintaining ali of the state information that an
external agent may need to manage a cache coherency protocol in the secondary cache.

The primary cache states indicate the following cache line attributes:

invalid The cache line does not contain valid information.

Shared The cache line contains valid information and may be present in another processor’s cache. The
cache fine may or may not be consistent with memory, and may or may not be owned.

Clean Exclusive The cache line contains valid information and is not present in any other processor’s cache. The
cache line is consistent with memory and is not owned. | '

Dirty Exclusive The cache line contains valid information and is not present in any other processor’s cache. The
cache line is inconsistent with memory and owned.

F B L427525 0083582 955 WM

CHAPTER 2 CACHE COHERENCY

The secondary cache states indicate the following cache line attributes:

invalid The cache line does not contain valid information.

Shared The cache line contains valid information and may be present in another processor’s cache. The
cache line may or may not be consistent with memory, but is not owned.

Dirty Shared The cache line contains valid information and may be presentin another processor's cache. The
cache line is inconsistent with memory and owned.

Clean Exclusive The cache line contains valid information and is not present in any other processor’s cache. The
cache line is consistent with memory and is not owned.

Dirty Exclusive The cache line contains valid information and is not present in any other processor’s cache. The
cache line is inconsistent with memory and owned.

2.2 Cache State Changes During Processor Execution

The initial state of a cache line is specified by an external agent when it supplies the cache line. During the course
of processor execution, the processor may change the state of a cache line. The following events will cause changes
10 the state of the cache:

A store 1o a clean exclusive cache line will cause the state to be changed to dirty exclusive in both the primary
and secondary caches.

2.3 Cache Line Write Back

The processor will write a cache line back to memory when it is replaced, or written back to memory as the resuit
of executing a cache instruction, if the cache line is in the state dirty exclusive. When the processor writes a cache
line back to memory, it does not ordinarily retain a copy of the cache line, and the state of the cache line is changed
toinvalid. However, if a cache line is written back to memory using the hit writeback cache instruction, the processor
will retain a copy of the cache line. If the cache line is retained, the processor will change its state to clean exclusive
if the secondary cache state was dirty exclusive before the write.

Whether or not the processor is retaining the line is signaled by the processor during a write.

2.4 Manipulation of the Caches by an External Agent

The VR4000SC provides mechanisms for an external agent to examine and manipulate the state and contents of
the primary and secondary caches: ’

An external agent must specify the state in which data, supplied in response to a processor read request, is to
be loaded into the processor's caches. Data may be loaded in any of the four valid secondary cache states. Data
returned by the external agent must not be marked as invalid. The secondary cache state will be mapped to a primary
cache state as described previously.

An external agent may issue a snoop request to the processor which will cause the processor to return the
secondary cache state of the specified cache line. At the same time it will change the state of the specified cache
line in both the primary and secondary caches, according to a state change function specified by the external agent,
atomically with respect to the response to the snoop request. '

An external agent may issue an invalidate request or an update request to the processor. An invalidate request
will cause the processor to change the state of the specified cache line to invalid in both the primary and secondary
caches. An update request will cause the processor 10 write the specified data element into the specified cache
line, and either change the state of the cache line to shared in both the primary and secondary caches, or leave the
state of the cache line unchanged, depending on the nature of the update request. An external agent may issue
updates, without changing the state of the cache line, to cache lines that are either in exclusive or shared states.

B bucvs525 0083583 891 N 9

CHAPTER 2 CACHE COHERENCY

An external agent may issue an intervention request which will cause the processor to return the secondary cache
state of the specified cache line, and the contents of the specified secondary cache line under certain conditions
related to the state of the cache line and the nature of the intervention request. At the same time the processor
will change the state of the specified cache line in both the primary and secondary caches, according to a state change
function specified by the external agent, atomically with respect to the response to the intervention request.

2.5 Cache Line Ownership

The Va4000SC has a concept of ownership for cache lines. The ownership of a cache line is maintained as follows:

A processor assumes ownership of a cache line when the state of the cache line transitions to dirty shared or
dirty exclusive. For responses to processor coherent read requests in which the data is returned with an indication
that it must be loaded in the dirty shared or dirty exclusive state, the cache state is set at the completion of the read
response when the last word of read response data is returned. Therefore, the processor will assume ownership
of the cache line at the completion of the read response when the last word of read response data is returned.

The processor gives up ownership of a cache line when the state of the cache line transitions to invalid, shared,
or clean exclusive. For processor write requests the state of the cache line will transition to invalid if the cache line
is replaced, or clean exclusive or shared if the cache line is retained. In either case, the cache state transition will
occur at the completion of the write request when the last word of write data is transmitted to the external agent.
Therefore, the processor will give up ownership of the cache line at the compietion of the write request when the
last word of write data is transmitted to the external agent.

For external requests, other than read responses, any cache state change associated with the external request
will occur at the completion of the external request and therefore any change of ownership resulting from the cache
state change will occur at the completion of the external request.

10 B L427525 0083584 728 W

CHAPTER 3 SECONDRY CACHE INTERFACE

The Ve4000SC is designed to operate with an external secondary cache. The secondary cache is accessible to
the processor and to the system interface. The cache contains data, cache tags and cache line state bits.

3.1 Secondary Cache Overview

The Vr4000SC secondary cache is assumed to consist of one bank of industry standard static RAMs with output
enables. The Vr4000SC secondary cache consists of quad-word {128 bit) wide data array and a 25-bit wide tag array.
Check fields are added to both the data and tag arrays to improve data integrity. The secondary cache may be
configured as joint or split instruction/data. The maximum secondary cache size is 4 MBytes and the minimum
secondary cache size is 128 kBytes for joint and 256 kBytes for split instruction/data. The secondary cache is direct-
mapped, and is addressed with the lower part of the physical address.

3.2 Secondary Cache Interface Signal Description
The signals that connect the Vr4000SC processor to its secondary cache are described in this section.

3.2.1 Secondary Cache Interface Signal Summary
SCData(127:0): (/o) A 128-bit bus used to read or write cache data from/to the secondary cache.
SCDChk(15:0): (/o) A 16-bit bus which conveys two ECC fields that cover the upper or lower 64 bits of the
SCData from/to the secndary cache.
SCTag({24:0): {ifo) A 25-bit bus used to read or write cache tags from/to the secondary cache.
SCTChk(6:0): {i/o) A 7-bit bus which conveys an ECC field that covers the SCTag fromy/to the secondary

cache.
SCAddr(17:1) {o) A 17-bit bus which addresses the secondary cache.
SCAddr0z: (o) Bit O of the secondary cache address.
SCAddroY: {o) Bit 0 of the secondary cache address.
SCAddroX: {o). Bit 0.of the secondary. cache address. .

SCAddrow: {o) Bit 0 of the secondary cache address.
SCAPar(2:0): {o) A 3-bit bus which conveys the parity of the SCAddr bus and the cache control lines
SCOE, SCWr, SCDCS and SCTCS.

SCOE: {o) A signal which enables the outputs of the secondry cache RAMs.

SCWrZ: (o) Secondary cache write enable.

SCWrY: (o) Secondary cache write enable.

SCWrX: (o) Secondary cache write enable.

SCWrW: * {0} Secondary cache write enable.

SCDCs: {o) Asignal which enables the chip select pins of the secondary cache RAMSs associated with

a SCData and SCDChk. | -
SCTCS: {0) Asignal which enables the chip select pins of the secondary cache RAMs associated with
SCTag and SCTChk. '

B L4y27525 0083585 bbby WM. "

CHAPTER 3 SECONDARY CACHE INTERFACE

3.2.2 Details of Secondary Cache Interface Signals

The interface to the VrR4000SC secondary cache is designed to maximize the efficiency of servicing primary cache
misses. The width of the data portion of secondary cache interface is chosen to be 128 bits to support a data rate
into the primary cache that is near the processor to primary cache bandwidth during normal operation. To assure
that this bandwidth is maintained, each data, tag and check pin must be connected to only one static RAM device.
The SCAddr bus, the SCOE signal, the SCDCS signal and the SCTCS drive a large number of static RAM devices,
so one level of external buffering between the Vr4000SC and the cache array is necessary.

The speed of the secondary cache interface is limited by buffered control signals. Critical control signals are
duplicated to minimize this effect. The SCWr signal and SCAddr(0) are duplicated four times so that external
buffering will not be required. When an 8-word (256-bit) primary cache line is used, these signals can be controlled
significantly faster to reduce the time of the two back-to-back transfers. These duplicated control signals are specified
to drive 11 parts each, so that a total of 44 RAM packages can be used in the cache array. This permits a cache
design using 64 kByte by 4 bit or 256 kByte by 4 bit standard static RAMs. Other cache designs are also acceptable,
for example a smallier cache design using 228 kByte by 8 bit static RAMs as it would present less load on the address
pins and control signals. Note that duplicated signals like SCWrW, SCWrX, SCWrY and SCWrZ will be described
in this document as though they were a single signal, which in this case is calied SCWr.

The benefit of duplicating SCAddr{0) will be greater if fast sequential static cache RAMs become available. If
SCAddr{0) is attached to a static RAM address bit that effects column decode only, the read cycle time with respect
to that pin should approximate the output enable time of the RAM and for fast static RAMs shouid be half that of
the nominal read cycle time.

When the split instruction/data cache mode is enabled, assertion of the top SCAddr bit, SCAddr{17) wil enable
the instruction half of the cache instead of the data half.

It is possible to design a cache that supports both joint and split instruction/data configurations with less than
the maximum cache size. SCAddr(12:0) must be used to address the cache in all configurations. SCAddr(17) must
be used to support the split instruction/data configuration. Any of SCAddr{16:13) may be omitted because of the
fixed width of the physical tag array.

The SCDChk bus is divided into two fields to cover the upper and lower 64 bits of SCData. This form is required
to keep the width of internal data paths to 64 bits.

The SCTag bus is divided into three fieldé. as shown in Fig. 3-1 SCTag Fields. The lower 19 bits consist of the
upper physical address bits. The upper three bits consist of cache state, whichcanbe one of Invalid (1), Clean Exclusive
(CE), Dirty Exclusive {DE), Shared (S) and Dirty Shared (DS). The middle three bits are used to maintain information
about the virtual address used for caching parts of a secondary cache line in the primary cache. The middle three-
bit field holds bits 14 through 12 of the virtual address.

Fig. 3-1 SCTag Fields

24 20 19 18 0

Cache_State Virt_Addr Physical Tag
3 3 19

The middle field of SCTag is needed to locate entries in the primary caches. The Va4000SC has two primary .
caches, one for instruction and one for data, which are direct-mapped and are indexed using 2 subset of the lower
15 bits of the virtual address {implementation dependent, based on primary cache size). If a cache coherency request
is processed that requires a cache state change or invalidation, the middle three bits of the SCTag portion of the
secondary cache allow primary cache lines affected by that cache coherency request to be found. The three bits
of information stored are the three lowest virtual address bits above the page offset. This information is loaded during
secondary cache misses. On each secondary cache access the virtual address bits are compared with the values

12 B Ly2?525 008358 5TO WM

CHAPTER 3 SECONDARY CACHE INTERFACE

found in the secondary cache tag. If a mismatch occurs, a trap is taken and the trap handler can modify the bits
in the secondary cache tag to hold the new values, and the old values are used by the trap handler to purge primary
cache locations, so that all primary cache lines holding valid data have indexes known to the secondary cache. This
mechanism also helps preserve the integrity of cached accesses to a physical address using differing virtual
addresses known as virtual synonyms.

The SCDCS and SCTCS are needed to disable reads or writes of the data array or tag array when the other array
is being accessed. These signals are useful for saving power on snoop and invalidate reguests, as accesses to the
data array are not necessary. These signals are also useful for writing data from the data primary cache to the
secondary cache, as the secondary cache state cannot always be determined from the primary cache state.

3.3 Control of Secondary Cache Interface

The control of the secondary cache is configurable for various clock rates and static RAM speeds. All configurable
parameters are specified in multiples of PClock, which runs at twice the frequency of the external system clock,
MasterClock. Boot time mode control registers will hold the various configuration parameters, so that they can be
specified when initializing the Vr4000SC.

3.3.1 Read Cycles

Each secondary cache read sequence begins with the driving of the address pins. The output enable signal SCOE
is asserted at the same time.

There are two basic read cycles: a four-word read, and an eight-word read.

For the four-word read, there are two parameters of interest. The first parameter is read sequence cycle time,
TRd1Cyc, which specifies the time from the driving of the SCAddr bus to the sampling of the SCData bus. The
second parameter is the cache output disable time TDis, which specifies the time from the end of a read cycle to
the start of the next write cycie. Fig. 3-2 Four-Word Read Cycle illustrates the four word read sequence.

Fig. 3-2 Four-Word Read Cycle

PCycle [| 2 3 | 4] s | s
scaddrdus X — “Adiress X

l thnce -
SCData/SCTag :X X Data x)—
w9\ / v

[

$CDCs: :X X
Sar) X X

For the eight-word read, there is one additional parameter of interest: the time from the first sample point to the
second sample point, TRd2Cyc. The lower order address bit, SCAddr(0) is changed at the same time as the first
read sample point. Fig. 3-3 Eight-Word Read Cyecle illustrates the eight word read sequence.

M Ly27525 DDA3587 437 M 13

.

CHAPTER 3 SECONDARY CACHE INTERFACE

Fig. 3-3 Eight-Word Read Cycle

PCycle o+] 21 3] a1l s | s 7] | o |
SCAddr (17:1) y Address X
e
SCAddr (0) X First_Address ~ X Second_Address X
| tAacy: .

| g

SCData/SCTag T x Data x X Data[)—
s\ / \

this
SCoCs X X
o3 X X

All read cycles can be aborted by changing the address. A new cycle starts beginning with the edge on which
the address is changed. Additionally, the period TDis after a read cycle can be interrupted any time by the start ot
a new read cycle. If a read cycle is aborted by a writ cycle, SCOE must be deasserted for the TDis period, before
the write cycle can commence. Read cycles can also be extended indefinitely. There is no requirement to change
the address at the end of a read cycle.

3.3.2 Wirite Cycles

Like the read sequence, the secondary cache write sequence begins with the driving of the address pins.

There are two basic write cycles: a four-word write, and an eight word write.

For the four-word write, there are several parameters of interest. The first parameter, TWr1Dly is the time from
driving address to the assertion of SCWr. The second parameter, TWrSUp is the time from driving the second data
double-word to the deassertion of SCWr. The final parameter, TWrRc, is.the time from the deassertion of SCWr
1o the beginning of the next cycle. TWrRc will be zero for most cache designs. Note that the upper data double
word and the lower data double word will normally be driven one cycle apart. This reduces the peak current
consumption in the output drivers. Fig. 3-4 Four-Word Write Cycle illustrates the four word write sequence. The
order of driving the upper versus the lower halves of SCData are not fixed, either the upper or the lower haives might
be driven first.

1 B Luc2?525 0083588 373 M

3
4
4

CHAPTER 3 SECONDARY CACHE INTERFACE

Fig. 3-4 Four-Word Write Cycle

! 1 2 3 4

‘ twnioy |

SCOE

SCDCS x
SCTCS x

PCycle ! [
SCAgdr Bus :X Address X
SCData (63:0) ~={ Data - —
SCTag 2400 —{ Data P
SCData (127:64) = Data —
— e N
Ea \ [
l TwiRc
\X=
A

The eight word write has one new parameter. The parameter, TWr2Dly, is the time from changing the low-order
address bit SCAddr{0) to the assertion of SCWr the second time. The lower half of SCData will be driven out on
the same edge as the change in SCAddr(0). Fig. 3-5 Eight-Word Write Cycle illustrates the eight word write

sequence.

Fig. 3-5 Eight-Word Write Cycle

PCycle ||1|2|3|4|5|s|7le|

SCAddr (17:1)

SCAGdr (0) X Firstaddess X Second_Address }—
—{
_(7

SCData (63:0) First_Data X Second_Data -

SCTag (24:0) First_Data X Second_Data -
SCData (127:64) ——————{ First_Data X Second_Dew —

1 twsuo 2 !_ twsup

s\ N\

|
—
o el
SCOE | \\
Scoes X A
$CTCS X X

When receiving data from the system interface, it is possible that the first data double word will arrive several
cycles before the second. In this case, the cache state machine will simply wait until that data is available before

asserting SCWr and will extend the SCWr until TWrSUp after the driving of the second data item.

M Lu4y27525 0083589 20T 1N

15

CHAPTER 4 SYSTEM INTERFACE

The system interface allows the processor access to external resources required to satisfy cache misses while
also aliowing an external agent access to certain processor internal resources. -In the large package configuration,
the system interface also provides the processor mechanisms with which to maintain the cache coherency of shared
data, while providing an external agent mechanisms with which to maintain system wide multiprocessor cache
coherency.

4.1 System interface Overview

An event that occurs within the processor that requires access to external system resources will be referred to
as a system event. System events include, a load that misses in both the primary and secondary caches, a store
that misses in both the primary and secondary caches, a store that hits in either the primary or secondary data cache
on a shared line, and an uncached load or store. A miss in both caches will require the write back to memory of
the cache line that is being replaced if it is in one of the dirty cache states. Cache instructions will also cause system
events under certain circumstances. For more details on Vr4000SC Cache instructions see Ver4000 USER'S
MANUAL (PRELIMINARY) ARCHITECTURE.

When a system event occurs, the processor will issue a request or a series of requests called processor requests
through the system interface to access some external resource and service the event. The processor's system
interface must be connected to some external agent that understands the system interface protocol and can
coordinate the access to system resources.

Processor requests include read, write, null write requests. Reads are requests for a block, double word, word
or partial word of data from main memory or another system resource. Writes provide a block, doubie word, word
or partial word of data to be written to main memory or another system resource. Null writes indicate that an expected
write has been obviated as a result of some external request.

An external agent may require access to the processor’s caches or to some processor internal resource. in this
event the external agent will issue a request to the processor through the system interface called an external request
to provide the access.

External requests inciude read, write, invalidate, update, snoop, intervention, and null requests. Reads are
requests for a word of data from some processor internal resource. Writes provide a word of data to be written to
some processor internal resource. invalidates specify a cache line that must be marked invalid in the processor’s
primary and secondary caches. Updates provide a double word, word or partial word of data to be written to the
processor's primary and secondary caches. Snoop requests are used to interrogate the processor’s secondary cache
10 discover if the processor has a valid copy of a particular cache line and if so what cache state the line is in. Snoop
requests require the processor o return an indication of the state of the cache line at the specified physical address
in the secondary cache if it is present. Intervention requests require the processor to return an indication of the state
of the cache line at the specified physical address in the secondary cache and the contents of the cache line from
the primary and secondary caches under certain conditions related to the state of the cache line and the nature of
the intervention request. Null requests require no action by the processor, rather they simply provide 8 mechanism
for an external agent to either return control of the secondary cache 10 the processor, or to return control of the system
interface to the processor.

When the processor or an external agent receives a read request, it must access the specified resource and return
the requested data. For external read requests, the data will be returned directly in response to the read request:
For processor read requests the read request and the return of data by an external agent in response 1o the read
request are disconnected or split. The response data may be returned at any time after the read request, and the
system interface is not in use by the read during the time between the read request and the return of response data.
An external agent may initiate an unrelated external request before it returns the response data for a processor read.

17
M bu27?525 0083590 T21 WA

CHAPTER 4 SYSTEM INTERFACE

The return of data in response to & processor read request will be accomplished via a read response. While a read
response is technicaily also an external request, read responses have different characteristics than ali other external
requests in that arbitration for the system interface must not be performed for read responses. For this reason, read
responses will be treated separately from all other external requests, and will be called simply read responses.

Processor read requests that have been issued but for which data has not yet been returned are said to be pending.
A read is pending until the read data has been returned. Note that the data identifier associated with the response
data may signal that the returned data is erroneous, causing the processor 10 take a bus error.

External read requests are not split. The system interface is in use between the read request and the return of
data by the processor.

A processor read request is complete after the last word of response data has been received from the external
agent. A processor write request is complete after the last word of data has been transmitted.

An external read request is complete after the processor returns the requested word of data. An external write
request is complete after the word of data has been transmitted. An externalinvalidate or update requestis complete
after the request has been transmitted. An external snoop request is complete after the processor returns the state
of the specified cache line. An external intervention request is complete after the processor returns the state of
the specified cache line, if the processor does not return the contents of the cache line, or after the processor returns
the last word of data for the specified cache line.

The processor must manage the flow of processor requests and external requests. The flow of external requests
is controlled by the processor via the external request arbitration signals ExtRqst, and Release. An external agent
must acquire mastership of the system interface before it is allowed to issue an external request by asserting ExtRgst
and waiting for the processor to assert Release for one cycle. The processor will not assert Release until it is ready
toaccept an external request. Mastership of the systeminterface is always returned to the processor after an external
request has been issued, and the processor will not accept a subsequent external request until it has finished the
current one.

Processor requests are managed by the processor in two distinct modes, secondary cache mode and no-
secondary cache mode, which reflect the presence or absence of a secondary cache, programmabile via the boot
time mode control interface. The allowed modes of operation are dependent on the package configuration for the
processor. A processor in the large configuration package may be programmed to run in secondary cache mode
or no-secondary cache mode.

In no-secondary cache mode, the processor will issue requests in a strict sequential fashion; that is, the processor
is only allowed to have one request pending at any time. The processor will issue a read request and wait for the
read response before issuing any subsequent requests. The processor will issue a write request only if there are
no reads pending.

The processor provides the signals RdRdy and ﬁd-y to allow an external agent to manage the flow of processor
requests. RdRdy controls the flow of processor read, invalidate, and update requests while WrRRdy controls the flow
of processor write requests. Processor null write requests must always be accepted, they cannot be delayed by
either RdRdy of WrRdy. The processor samples the signal RdRdy to determine the issus cycle for a processor read,
invalidate, or update request and the processor samples the signal WrRdy to determine the issue cycle of a processor
write request. The issue cycle for a processor read request is defined to be the first address cycle for the request
for which the signal RdRdy was asserted two cycles previously. The issue cycle for a processor write request is
defined to be the first address cycle for the write request for which the signal WrRdy was asserted two cycles
previously. If the processor wishes to issue a request but is unable to because one of the signals RdRdy or WrRdy
is de-asserted, the processor will repeat the address cycle for the request until the issue cycle is accomplished. Once
the issue cycle is accomplished, data transmission will begin for a request that includes data. There will always be
one and only one issue cycle for any processor request.

18 Il b427525 0083591 9:L4 M

CHAPTER 4 SYSTEM INTERFACE

The processor will accept external requests while attempting to issue a processor request by releasing the system
interface to slave state in response to an assertion of ExtRgst. Note that the rules governing the issue cycle of a
processor request are strictly applied to determine the action the processor is taking. The processor will either
accomplish the issue of the processor request, in which case the processor request will be completed in its entirety
before an external request will be accepted, or the processor will retease the system interface to slave state without
accomplishing the issue of the processor request. In the latter case, the processor will attempt to issue the processor
request again after the external request is completed, and the rules governing issue cycle will again apply.

In no-secondary cache mode an external agent must be capable of accepting a processor read request at any time
there are no processor read requests pending and the signal RdRay has been asserted for two or more cycles. An
external agent must be capable of accepting a processor write request at any time there are no processor read
requests pending and the signal WrRdy has been assertec for two or more cycles.

In secondary cache mode, the processor will issue requests both individually as in no-secondary cache mode and
in groups that begin with a processor read request callea clusters Specifically, the processor will issue individual
read requests and write requests and the processor will issue clusters. A cluster consists of a processor read request
foliowed by one or two additional processor requests 15sued while the read request is pending. Ali of the requests
that are part of a cluster must be accepted before the response to the read request that begins the cluster may be
returned to the processor. A cluster wili consist of 8 processor read request followed by a write request.

Awrite request that is part of a cluster does obey the WrRay rules for issue, and the processor will accept external
requests between the issue of a processor read request, and the 1ssue of a processor write request within a cluster.
The processor signals that it is issuing a cluster that contains a processor write request by issuing a read with write
forthcoming request instead of an ordinary read request to start the cluster. The read with write forthcoming request
is identified by a bit in the command for processor read requests. The external agent must accept all of the requests
that form a cluster before it may return a response to the read request that began the cluster. The behavior of the
processor is undefined if the external agent returns a response to a processor read request that begins a cluster before
accepting all of the requests that form the cluster.

Since the processor will accept external requests between the issue of a read with write forthcoming request
that begins a cluster and the issue of the write request that completes the cluster, itis possible for an external request
to obviate the need for the write request within the cluster. Forinstance, if the external agent were to issue an external
invalidate request that targeted the cache line the processor was attempting to write back, the state of the cache
line would be changed to invalid,-and.the write back for the cache line would no longer be needed. In this event,
the processor will issue a processor null write request after complating the external request to complete the cluster.
Processor null write requests do not obey the WirRdy flow control ruies for issue, but rather issue with a single address
cycle regardiess of the state of WrRdy. Any external request that changes the state of a cache line from dirty exclusive
or dirty shared to clean exciusive, shared, or invalid will obviate the need for a write back of that cache iine.

in secondary cache mode, an external agent must be capable of accepting a processor write request at any time
there are no processor read requests pending, or there is a processor read with write forthcoming request pending,
no unacknowledged processor invaliidate or update requests that are compulsory, and the signa! WrRdy has been
asserted for two or more cycles.

After issuing a processor read request, the processor will not attempt to issue a subsequent read request.until
it has received a read response for the read request, whether itbegan a cluster or not. The processor will not attempt
1o issue a subsequent request until at least four cycles after the issue cycle of the write request.

The following sections detail the sequence, protocol and syntax of processor and external requests. Sequence
refers to the precise series of requests that & processor generates 1o service a system event. Protocol refers to

the cycle by cycle signai transitions that occur on the processor’s system interface pins to realize a processor or ’

external request. Syntax refers to the precise definition of bit patterns on encoded buses such as the command
bus.

19
Il bu27525 0DDA3592 &Tu I

CHAPTER 4 SYSTEM INTERFACE

4.2 Processor Request Sequencing

The processor will generate a request or a series of requests through the system interface to satisfy system
events. Processor requests are managed in two distinct modes, secondary cache mode and no-secondary cache
mode. The following sections detail the sequence of requests generated by the processor for each system event
in secondary cache and no-secondary cache mode.

4.2.1 Primary and Secondary Cache Miss on a Load

When the processor misses in both the primary and secondary caches on a load, it must obtain the cache line
that contains the data element to be loaded from an external agent before it can proceed. If the new cache line will
replace a current cache line that is in the state dirty exclusive or dirty shared, the current cache line must be written
back before the new line can be loaded in the primary and secondary caches.

The processor will examine the coherency attribute in the TLB entry for the page that contains the requested cache
line and if the coherency attribute is exclusive it will issue a coherent read request that also requests exclusivity.
If the coherency attribute is sharable or update the processor will issue a coherent read request and if the coherency
attribute is noncoherent the processor will issue 8 noncoherent read request.

In no-secondary cache mode, the processor will issue a read request for the cache line that contains the data
element to be loaded, wait for an external agent to provide the read data in response to the read request, and then,
if the current cache line must be written back, the processor will issue a write request for the current cache line.

In secondary cache mode, the processor will issue a read request for the cache line that contains the data element
1o be loaded if the current cache iine does not need to be written back and the coherency attribute for the page that
contains the requested cache line is anything other than exclusive. If the current cache line needs to be written back
and the coherency attribute for the requested cache line is not exclusive, the processor will issue a cluster consisting
of a read with write forthcoming request for the cache line that contains the data element to be ioaded followed
by a write request for the current cache line. if the current cache line needs to be written back, the coherency attribute
for the page that contains the requested cache line is exclusive, the processor will issue a cluster consisting of an
exclusive read with write forthcoming request followed by a write request for the current cache line.

4.2.2 Primary and Secondary Cache Miss on a Store

When the processor misses in both the primary. and secondary.caches on a store, it must obtain the cache line
that contains the target location of the store from an external agent before it can proceed. in secondary cache mode,
if the new cache line will replace a current cache line that is in the state dirty exclusive or dirty shared, the current
cache line must be written back before the new line can be loaded in the primary and secondary caches. In no-
secondary cache mode, if the new cache line will replace a current cache line that is in the state dirty exclusive, the
current cache will be moved to an internal write buffer before the new cache line is loaded in the primary cache.

The processor will examine the coherency attribute in the TLB entry for the page that contains the requested cache
line to see if this cache line is being maintained with a write invalidate or a write update cache coherency protocol.
If the coherency attribute is sharable or exclusive & write invalidate protocol is in effect, and a coherent read that
also requests exclusivity will be issued. If the coherency attribute is update a write update protocol is in effect and
a coherent read request will be issued. If the coherency attribute is noncoherent a noncoherent read request will
be issued.

In no-secondary cache mode, the processor will issue a read request for the cache line that contains the data
element to be loaded, wait for an external agent to provide the read data in response to the read request, and then,
if the current cache line must be written back, the processor will issue a write request for the current cache line.

In secondary cache mode, the processor will issue a read request for the cache line that contains the target location
of the store if the current cache line does not need to be written back and the coherency attribute for the page that
contains the requested cache line is noncoherent. If the current cache line does not need to be written back, the
coherency attribute for the page that contains the requested cache line is sharable or exclusive, the processor will

20
B Lu27525 0083593 730 M

CHAPTER 4 SYSTEM INTERFACE

issue a cluster consisting of a read request. If the current cache line needs to be written back and the coherency
attribute for the requested cache line is noncoherent, the processor will issue a cluster consisting of a read with write
forthcoming request for the cache line that contains the target location of the store followed by a write request for
the current cache line. If the current cache line needs to be written back, the coherency attribute for the page that
contains the requested cache line is sharable or exclusive, the processor will issue a cluster consisting of a read with
write forthcoming request, followed by a write request for the current cache line.

4.2.3 Secondary Cache Hit on a Store to a Shared Line

When the processor hits in the secondary cache on a line that is marked shared or dirty shared, an invalidate or
update request must be issued and receive an acknowiledge before the store can be completed. The processor will
check the coherency attribute in the TLB for the page that contains the cache line that is the target of the store to
determine if the cache line is being managed using a write invalidate or write update cache coherency protocol. If
the coherency attribute is sharable or exclusive a write invalidate protocol is in effect, and the processor will issue
an invalidate request. If the coherency attribute is update a write update protocol is in effect, and the processor
will issue an update request. The processor will not complete the store until an external agent signals an acknowledge
for the invalidate or update request.

4.2.4 Uncached Load or Store
When the processor performs an uncached load, it will issue a noncoherent read request. When the processor
performs an uncached store, it will issue a write request.

4.25 Cache Instructions

The Vr4000SC processor provides a variety of cache instructions for use in maintaining the state and contents
of the primary and secondary caches. During the execution of cache instructions the processor may issue write
requests, or invalidate requests. For further details on cache instructions see Va4000 USER'S MANUAL (PRE-
LIMINARY) ARCHITECTURE.

4.3 Ekternal Request Handling

An external agent must arbitrate with, the processor for aceess to the system interface before it can issue an
external request. The external agent will signal that it wishes to begin an external request and wait for the processor
1o signal that it is ready to accept the request before issuing any new external request. The processor will decide
based on its internal state and the current state of the system interface when to accept a new extemal request. The
processor will signal that it is ready to accept an external request based on the following criteria.

(1) I there are no processor requests pending, the processor will decide based on its intemal state whether to accept
the external request, or rather 1o issue a new processor request. The processor may issue a new processor
request while the external agent is requesting access to the system interface to issue an external request.

(2) The processorwill accept an external requestafter completing a processor request of a processor request cluster
that is in progress.

{3) While waiting for the assertion of RdRdy to issue a processor read request the processor will accept an external
request provided that the request is delivered to the processor one or more cycles before RdRdy is asserted.

{4) While waiting for the assertion of WrRdy to issue a processor write request the processor will accept an external
request provided that the request is delivered to the processor one or more cycles before WrRdy is asserted.

21
B Luy27525 0083594 L7? WM

CHAPTER 4 SYSTEM INTERFACE

(5) While waiting for the response to a read request and after the Vr4000SC has made an uncompelled change to
slave state, an external agent may submit an external request before providing the read response data.

4.4 Load Linked Store Conditional Considerations

Generally the execution of a load linked store conditional instruction sequence is notvisible at the system interface,
that is no special requests are generated due to the execution of this instruction sequence. However, there is one
situation for which the execution of a load linked store conditional instruction sequence will be visible as a change
in the nature of a processor read request.

Specifically, if the data location targeted by a load linked store conditional instruction sequence maps to the same
cache line that the instruction area containing the load linked store conditional code sequence is mapped to, then
immediately after executing the load linked instruction the cache line that contains the link location wili be replaced
by the instruction line containing the code. The link address is kept in a register separate from the cache and remains
active as long as the link bit remains set. The link bit is set by the load linked instruction, and is cleared by any change
of cache state for the cache line containing the link address, or a return from exception.

In order for the load linked store conditional instruction sequence to work correctly all coherency traffic targeting
the link address must be visible to the processor, and the cache line containing the link location must remain in a
shared state in every cache in the system. This guarantees that a store conditional executed by some other processor
is visible to the processor as a coherence request which changes the state of the cache line that contains the link
location. To accomplish this, a read request issued by the processor which causes the replacement of a cache line
that contains the link location while the link bit is set will indicate that the link address is being retained. The link
address retained bit in the command for the read request will be asserted to provide this indication. This informs
the external agent that even though the processor has replaced this cache line and no longer has it present in its
cache, it still must see any coherence traffic that targets this cache line.

In addition, any snoop or intervention request that targets a cache line which is not present in the cache, but for
which the snoop or intervention address matches the current link address while the link bit is set, will return an
indication that the cache line is present in the cache in a shared state. A shared indication is returned even though
the processor does not actually have the data content of the cache line. This is consistent since the processor never
returns data in response to an intervention request for a cache line that is in the shared state. The shared response
guarantees that the cache line that contains:the link location will remain.in a shared state in all other processor’s
caches, and therefore that any other processor that attempts a store conditional to this link location must issue a
coherence reguest in order to complete the store conditional.

4.5 System interface Endianess

The endianess of the system interface is programmed at boot time via the boot time mode control interface and
is fixed until the next time the processor mode bits are read. The endianess of the system interface and the external
system cannot be changed by software. The reverse endian bit can be set by software to reverse the interpretation
of endianess inside the processor, but the endianess of the system interface remains unchanged. For further details
on the reverse endian bit see Va4000 USER’S MANUAL (PRELIMINARY) ARCHITECTURE.

2 B bLc2?525 0083595 503 W

CHAPTER 4 SYSTEM INTERFACE

4.6 System Interface Protocol

The system interface protocol describes the cycle by cycle signal transitions that occur on the pins of the system
interface to realize requests between the processor and an external agent.

4.6.1 Introduction

The system interface is register to register. That is, processor outputs come directly from output registers and
begin to change with the rising edge of SClock and processor inputs are fed directly to input registers that latch the
inputs with the rising edge of SClock. Therefore, if an input to the processor is changed during a particular cycle
such that the new value is sampled at the end of the cycle, the earliest the processor can change one of its outputs
in response to the input change is two cycles later. This methodology was chosen to allow the system interface
to run at the highest possible clock frequency.

The primary communication paths for the system interface are a sixty-four bit address and data bus, SysAD{63:0)
and a nine bit command bus, SysCmd{8:0). The SysAD bus and the SysCmd bus are bidirectional, that is they are
driven by the processor to issue a processor request, and by an external agent to issue an external request. When
the processor is driving the SysAD bus and the SysCmd bus the system interface is in master state, when an external
agent is driving the SysAD bus and the SysCmd bus the system interface is in slave state.

A request through the system interface consists of an address, a system interface command that specifies the
precise nature of the request, and a series of data elements if the request is for a write, read response, or update.
Addresses and data elements are transmitted on the SysAD bus. System interface commands are transmitted on
the SysCmd bus.

Cycles in which the SysAD bus contains a valid address are called address cycles and cycles in which the SysAD
bus contains a valid data element are called data cycles. In master state the processor will assert the signal ValidOut
whenever the SysAD bus and the SysCmd bus are valid. in slave statean external agent will assert the signal Validin
whenever the SysAD bus and the SysCmd bus are valid.

The SysCmd bus is used to identify the contents of the SysAD bus during any cycle in which it is valid. The most
significant bit of the SysCmd bus is always used to indicate whether the current cycle is an address cycle or a data
cycle. buring address cycles, the remainder of the SysCmd bus will contain a system interface command. The
encoding of system interface commands is detailed in the section on system interface syntax. During data cycles,
the remainder of the SysCmd bus will contain an indication of whether this is.the last data element to be transmitted
and other information about the data element. The contents of the SysCmd bus during data cycles is called a data
identifier. The encoding of data identifiers is detailed in 4.8 System interface Syntax.

A request through the system interface consists of one or more identical address cycles, followed by a series
of data cycles for requests that include data. The most efficient request through the system interface will consist
of & single address cycle followed by a single data cycle or @ number of data cycles sufficient to transmit a block
of data.

4.6.2 System Interface Arbitration

When an external agent needs to issue an external request through the system interface, it must first get the
system interface into slave state. The transition from master state to slave state is arbitrated by the processor using
the system interface handshake signals ExtRgst and Release. An external agent will signal that it wishes to issue
an external request by asserting m and the processor will release the systém interface from master state to
slave state by asserting Release for one cycle when it is ready to accept an external request. The system interface
will return to master state as soon as the issue of the external request is complete. Having asserted ExtRgst, an
external agent must not de-assert ExtRgst until the processor asserts Release. After the processor asserts Release,
the external agent should de-assert ExtRgst no more than two cycles after the assertion of Release. An external
agent may continue to assert ExtRgst if another external request follows the current request. After the first external
request completes, the processor must assert Release agsin before the second external request is issued to the
processor.

23
M Lu2?525 008359k 44T WH-

CHAPTER 4 SYSTEM INTERFACE

The system interface will remain in master state until the external agent requests and is granted the system
interface or until the processor issues a read request, or completes the issue of a cluster. Whenever a processor
read request is pending, after the issue of a read request or after the issue of all of the requests in a cluster, the
processor will switch the system interface to slave state even though the external agent is not arbitrating to issue
an external request. This transition to slave state is specifically to aliow the external agent to return read response
data. The external agent must not assert the signal ﬁ't-ﬁ:_s—t for the purposes of transitioning the system interface
to slave state to return read response data. Ext_Ra?t will only be asserted when the external agent needs to get the
system interface into slave state so that it can issue an external request)

The signal ExtRgstis strictly used toarbitrate for the systeminterface thatis torequest the transition of the system
interface from master state to slave state. EXtRgst must always de-assert two cycles after a cycle in which Release
is asserted unless the external agent wishes to perform a subsequent external request. ExtRgst must notbe asserted
while the system interface is in slave state uniess the externa: agent wishes to perform a subsequent external
request.

The transition of the system interface from master state to siave state wutiated by the processor when a processor
read request is pending will be referred to as an uncompelled change to siave state. An uncompelled change to slave
state will occur during or some number of cycles after the issue cycie of » read request or the last cycle of the last
request in a cluster. The number of cycles depends on the state of the cache, the presence of a secondary cache
and the secondary cache parameters. After an uncompelled change to siave state the system interface will remain
in slave state until the external agent issues an external request. sfter whach the system interface will return to master
state. An external agent must note that the processor has performed an uncompelied change to slave state and
begin driving the address and data bus and the command bus As long 8s the system interface is in slave state,
the external agent will begin an external request without arbitrating for the system interface, thatis without asserting
ExtRgst.

4.6.3 System Interface Signal Descriptions

The system interface address and data bus is the SysAD bus. The system interface command bus is the SysCmd
bus. o

The SysAD bus and SysCmd bus valid signal that is asserted by the processor in master state is ValidOut. The
SysAD bus and SysCmd bus valid signal that is asserted by an external agent in slave state is Validin.

The SysADC bus provides eight check bits for the SysAD bus. The nature of the check bits is programmable via
the boot time mode control interface. The check bits may represent even byte parity for the contents of the SysAD
bus, or they may be interpreted according to the code described in CHAPTER 5 ERROR CHECKING AND COR-
RECTING (ECC) to detect and correct single bit errors and detect double bit errors or three or four bit errors within
a nibble on the SysAD bus. For a description of even parity, see the appendix on even parity. For further details
on the ECC characteristics of the Va4000SC, see CHAPTER 5 ERROR CHECKING AND CORRECTING (ECC).

The signa! SysCmdP is an even parity bit over the nine bits of the SysCmd bus generated by the processor in
master state. SysCmdP is not checked by the processor in slave state. For a description of even parity, see
APPENDIX B EVEN PARITY.

System interface arbitration is implemented using the signals ExtRagst and Release.

Processor request flow control is implemented using the signals fRdRdy and WrRdy.

4.6.4 System Interface Maintenance Signals

in addition to the signals used to implement the system interface request protocol, the system interface includes
maintenance signals necessary for the operation of the processor. These include a master clock input for the
processor, MasterClock, which must be connected to a continuous clock signal at the desired operation frequency
of the processor; a processor synchronization clock output, SyncOut and a processor synchronization clock input,
Syncin that must be connected together to allow the processor internal clock synchronization logic to compensate
for pad driver and receiver delays; a master clock output, MasterOut, aligned with MasterClock for use in clocking

24 I Lu2?525 0083597 3486 M

CHAPTER 4 SYSTEM INTERFACE

external logic that must run at MasterClock frequency; three reset related inputs, VooOk, ColdReset, and Reset,
an eight bit status bus, Status{(7:0) that is encoded to indicate the current operation status of the processor, a system
fault processor output, Fault that is the mismatch indication of the boundary comparators when the processor is
running in master checker mode; two transmit clock outputs, TClock(1:0) and two receive clock outputs, RClock(1:0)
at the programmed operation frequency of the system interface.

4.6.5 System Interface Signal Summary

SysAD(63:0): (i/o}

SysADC(7:0): (i/o)
SysCmd(8:0): (i/0)

SysCmdP: (i/o)
Validin: (i)

e ——

ValidOut: {o)

ExtRqst: M
Release: (o}
RdRdy: {i)
WrRdy: {i)

TClock(1:0): (0}
RClock(1:0): {(0)

MasterClock: (i)
MasterOut: (i}
SyncOut: {o}
Syncin: (i)
Status(7:0): (o)
VooOk: 0]
CoidReset: (i}
Reset: @
Fauit: (o)

A 64-bit bus used for address and data transmission between the processor and an external

agent.

An 8-bit bus containing check bits tor the SysAD bus.

A 9-bit bus used for command ana gata identifier transmission between the processor and

an external agent.

A single even parity bit over the SysCmd bus.

Signals that an external agent 1s arving a valid address or valid data on the SysAD bus and

a valid command or data identiher on the SysCmd bus during this cycle.

Signals that the processor is arming 8 vaiid address or valid data on the SysAD bus and a valid

command or data identifier on the SysCmd bus during this cycle.

Signals that an external agent wishes 1o 1Ssue an external request.

Signals that the processor is releasing the system interface to slave state.

Signals that an external agent s capable of accepting a processor read, invalidate, or update

request in both no-secondary cache and secondary cache mode or a read followed by 2

potential update request in secondary cache mode.

Signals that an external agent is capable of accepting a processor write request in both no-
secondary cache and secondary cache mode.

Two identical transmit clocks at the operation frequency of the system interface.

Two identical receive clocks at the operation frequency of the system interface.

Master clock input at the operation frequency of the processor.

Master clock output aligned with MasterClock.

Synchronization clock output..

Synchronization clock input.

An B-bit bus that indicates the current operation status of the processor.

‘When asserted, this signal indicates to the VR4000SC that the +5 volt power supply has been
above 4.75 voits for more than 100 milliseconds and will remain stable. The assertion of
VooOk will initiate the reading of the boot time mode control serial stream.

This signal must be asserted for a power onresetora cold reset. The clocks SClock, TClock,
and RClock begin to cycle and are synchronized with the deassertion edge of ColdReset.

This signal must be asserted for any reset sequence. It may be asserted synchronously or
asynchronously for a cold reset, or synchronously to initiate a warm reset.

Mismatch output of boundary comparators.

B 42?7525 00835498 2lc W

CHAPTER 4 SYSTEM INTERFACE

4.6.6 System Interface Request Descriptions

The following sections will illustrate the protocol of each processor and external request through text and detailed
timing diagrams. The timing diagrams use abbreviations to show the contents of encoded busses during cycles in
which they are defined. Following is a list of abbreviations used for each bus and their definitions.

Global:
Unsd - Unused.
SysAD bus:
Addr - Physical address.
Data<n>- Data element number n of a block of data.
SysCmd bus:
Cmd - An unspecified system interface command.
Read - A read request command.
RWWF -~ A read with write forthcoming request command.
Write - A write request command.
Null - A null request command.
SINull - A system interface release null request command.
SCNull - A secondary cache release null request command.
vd - An invalidate request command.
Upd - An update request command.
Ivtn - An intervention request command.
Snoop - A snoop request command.
NData - A noncoherent data identifier for a data element other than the last data element.
NEOD - A noncoherent data identifier for the last data element.
CData - A coherent data identifier for a data element other than the last data element.

CEOD - A coherent data identifier for the last data element.

Two closely spaced wavy vertical lines in a timing diagram indicate a repetition of the current cycie. Thatis the
cycle broken by the wavy lines may represent one or more identical cycles. This is referred to as a break in the timing
diagram and is used to keep the timing diagrams concise and readable. - :

4.6.7 Arbitration Protocol

System interface arbitration is implemented using the signals ExRgst and Release. When an external agentwishes
toissue an external request, it will assert ExtRgst. The processor will wait until it is ready to handle an external request
and assert Release for one cycle before it tri-states the SysAD bus and SysCmd bus. The external agent will begin
driving the SysAD bus and the SysCmd bus two cycles after a cycle in which Release is asserted. The external agent
will always deassert ExtRgst two cycles after a cycle in which Release is asserted unless the external agent wishes
to perform a subsequent external request. The external agent will aiways release the SysAD bus and the SysCmd
bus at the completion of an external request.

The processor will assert fielease for one cycle as a processor read request is issued or sometimes after a
processor read request is issued to perform an uncompelied change to slave state. An extemal agent must begin
driving the SysAD bus and the SysCmd bus two cycles after the cycle in which Release is asserted. After an
uncompelled change to slave state, the processor will return to master state at the end of the next external request,
which may be the read response, or may be some other external request.

The processor to system handshake for external requests is illustrated in Fig. 4-1 Arbitration Protocol for
External Requests.

M L427525 0083599 159 WM

- - -

—— — & 3

CHAPTER 4 SYSTEM INTERFACE

Fig. 4-1 Arbitration Protocol for External Requests

SCycle |1Iz|3|4|5l6|7l8|9|1o|n|12|

VDV AVAVAVAVAVAVAWAWA WA

Yy a—
SysCmd Bus: \{ Y} cma Yneoo)——_
S N A——
Validin /
ExtRagst
— —/

=

4.6.8 Processor Read Request Protocol

A processor read request is issued with the system interface in master state by driving a read command on the
SysCmd bus and a read address on the SysAD bus and asserting ValidOut for one cycle. Only one processor read
request may be pending at a time. The processor must wait for and retire an external read response before initiating
a subsequent read.

The processor will make an uncompelled change to slave state either at the issue cycle of the read request or
sometime after the issue cycle of the read request by asserting the Release signal for one cycle. Oncein slave state,
an external agent may return the requested data via & read response. An external agent must not assert the signal
ExtRagst for the purposes of returning a read response, but rather must wait for the uncompelied change to slave
state. Thesignal m may be asserted before orduringa read response for the purposes of performing an external
request other than a read response.

When a read is pending, ExtRgstis asserted, and feiease is asserted for one cycle it may be unclear if this assertion
of Fielease is in response to ExtRast, or represents an uncompelled change to slave state. The only situation in which
this assertion of Release may not be considered an uncompelied change to slave state is if the system interface
is operating in secondary cache mode, the read request was a read with write forthcoming read request, and the
expected write request has not yet been issued by the processor. In this case, the write request must be accepted
by the external agent before the read response can be issued. In all other cases, the assertion of Release may be
considered to be an uncompelled change to slave state or to be in response 10 the assertion of ExtRgst. In this
situation, the processor will accept either a read response, or any other external request. If an external request other
than aread response is issued, the processor will perform another uncompelled change to slave state after processing
of the external request is complete.

The read response may either return the requested data, or an indication that the returned data is erroneous, if
the requested data could not be successfully retrieved, which will cause the processor to take a bus error.

A processor read request and an uncompelied change to slave state occurring as the read request is issued is
illustrated in Fig. 4-2 Processor Read Request Protocol. Aprocessor read request and the subsegquent uncompelled
change to slave state occurring sometime after the read request is issued is illustrated in Fig. 4-3 Processor Read
Request Protocol, Change to Slave State Delayed.

B by27525 0083L00 770 MW

CHAPTER 4 SYSTEM INTERFACE

Fig. 4-2 Processor Read Request Protocol

SCycle |1|2|3|4|5|6|7|a|9|1o|11|12|

SysAD Bus: x AddH
SysCmd Bus: ﬁeadH

Validin "H*
RdRdy L
WrRdy L

Fig. 4-3 Processor Read Request Protocol, Change to Slave State Delayed

SCycle |1|2|3l4|5|6|7|s|9|10|11|12|

sy s 0) —
SysCmd Bus: x Read X 5(17 H

4.6.9 Processor Write Request Protocol

Processor write requests are issued with one of two protocols. Double word, word, and partial word writes use
a single word write request protocol. Write requests for a block of data use a block write request protocol. Processor
write requests are issued with the system interface in master state.

A processor single word write request is issued by driving awrite command on the SysCmdbus and a write address
on the SysAD bus and asserting ValidOut for one cycle, followed by driving a data identifier on the SysCmd bus and
data on the SysAD bus and asserting ValidOut for one cycle. The data identifier associated with the data cycle must
contain a last data cycle indication. ’

A processor block write request is issued by driving a write command on the SysCmd bus and a write address
on the SysAD bus and asserting ValidOut for one cycle, followed by driving a data identifier on the SysCmd bus and
data on the SysAD bus and asserting ValidOut for a number of cycles sufficient to transmit the block of data. The
data identifier associated with the last data cycle must contain a last data cycle indication. The first data cycle may
not immediately follow the address cycle. A processor single word write request is illustrated in Fig. 4-4 Processor

28 Bl b42?525 0083601 L37 MM

CHAPTER 4 SYSTEM INTERFACE

Single Word Write Request Protocol. A processor block write request for eight words of data is illustrated in Fig.
4-5 Processor Block Write Request Protocol {a) and Fig. 4-6 Processor Block Write Request Protocol (b).

Fig. 4-4 Processor Single Word Write Request Protocol

SCycle |1]2|3|4|5|6|7|a|9l1o|;1|12|

SysAD Bus: J Addr ﬁ)atagx
SysCmd Bus: J Write XWEODX n

Validout —______/

Validin "H
RdRdy L
WrRdy ‘L
Release *H*

Fig. 45 Processor Block Write Request Protocol (a)

‘ SCydle |1|2|3]4|5|s|7|8|9|1o|11|12|

SysAD Bus: X Adar X Deta0X Datat X Data2 X Data3 X
SysCmd Bus: Y Wite X CData) CData X CData X CEODX
Vaiidoat \ e

Vm " IV
RdRdy L
WrRdy "L
Release *H*

M L427525 0D83LO2 573 MN

CHAPTER 4 SYSTEM INTERFACE

Fig. 4-6 Processor Block Write Request Protocol (b)

SCycle | vl 2] s | a]s | el 28] 9 1w0]n]|i2]
SClock

SysAD Bus: X Addr Data0 X Data1 X Data2 X Data3 X

SysCmd Bus: X Wite CData X CData X CData X CEOD X

Vaidoum /

4.6.10 Processor Null Write Request Protocol

A processor null write request is issued with the system intertace in master state by driving a null command on
the SysCmd bus and asserting ValidOut for one cycle. The SysAD bus is unused during the address cycle associated
with a null write request. Processor null write requests cannot be tiow controlled with either RdRdy or WrRdy, but
rather always issue with a single address cycle. A processor null write request is illustrated in Fig. 4-7 Processor
Null Write Request Protocol.

Fig. 4-7 Processor Null Write Request Protocol

SCycle vl 21s|als]e]l2]els]|w]|n]aal
e\ /NN
SysAD Bus: X unsd X "

SysCmd Bus:) £ ¢

wor — _/

Validin “H*

RdRdy L

WiRdy L

P o

M Lu427525 008303 40T WA

—ooo——————— AL L.

CHAPTER 4 SYSTEM INTERFACE

4.6.11 Processor Cluster Protocol

In secondary cache mode, the processor will issue requests both individually as in no-secondary cache mode and
in groups that begin with a processor read request cailed clusters. A cluster consists of a processor read request
followed by one or two additional processor requests issued while the read request is pending. All of the requests
that are part of a cluster must be accepted before the response to the read request that begins the cluster may be
returned to the processor. A cluster will include a processor read request followed by a write request.

The protocol of each of the requests that form a cluster is as described above. The number of unused cycles
between the requests that form a cluster may be zero or greater. The processor will make an uncompelied change
to slave state either during or following the last cycle of the last request in the cluster. A cluster consisting of a read
request followed by a potential update request followed by a block write request for eight words of data with minimum
spacing between the requests that form the cluster and an uncompelled change to slave state at the earliest
opportunity is illustrated in Fig. 4-8 Processor Cluster Protocol.

Fig. 4-8 Processor Cluster Protocol

sowe | 1] 2lslalsle]l el ool n]l
SysAD Bus: X adar Y[Adar X Data0 X Datat X Data2 X Data3)———{
SysCmd Bus: Y Read Y Wite X CData) CData X CData X CEOD }———
aow O\ /

Validin *H*
RdRdy e
WiRdy oLt

R N

4.6.12 External Request Protocol

External requests may only be issued with the system interface in slave state. An external agent must assert
ExtRgst to arbitrate for the system interface, and wait for the processor to release the system interface to slave state
before issuing an external request. If the system interface is already in slave state, i.e. the processor has previously
performed an uncompelled change to slave state, an external agent may begin an external request immediately.

Afterissuing an external request an external agent must return the system interface to master state. If the external
agent does not have any additional external requests to perform, m must be de-asserted two cycles after the
cycle inwhich Release is asserted. An external agent may hold ExtRgstasserted if it needs toissue a string of external
requests, but it must wait for the processor to assert Release and return the system interface to siave state before
it may proceed with the next external request. For a string of external requests, the external agent must de-assert
Exthst two cycles after the cycle in whnch Release is asserted for the last external request in the string. The
processor will continue to handle extemal requests as long as ExtRgst is held asserted, however, the processor will
not release the system interface to slave state for a subsequent external request until it has completed the current
request. Astring of external requests will not be interrupted by a processor requestas longas ExtRaqstis held asserted
throughout the issue of the string of external requests.

31
B Lye?525 0043L0OY 34bL NN

CHAPTER 4 SYSTEM INTERFACE

(1) External Read Request Protocol

External read requests use a non-spiit protocol that does not allow any other request to occur at the system
interface between the external read request and the read response. The protocol of an external read request
encompasses the request from an external agent and the response from the processor.

An external read request consists of driving a read request command on the SysCmd bus and a read request
address on the SysAD bus and asserting Validin for one cycle. After the address and command are sent, the
external agent will release the SysCmd and SysAD busses and allow the processor to begin driving them. The
processor will access the data that is the target of the read and return the data to the external agent. The
processor accomplishes this by driving a data identifier on the SysCmd bus, the response data on the SysAD
bus, and asserting ValidOut for one cycle. The data identifier will indicate that this is response data and contain
a last data cycle indication. The processor will continue driving the SysCmd and SysAD busses after the read
response is returned to transition the system interface back to master state.

External read requests are only allowed to read a word of data from the processor. The processor response
to external read requests for any data element other than a word is undefined.

An external read request with the system interface initially in master state is illustrated in Fig. 4-9 External
Read Request, System Interface in Master State.

Fig. 4-9 External Read Request, System interface in Master State

SCycle
SClock

SysAD Bus:
SysCmd Bus:

VaiidOut

Validin

ExtRgst

A A—

Remark Version 1.2 of the Vr4000SC does not contain any resources that are readable with an external read
request. Version 1.2 of the Va4000SC will return a bus error response to any external read request.

(2) External Null Request Protocol

The Vr4000SC processor supports two kinds of external null requests. A system interface release external null
request is used to return the system interface to master state after it has been released to slave state without
affecting the processor. A scache release external null request is used to return ownership of the secondary
cache to the processor while the system interface remains in slave state for some period of time. This is
important since any time the processor releases the system interface to slave state to accept an external request,
it also acquires ownership of the secondary cache for use by the external request in anticipation of handling a
coherence request. When an external agent requests ownership of the system interface for the purposes of
using the SysAD bus for a transfer unrelated to the processor this ownership of the secondary cache will prevent
the processor from satisfying subsequent primary cache misses. The scache release external request can be
issued by the external agent to return ownership of the secondary cache to the processor. External nuli requests

B Lu2?525 0083L0OS 282 MW

+ = 4L

CHAPTER 4 SYSTEM INTERFACE

- - =

require no action from the processor other than to return the system interface to master state or to regain
ownership of the secondary cache.

An external null request consists of driving a null request command on the SysCmd bus and asserting Validin
for one cycle. The SysAD bus is unused during the address cycle associated with an external null request. After
the address cycle is issued the null request is complete. For a system interface release external null request
the external agent will release the SysCmd and SysAD busses and aliow the system interface to return to master
state. For a scache release external null request the system interface will remain in siave state. Ascacherelease
external null request with the system interface initially in master state is illustratedin Fig. 4-10 Secondary Cache
Release External Null Request. A system interface release external null request with the system interface
initially in slave state is illustrated in Fig. 4-11 System Interface Release External Null Request.

.- 4L 1

Fig. 4-10 Secondary Cache Release External Null Request

SCycle |1|2|3‘4|5l5|7|8|9|10|”|12|

SysAD Bus:) F——{unsd X
SysCmd Bus: K{ HSCNUIIX

I (W

e -5

Fig. 4-11 System Interface Release External Null Request

SCycle I 1 szal '4'| 5 |"‘6'| 7‘|‘ 8 |'9 |"1o | 1 | 12 |

e\ AN
SysAD Bus: X Unsd }—{
SysCmd Bus: Y siNut }——{

ValidOut *H*

Validin \ /
ExtRgst *H" '

Release *H*

M b427525 0083606 119 WE

CHAPTER 4 SYSTEM INTERFACE

(3) External Write Request Protocol

4)

External write requests use a protocol identical to the processor single word write protocol except that the signal
Valdin is asserted instead of the signal ValidOut. An external write request consists of driving a write command
on the SysCmd bus and a write address on the SysAD bus and asserting Validin for one cycle, followed by driving
a data identifier on the SysCmd bus and data on the SysAD bus and asserting Validin for one cycle. The data
identifier associated with the data cycle must contain a last data cycle indication. After the data cycle is issued
the write request is complete and the external agent will release the SysCmd and SysAD busses and allow the
system interface to return to master state.

External write requests are only allowed to write a word of data to the processor. The behavior of the processor
in response to an external write request for any data element other than a word is undefined.

An external write request with the system interface initially in master state is illustrated in Fig. 4-12 External
Write Request.

Fig. 4-12 External Write Request

SCydle |1|z|3|4|5]s|7|a|9|1o|11|1z|
SClock

SysAD Bus:)Y)-—(Addj Data)-—(
SysCmd Bus: 4\\ }—— Write XNEOD }—el

)

:_:__—:“ R
B\ gg /

Remark The only writable resource in the version 1.2 of the Va4000SC is the processor interrupts.

External Invalidate and Update Request Protocol .
External invalidate and update requests use a protocol identical to that for external write requests. The data
element provided with an update request may be a double word, word, or partial word. The single data cycle
will be unused for an invalidate request. An external invalidate request following an uncompelled change to slave
state is illustrated in Fig. 4-13 External Invalidate Request Following an Uncompelied Change to Slave
State.

B Lu27525 0083L0O7? 055 M

- - .-

-———— L —-

CHAPTER 4 SYSTEM INTERFACE

Fig. 4-13 External invalidate Request Following an Uncompelled Change to Slave State

SCycle | 1 I 2 | 3 | 4 l 5 | 6 | 7 | 8 | 9 | 10 [1 | 12 |
SysAD Bus: \ X Addr X Unsd .
y4

SysCmd Bus: \ X Ivd XCEOD

oW « «
= - (
" (¢ {
e)

{5) Read Response Protocol

An external agent must return data to the processor in response to a processor read request by first waiting
for the processor to perform an uncompelled change to siave state, and then returning the data via a single data
cycle or a series of data cycles sufficient to transmit the requested data. After the last data cycle is issued the
read response is complete and the external agent will release the SysCmd and SysAD busses and allow the
system interface to return to master state. Note that the processor will always perform an uncompelied change
1o slave state at some time after issuing a read request.

The data identifier for the data cycles must indicate that this is response data, and the data identifier associated
with the last data cycle must contain a last data cycle indication. For read responses to coherent block read
requests, each data identifier must include an indication of the cache state in which to load the response data.
The cache state provided with each data identifier must be the same and must be either clean exclusive, dirty
exclusive, shared, or dirty shared. The behavior of the processor if the cache state provided with the data

identifiers is changed during the transfer of the block of data or if the cache state provided is invalid is undefined.
The data identifier associated with a data cycle may indicate that the data transmitted during that cycle is
erroneous, however, an external agent must return a block of data of the correct size regardless of erroneous
data cycles. If a read response includes one or more erroneous data cycles, the processor will take a bus error.
Read response data must only be delivered to the processor when a processor read request is pending; that
is in response to a processor read request. The behavior of the processor if a read response is presented to
it when there is no processor read pending is undefined. Further, if the processor issues a read with write
forthcoming request, a processor write request or a processor null write request must be accepted before the
read response may be returned. The behavior of the processor is undefined if the read response is returned
before a processor write request is accepted.

A processor word read request followed by a word read response is illustrated in Fig. 4-14 Process Word Read
Request Followed by a Word Read Response. A read response for a processor block read with the system
interface already in siave state is illustrated in Fig. 4-15 Block Read Response, System Interface Already in
Slave State.

B b427525 0083608 T91 WM

CHAPTER 4 SYSTEM INTERFACE

Fig. 4-14 Processor Word Read Request Followed by a Word Read Response

SysAD Bus: X Addr L)——(>> X Data)——(

SysCmd Bus: X Read \, H 4\\/ XNEOE)—-(

o (4
- ((A
= !

Release))

Fig. 4-15 Block Read Response, System interface Already in Slave State

SCycle v 23] als]el 2] 8| o]w]n]i]
SClock
SysAD Bus: XData0X Data1 X Data2 X Data3 J=——(
SysCmd Bus: XcData) CDataX CData X CEOD =

ValidOut ‘H*
wEn o\ [
Exf_n'—qst “H
Feleass "R

(6) External Intervention Request Protocol

External intervention requests use a protocol similar to that for external read requests except that a cache line
size block of data may be returned along with an indication of the cache state for the cache line, depending on
the state of the cache line and the value of the data return bit in the intervention request command.

The data return bit in the intervention request command may indicate return on dirty or return on exclusive. If
the data retumn bit indicates return on dirty and the cache line that is the target of the intervention request is
in the state dirty exclusive or dirty shared, the contents of the cache line will be returned in response to the
intervention request. If the data return bit indicates return on exclusive and the cache line that is the target of
the intervention request is in the state clean exclusive or dirty exclusive, the contents of the cache line will be
retumed in response to the intervention request. Otherwise, the response to the intervention request will not
include the contents of the cache line but rather will simply indicate the state of the cache line that is the target
of the intervention request. Note that if the cache line that is the target of the intervention request is not present
in the cache at all, i.e. a tag comparison for the cache line at the target cache address fails, the cache line that
is the target of the intervention request will be considered to be in the invalid state.

B L4c27525 0083kL0O9 928 M

CHAPTER 4 SYSTEM INTERFACE

Ep———————————— e .. — —— - L
‘ .
1

The processor will return an indication of the cache state in which a cache line was found but not its contents
by driving a coherent data identifier that indicates the state of the cache line on the SysCmd bus, and asserting
ValidOut for one cycle. The SysAD bus is unused during this data cycle. The data identifier will indicate that
this is a response data cycle and will contain a last data cycle indication.

The processor will return the contents of a cache line along with an indication of the cache state in which it was
found by issuing a sequence of data cycles sufficient to transmit the contents of the cache line. The data identifier
transmitted with each data cycle will indicate the cache state in which the cache line was found and that this
is response data. The data identifier associated with the last data cycle will contain a last data cycle indication.
If the contents of a cache line is returned in response to an intervention request, it will be returned in sub-block
order starting with the double word at the address supplied with the intervention request. For further details
on sub-block ordering see APPENDIX A SUB-BLOCK ORDERING. Note, however, that if the intervention
address targets the double word at the beginning of the block sub-block ordering is equivalent to sequential
ordering.

An external intervention request to a cache line found in the shared state with the system interface initially in
master state is illustrated in-Fig. 4-16 External intervention Request, Shared Line, System Interface in
Master State. An external intervention request to a cache line found in the dirty exclusive state with the system
interface initially in slave state is illustrated in Fig. 4-17 External intervention Request, Dirty Exclusive Line,
System Interface in Slave State.

Fig. 4-16 External Intervention Request, Shared Line, System Interface in Master State

SCycle |1|2|3|4|5|s|7|a|9|1o|11|12l
SClock __/"_/7

SysAD Bus: N ——{ Adar U
SysCmd Bus: \\) s L CEOD }——r{

o &a {

.

mw)\ 7

B L427525 0083610 LUT HE

CHAPTER 4 SYSTEM INTERFACE

Fig. 4-17 External Intervention Request, Dirty Exclusive Line, System Interface in Slave State

SCycle

SClock

SysAD Bus: DataOX Datalx Data{X Data3
SysCmd Bus: CDataX CDataXCDataX CEQD
VaiidOut

Validin \ / << <<
ExtRqst “H (/ (;
Release 2{ 8
4.6.13 External Snoop Request Protocol _

External snoop requests use a protocol identical to that for external read requests, except that the processor will
respond to a snoop request with an indication of the current cache state for the cache line that is the target of the
snoop request instead of data. The processor accomplishes this by driving a coherent data identifier on the SysCmd
bus, and asserting ValidOut for one cycle. The SysAD bus is unused during the snoop response. The processor
will continue driving the SysCmd and SysAD busses after the snoop response is returned to transition the system
interface back to master state.

Note that if the cache line that is the target of the snoop request is not present in the cache at all, i.e. a tag
comparison for the cache line &t the target cache address fails, the cache line that is the target of the snoop request
will be considered to be in the invalid state. ' .

An external snoop request issued with the system interface in master state is illustrated in Fig. 4-18 External

Snoop Request, System interface in Master State. An external snoop request issued with the system interface
in slave state is illustrated in Fig. 4-19 External Snoop Request, System Interface in Slave State.

Fig. 4-18 External Snoop Roquist, System Interface in Master State

swe |12 e]ls el 7]elo]w]n]]
SClock

SysAD Bus: Unsd X

SysCmd Bus: ceopX

ValidOut

Vaiidin

e

= —0T ¢

B L427525 00A3L1LL 5&8L MW

w381 Iy 1.3 AR

CHAPTER 4 SYSTEM INTERFACE

Fig. 4-19 External Snoop Request, System Interface in Slave State

SCycle |3|9|1°|”l12|

SClock

SysAD Bus: X Addr Y))—.(
SysCmd Bus: X snoop ‘ —
ValidOut

m—_f«

Release 22 g

4.6.14 Processor Request and Cluster Flow Control

The signal RdRdy may be used by an external agent to control the flow of a processor read request. The processor
samples the signal RdRdy to determine if the external agent is currently capable of accepting a read request. The
signal WrRdy controls the flow of a processor write request. The processor will not complete the issue of a read
request until it issues an address cycle for the request such that the signal RdRdy was asserted two cycles previously.
The processor will not complete the issue of a write request until it issues an address cycle for the write request
such that the signal WrRdy was asserted two cycles previously.

Two processor write requests in which the issue of the second is delayed for the assertion of WrRdy are illustrated
in Fig. 4-20 Two Processor Write Requests, Second Write Delayed for the Assertion of m A processor
cluster in which the issue of the read write request is delayed for the assertion of RdRdy is illustrated in Fig. 4-21
Processor Read Request within a Cluster Delayed for the Assertion of RdRdy. A processor cluster in which the
issue of the write request is delayed for the assertion of WrRdy is illustrated in Fig. 4-22 Processor Write Request
within a Cluster Delayed for the Assertion of WrRdy. The issue of a processor write request delayed for the
assertion of md—y and the completion of an external invalidate request is illustrated in Fig. 4-23 Processor Write
Request Delayed for the Assertion of WrRdy and the Completion of an External Invalidate Request.

B 427525 0083Ll2 412 WE

CHAPTER 4 SYSTEM INTERFACE

Fig. 4-20 Two Processor Write Requests, Second Write Delayed for the Assertion of WrRdy

sce |1 L2]3| als e 7] e] o] u]]|

SysAD Bus: X Adﬂ Data0 X X Addr bataox
SysCmd Bus: Xwite XNEOD X X Write XneooX

ValidOut \ / \ /

Validin ‘H*
RdRdy ‘L
WiRdy / \ /
Release "H*

Fig. 4-21 Processor Read Request Within a Cluster Delayed for the Assertion of RdRdy

SCycle v] 213l a]ls]|el 2] 8] s|1w0]n]iz]

Y AW AW AV AV AV AV AVAVAVAV AW
SysAD Bus: X Adr X Addr X Deta0) Datat X Data2X Data3) .
SysCmd Bus: X Read X Write X CData X CData X CData X CEODX |
waow \

Veiidin H

T\

WirRdy e

Release *H*

B b427525 0083L13 359 mm.

CHAPTER 4 SYSTEM INTERFACE

Fig. 4-22 Write Request Within a Cluster Delayed for the Assertion of WrRdy

SCycle |1Iz|3|4|5]6I7|8|9|10|11|12|

SysAD Bus: Addr X Addr X Unsd f Addr X DataOXDaEX Data2 XDataB

SysCmd Bus: Read X Upd XCEODX Wite X CData X CData X CDate X CEOD
T oL

Validin "H*

RaFay oL

WGy \ /

T oy

Fig. 4-23 Processor Write Request Delayed for the Assertion of WrRdy and the Completion
of an External Invalidate Request

scyee |1]2l als el] elo 0] n]n2]

SysAD Bus: X Addr }——(Addr X Unsd }——{ Adar X Data0 X
SysCmd Bus: X Wiite }—— wa ¥ceoD)}———{ write XneODX
VaidOut \ [/ \ /

Validin \ /

RdRdy oLt
Bagst \ B
Rewase \ /

4.6.15 Data Rate Control

The system interface supports a maximum data rate of one double word per cycle. The maximum data rate the
processor can suppbrt is directly related to the secondary cache access time, if the access time is too long, the
processor will not be able to transmit and accept data at the maximum rate.

The rate at which data is delivered to the processor may be chosen by an external agent by driving data and
asserting Validin every n cycles instead of every cycle. The processor will only interpret cycles during which Validin
is asserted and the SysCmd bus contains a data identifier as valid data cycles. The processor will continue to accept
data until the data word tagged as the last data word is received. An external agent may deliver data at any rate
it chooses but must not deliver data to the processor faster than it is capable of accepting it. ’

Because the secondary cache is organized as a 128 bit RAM array, the processor will operate most efficiently
if data is delivered 1o it in pairs of double words. It is most efficient to reduce the data rate by delivering a pair of
double words to the processor, followed by some number of unused cycles, followed by another pair of double words.
The pattern should be chosen to repeat at a rate determined by the secondary cache write cycle time. However,

41
B b42?525 0083614 295 MR

CHAPTER 4 SYSTEM INTERFACE

the processor will accept data in any pattern as long as the time between the transfer of any pair of odd numbered
double words is greater than or equal to the write cycle time of the secondary cache. Double words in the transfer
pattern are numbered beginning at zero such that the odd numbered words are the second, fourth, sixth, and so
on words transferred.

The maximum processor data rate for each of the possible secondary cache write cycle times and the most efficient
data pattern for each data rate is illustrated in Table 4-1 Maximum Processor Data Rates. In this and subsequent
tables data patterns are specified using the letters “D* and “x", “D” indicates a data cycle and “x" indicates an unused
cycle. A data pattern is specified as a sequence of letters, indicating a sequence of data and unused cycles that
will be repeated to provide the appropriate data rate. For example, a data pattern specified by the sequence of letters
“DDxx", to schieve a data rate of two words every four cycles, is a data pattern in which two data cycles are foliowed
by two unused cycles followed by two data cycies and two unused cycles, and so on. A read response in which
data is provided to the processor at a rate of two words every three cycles using the data pattern “DDx" is shown
in Fig. 4-24 Read Response, Reduced Data Rate, System Interface in Slave State.

If data is delivered to the processor at a rate that exceeds the maximum the processor can support, based on
the secondary cache write cycle time, the behavior of the processor is undefined The secondary cache write cycle
time is the sum of the parameters TWr1Dly, TWrSUp, and TWrRc described in the section on secondary cache write
cycles. The rate at which the processor transmits data is programmable at boot time via the boot time mode control
interface. The transmit data rate may be programmed to any of the data rates and data pattemns listed in Table 4-
2 Transmit Data Rates, as long as the programmed data rate does not exceed the maximum the processor can
support, based on the secondary cache access time. If a transmit data rate is programmed that exceeds the maximum
the processor can support, the behavior of the processor is undefined. A processor write request for which the
processor transmit data rate has been programmed to 1 double word every two cycles using the data pattern “DDxx"
is shown in Fig. 4-25 Processor Write Request, Transmit Data Rate Reduced.

Table 4-1 Maximum Processor Data Rates

SCache Write Cycle Time Max Data Rate " Best Data Pattern
<= 4 PCycles 1Double/1 Cycle D

56 PCycles - - - ~ 2 Doubles/3 Cycles DDx

78 PCycles) _ __.1Double/2 Cycles DDxx

9-10 PCycles - o 2'Doubles/5 Cycles DDxxx

11-12 PCycles . 1 Double/3 Cycles " DDxoxxx

Fig. 4-24 Read Response, Reduced Data Rate, System Interface in Slave State

SCycle vl 23] als|e]l2]els 0| n]n]
0 AN
SysAD Bus: A Det20X Deta1 X X Deta2 X Deta3 }—

SysCmd Bus: XcDawXCDataX X CData X CEOD }———{

Venioo -
Vaiidin \ / \) /
ExtRgst ‘H*
elease *H*

M L42?525 0083615 121 MWW

CHAPTER 4 SYSTEM INTERFACE

Table 4-2 Transmit Data Rates

Data Rate Data Pattern Max SCache Access
1 Double/1 Cycle D 4 PCycles

2 Doubles/3 Cycles) DDx 6 PCycles

1 Double/2 Cycles DDxx 8 PCycles

1 Double/2 Cycles DxDx 8 PCycles

2 Doubles/5 Cycles DDxxx 10 PCycles

1 Double/3 Cycles DDxxxx 12 PCycles

1 Double/3 Cycles DxxDxx 12 PCycles

1 Double/4 Cycles DDxxxxxx 16 PCycles

1 Double/4 Cycles DxxxDxxx 16 PCycles

Fig. 4-25 Processor Write Request, Transmit Data Rate Reduced

se |1l 213l alslel 7 lelslwln]au]
‘SysAD Bus: X Addr X Data0 X Data1 X XData2 XData3 X
SysCmd Bus: ~X write X CData X CData X XcData XCEOD X

Vaiidin ‘H*
ExtRgst "Mt
Release ‘H*

4.6.16 Multiple Drivers on the SysAD Bus .

In most VR4000SC applications the SysAD bus will be a point to point connection from the processor to a
bidirectional registered transceiver in an external agent. For those applications, the SysAD bus has only two possible
drivers, the processor and the external agent. However, certain applications may wish to add additional drivers and
receivers 1o the SysAD bus, and allow transmissions to take place over the SysAD bus that the processor is not
involved in. To accomplish this the external agent must coordinate the usage of the SysAD bus using the arbitration
handshake signals and the external null requests.

To implement an independent transmission on the SysAD bus that does not involve the processor, the external
agent will request the SysAD bus to issue an external request. After the processor releases the system interface
to slave state, the external agent may issue a scache release external null request to return ownership of the
secondary cache to the processor, if the processor is being used with a secondary cache. The external agent may
then allow the independent transmission to take place on the SysAD bus making sure that Validin is not asserted
while the transmission is occurring. When the transmission is complete, the external agent will issue a system
interface release external null request to return the system interface to master state.

B L427525 0083blbk ObS HH

CHAPTER 4 SYSTEM INTERFACE

4.7 Cycle Counts for System Interface Interactions

The Vr4000SC processor specifies minimum and maximum cycle counts for various processor transactions and
for the processor's response time to external requests to facilitate system design with the VrR4000SC. Processor
requests themselves are constrained by the system interface request protocol and the cycle counts for such requests
can be determined by examining the protocol. The spacing between requests within a cluster, the waiting period
for the processor to release the system interface to slave state in response to an external request, and the response
time for an external request that requires a response is variable and subject to minimum and maximum cycle counts.
The remainder of this section will describe and tabulate the minimum and maximum cycle counts for these system
interface interactions.

The minimum and maximum number of unused cycles between the requests within a cluster is a function of
processor internal activity. The minimum number of unused cycles separating requests within a cluster is zero, the
requests may be adjacent. The maximum number of unused cycles separating requests within a cluster varies
depending on the requests that form the cluster. The minimum and maximum number of unused cycles separating
requests within a cluster is summarized in Table 4-3 Unused Cycles Separating Requests within a Cluster.

Table 4-3 Unused Cycles Separating Requests within a Cluster

From Processor Request To Processor Request Minimum Unused Cycles Maximum Unused Cycles
Read Invalidate or Update 0 2
Read Write 0 2

The number of cycles the processor may wait to release the system interface to slave state for an external request
will be referred to as the release latency. The release latency is a function of processor internal activity and processor
request activity. The processor will release the system interface to accept an external request under the conditions
described above. When no processor requests are in progress internal activity, such as refilling the primary cache
from the secondary cache, may cause the processor to wait some number of cycles before releasing the system
interface. Release latency will be considered in three categories:)

(1) release latency when the external request signal is asserted during the cycle two cycles before the last cycie
of a processor request or two cycles before the last cycle of the last request in a cluster.

{2) release latency when the external request signal is not asserted during a processor request or cluster, or asserts
during the last cycle of a processor request or cluster.

(3) release latency when the processor does an uncompelled change to slave state.

The minimum and maximum release latency for requests that fall into categories (1), (2) and (3) sbove is
summarized in Table 4-4 Releass Latency for Category (1), (2) and (3) External Requests.

a4 M b427525 0083L17 TTy N

CHAPTER 4 SYSTEM INTERFACE

Table 4-4 Release Latency for Category (1), {2) and (3) External Requests

Category Minimum Note Maximum Note
M 4 6

(2) 4 24

(3) 0 T8D

Note These cycle counts are preliminary and subject to change.

The number of cycles the processor may take to respond to an external request that requires a response, that
is, an external intervention request, read request, of snoop request, will be referred to as the intervention response
latency, external read response latency, or Snoop response latency respectively. The number of cycles of latency
is the number of unused cycies between the address cycle of the request and the first data cycle of the response.
Intervention response latency and snoop response latency is a function of processor internal activity and secondary
cache access time. The minimum and maximum intervention response latency and snoop response latency as a
function of secondary cache access time is summarized in Table 4-5 Intervention Response Latency and Snoop
Response Latency. External read response latency is purely a function of processor internal activity. The minimum
and maximum external read response latency is summarized in Table 4-6 External Read Response Latency.

Table 4-5 Intervention Response Latency and Snoop Response Latency

Max SCache Access Intervention response latency Note Snoop response latency Note
Min Max Min Max

<= 4 PCycles 6 26 6 26

5-6 PCycles 8 28 8 28

7-8 PCycles 10 30 10 30

9-10 PCycles 12 32 12 32

11-12 PCycles 14 34 14 34

Note These cycle counts are preliminary and subject to change.

Table 4-6 External Read Response Latency

!ﬁ! Note Max Note
External Read Response Latency 4 4

Note These cycle counts are preliminary and subject to change.

Bl LY427525 00A3L1S 930 EE

CHAPTER 4 SYSTEM INTERFACE

4.8 System Interface Syntax

System interface commands specify the precise nature and attributes of any system interface request during the
address cycle for the request. System interface data identifiers specify the attributes of a data eilement transmitted
during a system interface data cycle. The following sections describe the syntax, that is the bitwise encoding, of
system interface commands and data identifiers.

4.8.1 System Interface Command and Data Identifier Syntax

System interface commands and data identifiers are encoded in nine bits and transmitted from the processor to
an external agent or from an external agent to the processor on the SysCmd bus during address and data cycles.
Bit eight of the SysCmd bus determines whether the current contents of the SysCmd bus is a command or a data
identifier and therefore whether the current cycle is an address cycle or a data cycle. For system interface commands
SysCmd(8) must be asserted {0). For system interface data identifiers SysCmd(8) must be de-asserted (1).

For system interface commands and data identifiers associated with external requests, reserved bits and reserved
fields in the command or data identifier should be de-asserted, that is set to one (1) or all ones respectively. For
system interface commands and data identifiers associated with processor requests, reserved bits and reserved
fields in the command or data identifier are undefined. .

(1) System Interface Command Syntax
This section will define the encoding of the SysCmd bus for system interface commands. A common encoding
is used for all system interface commands. SysCmd(8) must be asserted (0) for all system interface commands.
For all system interface commands SysCmd(7:5) specify the system interface request type which may be read,
write, null, invalidate, update, intervention, or snoop. The encoding of SysCmd(7:5) for system interface
commands is illustrated in Table 4-7 Encoding of SysCmd(7:5) for System Interface Commands below.

Table 4-7 Encoding of SysCmd(7:5) for System interface Commands

SysCmd(7:5) Command

Read Request. -

Read Request, Write Request forthcoming.
Write Request.

Null Request.

Invalidate Request.

Update Request.

intervention Request. - -

Snoop Request.

NS WN = O

For read requests, the remainder of the SysCmd bus specifies the attributes of the read. SysCmd(4:3) encode
block, coherency, and exclusivity attributes for the read. A read request with a write request forthcoming cannot
be adoubleword, word, or partial word read. For both coherentand noncoherentblock reads SysCmd(2) specifies
whether the address of the cache line being replaced by this read request is being retained in the link address
register and SysCmd(1:0) encode the block size for the read. For double word, word, or partial word reads
SysCmd(2:0) encode the size of the read data in bytes. The encoding of SysCmd(4:3) for read commands is
shown in Table 4-8 Encoding of SysCmd{4:3) for Read Requests below. The encoding of SysCmd{2:0) for
block reads, or double word, word, or partial word reads is shown in Table 4-9 Encoding of SysCmd(2:0) for
Block Read Requests, and Table 4-10 Encoding of SysCmd{2:0) for Double Word, Word, or Partial Word
Read Requests respectively.

46 B Lu27525 0083619 &77

- =t L RN N

‘Q;

CHAPTER 4 SYSTEM INTERFACE

Table 4-8 Encoding of SysCmd|(4:3) for Read Requests

SysCmd{4:3) Read attributes.

0 Coherent block read.

1 Coherent block read, exclusivity requested.

2 Noncoherent block read.

3 Double word, single word, or partial word read.

Table 4-9 Encoding of SysCmd{(2:0} tor Block Read Requests

SysCmd(2) Link address retained indication.
0 Address not retained. N
1 Link address retained.

SysCmd(1:0) Read block size.

0 Four words.

1 Eight words.

2 Sixteen words.

3 Thirty-two words.

Table 4-10 Encoding of SysCmd{2:0) for Double Word, Word, or Partial Word Read Requests

SysCmd(2:0) Read data size.

One byte valid. (Byte).

Two bytes valid. (Half Word).
Three bytes valid (Tri-Byte).

Four bytes valid. {Word).

Five bytes valid. {Quinti-Byte).
Six bytes valid. (Sexti-Byte).
Seven bytes valid. (Septi-Byte).
Eight bytes valid. (Doubie Word).

~NO O bh WN O

For write requests, the remainder of the SysCmd bus specifies the attributes of the write. SysCmd(4:3) encode
block attributes for the write. For block writes SysCmd(2} specifies whether the cache line associated with the
write request will be replaced or retained after the write is completed and SysCmd(1:0) encode the block size
for the write. For double word, word, or partial word writes SysCmd(2:0) encode the size of the write data in
bytes. The encoding of SysCmd{4:3) for write commands is shown in Table 4-11 Encoding of SysCmd(4:3)
for Write Requests below. The encoding of SysCmd(2:0) for block writes of double word, word, or partial word
writes is shown in tables Table 4-12 Encoding of SysCmd(2:0) for Block Write Requests and Table 4-13
Encoding of SysCmd(2:0) for Double Word, Word, or Partial Word Write Requests respectively.

47
BN L427?525 0083620 599 W

CHAPTER 4 SYSTEM INTERFACE

Table 4-11 Encoding of SysCmd(4:3) for Write Requests

SysCmdi{4:3) Write attributes.

0 Reserved.

1 Reserved.

2 Block write.

3 Double word, single word, or partial word write.

Table 4-12 Encoding of SysCmd(2:0) for Block Write Requests

SysCmd(2) Cache line replacement attributes.

0 Cache line replaced.
1 Cache line retained.

SysCmd(1:0) Write block size.

0 Four words.

1 Eight words.

2 Sixteen words.

3 Thirty-two words.

Table 4-13 Encoding of SysCmd(2:0) for Double Word, Word, or Partial Word Write Requests

SysCmd(2:0) Write data size.

One byte valid. (Byte).

Two bytes valid. (Half Word).
Three bytes valid. (Tri-Byte).
Four bytes valid. (Word).

Five bytes valid. {Quinti-Byte).
Six bytes valid. {Sexti-Byte).
Seven bytes valid. (Septi-Byte).
Eight bytes valid. (Double Word).

NOOEWUN SO

Processor null write requests, system interface release external null requests, and scache release external null
requests all use the null request command. For processor null requesté. SysCmdi4:3) specifies that this is a
null write request. For external null requests, SysCmd(4:3) specifies whether this is a system interface release
nuli request or & scache release null request. The encoding of SysCmdi(4:3) for processor nuli requests is shown
in Table 4-14 Encoding of SysCmd(4:3) for Processor Null Requests. The encoding of SysCmd(4:3) for
external null requests is shown in Table 4-15 Encoding of SysCmd(4:3) for External Null Requests.

B buy2?525 0083621 425 W

CHAPTER 4 SYSTEM INTERFACE

Tabie 4-14 Encoding of SysCmd(4:3) for Processor Null Requests

SysCmd(4:3) Nuli attributes.

0 Null write.
1 Reserved.
2 Reserved.
3 Reserved.

Tabie 4-15 Encoding of SysCmd{4:3) for External Null Requests

SysCmd(4:3) Null attributes.

0 System interface reiease.
1 Scache release.

2 Reserved.

3 Reserved.

The encoding of SysCmd(4:0) for external invalidate and update requests is shown in Table 4-16 Encoding of
SysCmd(4:0) for External Invalidate or Update Requests.

Table 4-16 Encoding of SysCmd(4:0) for External Invalidate or Update Requests

SysCmd(4) Reserved.
SysCmd(3) Update cache state change attributes.

0 Cache state changed to Shared.
1 No change to cache state.

SysCmd(2:0) Update data size.

One byte valid. {Byte).

Two bytes valid. (Half Word).
Three bytes valid. (Tri-Byte).
Four bytes valid. (Word).

Five bytes valid. (Quinti-Byte).
Six bytes valid. (Sexti-Byte)
Seven bytes valid. (Septi-Byte).
Eight bytes valid. {Double Word).

NO O AEWN-O

SysCmd(3) is the data response on dirty bit for intervention requests or reserved for snoop requests. If the data
response on dirty bit is asserted the processor will return the contents of the cache line in response to an
intervention request i the line is found in state dirty exclusive or dirty shared. If the data response on dirty bit
is de-asserted the processor will return the contents of the cache line in response to an intervention request
if the line is found in state clean exclusive or dirty exclusive. For both snoop and intervention: requests,
SysCmd(2:0) specify a cache state change function to be applied to the cache line atomically with respect to
the intervention or snoop response.

The encoding of SysCmd(4:0) for intervention requests is shown in Table 4-17 Encoding of SysCmd(4:0) for
Intervention Requests. The encoding of SysCmd(4:0) for snoop requests is shown in Table 4-18 Encoding
of SysCmd(4:0) for Snoop Requests. .

M 427?525 0083622 3kl A

CHAPTER 4 SYSTEM INTERFACE

Table 4-17 Encoding of SysCmd(4:0) for intervention Requests

SysCmd(4) Reserved.

SysCmd{3) Data response on dirty bit.

0 Return cache line data if in state dirty exclusive or dirty shared.
1 Return cache line data if in state clean exclusive or dirty exclusive.

SysCmd(2:0) Cache state change function.

V] No change to cache state.

1 If cache state clean exclusive, change to shared, otherwise no change to cache state.

2 If cache state clean exclusive or shared, change to invalid, otherwise no change to
cache state.

3 If cache state clean exclusive, change to shared or if cache state dirty exciusive,
change to dirty shared, otherwise no change to cache state.

4 If cache state clean exclusive, dirty exclusive, or dirty shared, change to shared,
otherwise no change to cache state.

5 Change to invalid regardiess of current cache state.

6 Reserved.

7 Reserved.

Table 4-18 Encoding of SysCmd(4:0) for Snoop Requests

SysCmd(4) Reserved.

SysCmd(3) Reserved.

SysCmd(2:0) Cache state change function.

0 No change to cache state.

1 If cache state clean exclusive, change to shared, otherwise no change to cache state.

2 If cache state clean exclusive or shared, change to invalid, otherwise no change to
cache state.

3 If cache state clean exclusive, change to shared or if cache state dirty exclusive,
change to dirty shared, otherwise no change to cache state.

4 If cache state clean exclusive, dirty exclusive, or dirty shared, change to shared,
otherwise no change to cache state.

5 Change to invalid regardiess of current cache state.

6 Reserved.

- - Reserved. — - - - mm e e e

{2) System Interface Data identifier Syntax
This section will define the encoding of the SysCmd bus for system interface data identifiers. A common
encoding is used for all system interface date identifiers. SysCmd|(8) must be de-asserted (1) for alt system
interface data identifiers. System interface data identifiers have two formats, one for coherent data and a second
for noncoherent data. Data sssociated with processor block write requests and processor double word, word,
or partial word write requests is noncoherent. Data associated with processor update requests is noncoherent.
Data retumed in response to a processor coherent block read request is coherent while data retumed in response
to a processor noncoherent block read request or a processor double word, word, or partial word read request
is noncoherent. Data associated with external update requests is noncoherent. Data associated with external

M L42?7525 0083kL23 274 W

CHAPTER 4 SYSTEM INTERFACE

write requests is noncoherent. Data returned in response to an external read request is noncoherent. Data
returned in response to an external intervention request is coherent.

For both coherent and noncoherent data identifiers, both processor and external, SysCmd(7) marks the data
element as the last data element, and SysCmd{6) indicates whether the data is response data or not. Response
data is data returned in response to a read request or an intervention request. SysCmd(S) is the good data bit
and indicates whether the data element is error free or not. Erroneous data contains an uncorrectable error.
Erroneous data returned to the processor will cause a processor bus error. The processor will deliver data with
the good data bit de-asserted when a primary parity error is detected for a transmitted data item. A secondary
cache data ECC error can be detected by comparing the value transmitted on SysADC and SysADC. For external
data identifiers, both coherent and noncoherent, SysCmdi4) indicates to the processor whether to check the
data and check bits for this data element and SysCmd(3) is reserved. Forprocessor dataidentifiers, both coherent
and noncoherent, SysCmdi4:3} are reserved.

For coherent data identifiers SysCmd(2:0) indicate a cache state for the data. The cache state will provide the
cache state with which to ioad the cache line for responses to processor coherent read requests. The cache
state will indicate the cache state in which the line was found for data associated with the response to an external
intervention request or for the data cycle issued in response to an external snoop request. For noncoherent
data identifiers SysCmdi(2:0) is reserved.

The encoding of SysCmd(7:3) for processor data identifiers is illustrated in Table 4-19 Encoding of SysCmd(7:3)
for Processor Data Ildentifiers. The encoding of SysCmd(7:3) for external data identifiers is illustrated in Table
4-20 Encoding of SysCmd(7:3) for External Data identifiers. The encoding of SysCmd(2:0) for coherent data
identifiers is illustrated in Table 4-21 Encoding of SysCmd(2:0) for Coherent Data Identifiers.

Table 4-19 Encoding of SysCmd(7:3) for Processor Data Identifiers

SysCmd(7) Last data element indication.

0 Last data element.
1 Not the last data element.

SysCmd(6) Response data indication.

0 "~ Data is response data. .-
1 Data is not response data.

SysCmd(5) Good data indication.

0 Data is error free.
1 Data is-erroneous.

SysCmd(4:3) Reserved.

51
M (427525 0083L2Y 134 WM

CHAPTER 4 SYSTEM INTERFACE

Table 4-20 Encoding of SysCmd(7:3) for External Data identifiers

SysCmd(7) Last data element indication.

0 Last data element.
1 Not the last data element.

SysCmd(6) Response data indication.

0 Data is response data.
1 Data is not response data.

SysCmd(5) Good data indication.

0 Data is error free.
1 Data is erroneous.

SysCmd(4) Data checking enable.

0 Check the data and check bits.
1 Don‘t check the data and check bits

SysCmd(3) Reserved.

Table 4-21 Encoding of SysCmd(2:0) for Coherent Data Identlifiers

SysCmd(2:0) Cache state.

invalid.
Reserved. .
Reserved.
Reserved.
Clean Exclusive.
Dirty Exclusive.
Shared.

Dirty Shared.

NGO A WN = O

4.9 System Interface Addresses

System interface addresses are full 36 bit physical addresses presented on the least significant 36 bits (bits 356
through 0) of the SysAD bus during address cycles. The remaining bits of the SysAD bus are unused during address
cycles. Addresses associated with double word, word, or partial word transactions, i.e. double word, word, or partial
word read and write requests and update requests, are aligned for the size of the data element. Specifically, for
double word requests, the low order three bits of the address will be zero, for word requests, the low order two
bits of the address will be zero, and for half-word requests, the low order bit of the address will be zero. For byte,
tri-byte, quinti-byte, sexti-byte and septi-byte requests the address provided will be a byte address. For further details
on addresses supplied by the Vr4000SC processor on double word, word, and partial word accesses see Vad000
USER'S MANUAL (PRELIMINARY) ARCHITECTURE. '

Addresses associated with block requests are aligned to double word boundaries; that is the low order three bits
of the address will be zero. The order in which data is returned in response 1o a processor block read request can
be programmed via the boot time mode control interface to sequential ordering or sub-block ordering. If sequential
ordering is enabled the processor will always deliver the address of the double word at the beginning of the block
on a block read request. An external agent must return the block of data sequentially starting at the beginning of
52

M bu27?525 0083625 070 MM

CHAPTER 4 SYSTEM INTERFACE

the block. If sub-block ordering is enabled the processor will deliver the address of the double word within the block
that it wants returned first. An external agent must return the block of data using sub-biock ordering starting with
the addressed double word. For further details on sub-block ordering see APPENDIX A SUB-BLOCK ORDERING.
Only a Va4000SC in the large package configuration with a secondary cache may be programmed to use seguential
ordering.

For block write requests, the VrR4000SC processor will always deliver the double word address of the double word
at the beginning of the block and deliver data beginning with the double word at the beginning of the block and
progressing sequentially through the double words that form the block.

4.10 Processor Internal Address Map

External reads and writes to the Vr4000SC processor are provided to access processor internal resources that
may be of interest to an external agent. However, version 1.2 ot the VR4000SC does not contain any resources that
are readable with an external read request. Version 1.2 of the va4000SC will return a bus error response to any
external read request. The only writable resource in version 1.2 of the Va4000SC is the processor intefrupts.

The processor decodes bits 6:4 of the address assocated wrth an external read or write request to determine
which processor internal resource is the target of the request For version 1.2 of the VR4000SC, the only processor
internal resource available for access by an external request s the interrupt resource, and it is only accessible via
an external write request. The interrupt resource is sccessed via an external write request with an address of 000
on bits 6:4 of the SysAD bus. See CHAPTER 8 PROCESSOR INTERRUPTS for further details on external writes
to the interrupt resource.

4.11 Coherence Conflicts

The Vr4000SC processor in the large package configuration will both issue processor coherence requests and
accept external coherence requests. Processor coherence requests are processor coherent read requests. External
coherence requests are extermnal invalidate, update, snoop and intervention requests. Because of the overiapped
nature of the system interface it is possible for processor coherence requests and external coherence requests to
conflict. Thatis, itis possible for an external coherence request to reference an address that targets the same cache
line as a pending processor read request. The processor does not contain comparators to detect such conflicts. The
processor uses the secondary cache as the single point of reference to determine the coherency actions it will take
and only checks the state of the secondary cache 8t specific times.

For pending processor coherent read requests conflicting external requests cannot effect the behavior of the
processor. The processor will only issue a read request for a particular cache line if it does not have a copy of that
cache line. Therefore, any external coherence request that targets a cache line that is also the target of a pending
processor coherent read request will not find the line present in the cache. External coherence requests do not
change the state of the cache unless the cache line they target is present. Since no change can be made to the
state of the cache for the line that is the target of the pending processor read request, no external coherence requests
can effect the read request. Therefore, external coherence requests that conflict with a pending processor coherent
read request may be issued to the processor and will effectively be discarded by the processor.

The interactions between processor coherence requests and conflicting external coherence requests, tabulated
by processor state, is summarized in Table 4-22 Coherence Conflicts Summary (a) and Table 4-23 Coherence
Conflicts Summary {b). The processor can be in one of the following states:

(1) Idle, no processor transactions currently pending;

{2) Read Pending, a processor coherent read request has been issued but the read response has not yet been
received;

563
BB LLu2?7525 0043b2b TO? WA

CHAPTER 4 SYSTEM INTERFACE

Table 4-22 Coherence Conflicts Summary (a)

Processor State Conflicting External Coherence Request

Invalidate Invalidate w/Cancel Update Update w/Cancel
Idle NA Undefined NA Undefined

Read Pending OK Undefined oK Undefined

Table 4-23 Coherence Conflicts Summary (b)

Processor State Conflicting External Coherence Request

Intervention Intervention w/Cancel Snoop Snoop w/Cancel
idie NA Undefined NA Undefined
Read Pending OK Undefined OK Undefined

412 System Implications of Coherence Conflicts

The constraints that the Vra000SC processor places on the handiing of conflicting coherency transactions has
certain implications for the design of a system employing the Vr4000SC. This section will consider, as an example,
a particular snoopy. split-read, bus based system and the requirements for that system to correctly handle coherence
conflicts.

4,12.1 System Model
The system model consists of the following components:

{1} Fourprocessorsubsystems, each consisting of a Va4000SC processor, a secondary cache, and an external agent.
The agent communicates with the Vr4000SC, accepting processor requests and issuing external requests, and
with the system bus likewise issuing and receiving bus requests.

{2) A memory subsystem that communicates with main memory and the system bus.
{3) A system bus with the following characteristics:

It is a multiple master, request based, arbitrated bus in which an agent that wishes to perform a transaction on
the bus must request the bus and wait for global arbitration logic to supply a grant signal before assuming mastership
of the bus. Once mastership has been granted, the agent may begin a transaction.

It supports a read transaction, read exclusive transaction, write transaction, and invalidate transaction.

ltis a split-read bus in thatindependent transactions may occur on the bus betweena read request from a particular
agent and the return of data by the target of the read request. The return of data by the target of the read request
will be referred to as the read response.

It is a snoopy bus in that all agents connected to the bus must monitor all of the traffic on the bus to correctly
maintain cache coherency.

VO is not considered in this system model.

54 BN 0427525 0083L27 943 M

CHAPTER 5 ERROR CHECKING AND CORRECTING (ECC)

The Vr4000SC processor provides sixteen check bits for the secondary cache data bus, seven check bits for the
secondary cache tag bus and eight check bits for the system interface address and data bus. The sixteen check
bits for the secondary cache data bus are organized as eight check bits for the upper sixty-four bits of the data bus
and eight check bits for the lower sixty-four bits of the data bus. In addition, a single check bit is provided for the
system interface command bus.

The eight check bits for the system interface address and data bus provide either even byte parity or are generated
in accordance with a single error correcting double error detecting (SECDED) code that also detects any three of four
bit error in a nibble. The eight check bits for each half of the secondary cache data bus are always generated in
accordance with the SECDED code.

The processor checks data using parity or the SECDED code as it passes from the system interface to the
secondary cache and as it is moved from the secondary cache to the primary cache or to the system interface. The
processor passes the check bits for data accessed from the secondary cache directly to the system interface without
change as it checks it. The processor does not check data received from the system interface for external updates
and external writes. It is possible to force the processor to not check data from the system interface for read
responses using a bit in the data identifier. The processor does generate correct check bits for double word, word,
or partial word data transmitted to the system interface. The processor does not check addresses received from
the system interface, but does generate correct check bits for addresses transmitted to the system interface. The
processor does not contain a data corrector, rather, the processor will trap when an error is detected based on the
data check bits. Software, in conjunction with an off processor data corrector, is responsible for correcting the data
when the SECDED code is employed.

The seven check bits for the secondary cache tag bus are generated in accordance with a single error correcting
double error detecting (SECDED) code that also detects any three or four bit error in a nibble. The processor generates
check bits for the tag when it is written into the secondary cache and checks the tag whenever the secondary cache
is accessed. The processor contains a corrector for the secondary cache tag. The tag corrector is not in-line for
processor accesses due to primary cache misses. When a tag erroris detected on a processor access due to a primary
cache miss the processor will trap. Software, using the Vr4000SC cache management primitives, will cause the
tag to be corrected. When executing the cache management primitives, the processor uses the corrected tag to
generate write back addresses and cache state. For external accesses the tag corrector is in-line; that is the response
to external accesses will be based on the corrected tag. The processor will still trap on tag errors detected during
external accesses to allow software to repair the contents of the cache if possible.

The check bit for the system interface command bus provides even parity over the nine bits of the systeminterface
command bus. This parity bit is generated correctly when the system interface is in master state, but is not checked
when the system interface is in slave state.

The buses that are covered by check bits and their contents and whether they are checked or not for various
processor internal and external transactions is summarized in Table 5-1 Error Checking and Correcting Summary
for Internal Transactions and Table 5-2 Error Checking and Correcting Summary for External Transactions.

B b427525 0083L28 BAT -:

CHAPTER 5 ERROR CHECKING AND CORRECTIONG (ECC)

Table 5-1 Error Checking and Correcting Summary for Internal Transactions (1/2)

Processor or
Secondary Cache
Data

Secondary Cache
Data check bits

Secondary Cache
Tag & check bits

System Int Addr/
Cmd & check bits
transmit

System Int Addc/
Cmd & check bits
receive

System Int Data

Secondary Cache to Primary Cache to

Primary Cache Secondary Cache Uncached Load Uncached Store
Checked, Trap on Primary cache From System Not Checked
Error parity Interface

Checked, Trap on Generated NA NA

Error

Checked, not Generated NA NA

corrected Trap on error

NA NA Generated Generated

NA NA Not Checked NA

NA NA Not Checked From Processor

Table 5-1 Error Checking and Correcting Summary for Internal Transactions (2/2)

Processor or
Secondary Cache
Data

Secondary Cache
Data check bits

Secondary Cache
Tag & check bits

System Int Addr/
Cmd & check bits
transmit

System int Addr/
Cmd & check bits
receive

System Int Data

Secondary Secondary
Store to Shared Cache Load Cache Write to
Cache Line Cache Instruction from System Int System Int
Checked on read Not Checked From System Checked, Trap
part of RMW, Trap int unchanged on Error
on Error
Checked on read Not Checked From System Checked, Trap
part of RMW, Trap int unchanged or Error
on
Checked on read Checked and Generated Checked, not
part of RMW, Trap corrected corrected, Trap on
on Error
Generated . Generated Generated Generated
NA NA NA

From processor

From Secondary

Not Checked

Checked, Trap on From Secondary

B Ly27525 0083629 71L

CHAPTER 5 ERROR CHECKING AND CORRECTING (ECC)

Table 5-2 Error Checking and Correcting Summary for External Transactions {1/2)

Processor or
Secondary Cache
Data

Secondary Cache
Data check bits

Secondary Cache
Tag & check bits

System Int Addr/
Cmd & check bits
transmit

System Int Addr/
Cmd & check bits
receive

o System Int Data

Read Request
NA

NA

NA

Generated

Not Checked

From processor

Invalidate or

Write Request Update Request

NA Checked on read
part of RMW, Trap
on Error

NA Checked on read
part of RMW, Trap
on Error

NA Checked on read
part of RMW, Trap
on Error

NA NA

Not Checked Not Checked

Not Checked Not Checked

Table 5-2 Error Checking and Correcting Summary for External Transactions (2/2)

Processor or
Secondary Cache
Data

Secondary Cache
Data check bits

Secondary Cache
Tag & check bits

System Int Addr/
Cmd & check bits
transmit

System Int Addr/

. Cmd & check bits
receive

Intervention
Request Data

Returned

Checked, Trap
on Error

Checked, Trap

on Error

Checked and
corrected on read
part of RMW, Trap
on Error, Generation
on write part of
RMW if written.

Generated

Not Checked

Intervention

Request State

Returned Snoop Request
Checked, Trap Checked, Trap
on Error on Error

Checked, Trap Checked, Trap
on Error on Error

Checked and Checked and
corrected on read corrected on read
part of RMW, Trap part of RMW, Trap
on Error, Generation on Error, Generation

on write part of on write part of
RMW if written. RMW if written.
Generated Generated

Not Checked Not Checked

B b427525 0083630 438 M

CHAPTER 5 ERROR CHECKING AND CORRECTIONG (ECC)

5.1 Single Error Correcting Double Error Detecting Codes

The ECC codes chosen for the processor's secondary cache data and secondary cache tag are single error
correcting double error detecting codes that also detect three or four bit errors within a nibble. These codes were
developed from codes proposed by M.Y. Hsiao in his paper, “A Class of Optimal Minimum Qdd-weight-column SEC-
DED Codes”. The 64 bit data code is a modification of one of the 64 bit codes proposed by Hsiao to include the
ability to detect three and four bit errors within a nibble. The 25 bit 1ag code was created using the patterns observed
in the 64 bit data code.

(1)
()
3)
(4)

(S)

(6)
@

8

{1
@
{3)

(4)
(5)

{6)
@

The data code has the following properties:

It is a single error correcting, double error and three or four b error within a nibble detecting code.

It provides 64 data bits protected by 8 check bits yielding 8 bi* syndromes.

It is minimal in that each parity tree used to generate the synarome has only 27 inputs, the minimum possible
number.

It provides byte XOrs of the data bits as part of the XOr trees used to build the parity generators. This aliows
picking byte parity out of the XOr trees that generate or check the code.

Single bit errors are indicated by syndromes that contain exacty 3 ones or by syndromes that contain exactly
5 ones in which bits 0-3 or bits 4-7 of the syndrome are ali one This makes it possible to decode the syndrome
to find which data bit is in error with 4 input NAND gates. provided a pre-decode AND of bits 0-3 and bits 4~
7 of the syndrome is available. For the check bits a full B bit decode of the syndrome is required.

Double bit errors are indicated by syndromes that contain an even number of ones.

Three bit errors within a nibble are indicates by syndromes that contain 5 ones in which bits 0-3 of the syndrome
and bits 4-7 of the syndrome are not all one.

Four bit errors within a nibble are indicated by syndromes that contain 4 ones. Because this is an even number
of ones, four bit errors within a nibble look like double bt errors.

The tag code has the following properties:

It is a single error correcting, double error and three or four bit error within a nibble detecting code.

it provides 25 data bits protected by 7 check bits yielding 7 bit syndromes.

It provides byte XOrs of the data bits as part of the XOr trees used to build the parity generators. This aliows
picking byte parity out of the XOr trees that generate or check the code.

Single bit errors are indicated by syndromes that contain exactly 3 ones. This makes it possible to decode the
syndrome to find which data bit is in error with 3 input NAND gates. For the check bits a full 7 bit decode of
the syndrome is required.

Double bit errors are indicated by syndromes that contain an even number of ones.

Three bit errors within a nibble are indicated by syndromes that contain § ones or 7 ones.

Four bit errors within a nibble are indicated by syndromes that contain 4 ones or 6 ones. Because these are
even numbers of ones, four bit errors within a nibble look like double bit errors.

The parity check matrices for the data ECC code and the tag ECC code specifying the distribution of data and check
bits across nibbles are shown in Fig. 5-1 Parity Check Matrix for the Data ECC Code and Fig. 5-2 Parity Check
Matrix for the Tag ECC Code.

B L427525 0083631 374 W

CHAPTER 5 ERROR CHECKING AND CORRECTING (ECC}

Fig. 5-1 Parity Check Matrix for the Data ECC Code

geee | 11as | ecce | 11as | eeee | ecee | ceee |eeee | eeee | €€ee | eeee | eeee | ceee | ecee | 119 |ecee | 1189 | ecee .o.p:w.“““

JO Joquini
T TN TR RN AR IR HYTVS NITTEN RO S IS R NN I vl L L e
OPR FRTRE IREH RTRY IVRRY IRPETY IEPN FESRN NYPTHN IR I INSEH IR Tt ST U DN Y
RN DO IPUU Y [PUTS INYVRY IVYYRN FEURS RERRS IERTRN IEREN RERN R RYITH O RN RETH TS /2

TR RN FREES IRETTT IERRT BNTYTY R FTTYS VIV IRAAS IR TN IRRRYY IRERAN AN VSR WA B 1z | mos sed

ARREN ERRTEN EERTVRN SRR IR N EEE FRERN IFRERN INYTTY ITITS ARA NYYTS PR L S R e @ ._mo“r”h“
ol b b b e e e e e e P e TR DR RN O
b b b b e e e e e e e P R e
ol b e e e e e e o e cul ulunlea

orze | vs |ose | ou | zevs | ocse | oree [vsos | 8oL | ZEVS | 9486 | OLZE | v39L | 8601 ZE |¥s9L | 86 | 0IZE g 0

o Lo Voo | zzzz lezez | zzee | ceee | eeee | wwow | vwww | voog | S5 |S959 | 59 | 9999
19 oL (7 £V ug 18yd

-l b427525 0083L32 200 M

CHAPTER 5 ERROR CHECKING AND CORRECTIONG (ECC}

Fig. 5-2 Parity Check Matrix for the Tag ECC Code

Check Bit 0 12 34 56
Data Bit 222 22 1" 1 1 n
432 10 76 5432 | 1098 7654 3210
11 R T 1... 1.. L1 1 1.. 1.. 1..
13 | 1.. A RV B PO J1) m L1
Number 1
of ones 10 1 1. 11 1111 N T R
perrow |10 A PP N P R VRN O PO i PO AR O R AR R
13 1. R P 1.. i 1111 111
1 1. 1. [DU I PO .1 1 1
TS DR R K5 T 0 § PR A TR B | P 1 A 1 A
Number of
ones per 3331 | 3311 | 3311 | 3311 | 3333 3333 | 3333} 3333
column

M Ly42?525 0083633 147 M

CHAPTER 6 BOOT TIME MODE CONTROL INTERFACE

Fundamental operational modes for the processor are initialized via the boot time mode control interface. The
boot time mode control interface is a serial interface operating at a very low frequency to allow the initialization
information to be kept in a low cost EPROM.

Immediately after the VooOk signal is asserted, the processor will read a serial bit stream of 256 bits 1o initialize
allfundamental operational modes. After initialization is complete, the processor will continue to drive the serial clock
output but no further initialization bits will be read.

6.1 Boot Time Mode Control interface Signal Summary

Modein: i} Serial boot mode data in.
ModeClock: (0) Serial boot mode data clock out at the MasterClock frequency divided by 256.

6.2 Boot Time Mode Contro! Interface Operation

While the VooOk signal is de-asserted, the ModeClock output will be held asserted. After the VooOk signal is
asserted, the first bit in the initialization bit stream must be present at the Modeln input. The processor will
synchronize the ModeClock output at the time VooOk is asserted, and the first rising edge of the ModeClock will
occur 256 MasterClock clock cycles after VooOk is asserted. After each rising edge of the ModeClock, the next bit

ey of the initialization bit stream must be presented at the Modeln input. The processor will sample exactly 256
. initialization bits from the Modein input on the rising edge of the ModeClock.

6.3 Boot Time Modes

The correspondence between bits of the initialization bit stream and processor mode settings is illustrated in Table
6-1 Boot Time Modes. Bit 0 of the bit stream is the bit presented to the processor when VooOk is de-asserted.
For mode settings defined by muitiple bit fields, the lowest numbered serial bit in the field is the most significant
bit. :

| 61
BN L427525 0083634 083 MM

CHAPTER 6 BOOT TIME MODE CONTROL INTERFACE

Table 6-1 Boot Time Modes (1/4)

Serial Bit

Mode Setting

0

BIkOrder: Secondary Cache Mode block read response ordering.
Sequential ordering.
Sub-block ordering.

EIBParMode: Specifies nature of system interface check bus.
SECDED error checking and correcting mode.

Byte parity.

EndBit: Specifies byte ordering.
Little Endian ordering.
Big Endian ordering.

Reserved.

NoSCMode: Specifies presence of secondary cache.
Secondary cache present.
No secondary cache present.

5:6

SysPort: System Interface port width, bit 6 most significant.
64 bits.
Reserved.

SCE4BitMd: Secondary cache interface port width.
128 bits.
Reserved.

-

EISpitMd: Specifies secondary cache organization
Secondary cache unified.
Reserved.

9:10

W N = 0O

SCBIkSz: Secondary cache line size, bit 10 most significant.
4 words.

8 words.

16 words.

32 words.

11:14

(P(DNG)U‘#QN—'O

XmitDatPat: System interface data rate, bit 14 most significant.
D

DDx
DDxx
DxDx
DDxxx
DDxooxx
DxxDxx
DDxoooox
DroxDxxx
Reserved.

B Luy27525 0083635 TLT MM

CHAPTER 6 BOT TIME MODE CONTROL INTERFACE

Table 6-1 Boot Time Modes (2/4)

Serial Bit Value Mode Setting
15:17 SysCkRatio: PClock to SClock divisor, frequency relationship between SClock,
RClock, and TClock and PClock, bit 17 most significant.
o] Divide by 2.
1 Divide by 3.
2 Divide by 4.
18 0 Reserved.
19 TimintDis: Timer Interrupt disabies timer interrupts, otherwise the
interrupt used by the timer becomes a general-purpose interrupt.
0 Timer Interrupt enabled.
1 Timer Interrupt disabled.
20 PotUpdDis: Potential update enable aliows potential updates to be issued.
Otherwise only compulsory updates are issued.
0 Potential updates enabled.
1 Potential updates disabled.
21:24 TWrSup: Secondary cache write deassertion delay. TWrSup in PCycles, bit 24
A most significant.
25:26 TWr2Dly: Sacondary cache write assertion delay 2, TWr2Dly in PCycles, bit 26
most significant.
27:28 TWr1Dly: Secondary cache write assertion delay 1, TWr1Dly in PCycles, bit 28
most significant.
29 TWrRck: Secondary cache write recovery time, TWrRc in PCycles.
- 0 0 cycles.
1 1 cycle.
30:32 TDis: Secondary cache disable time, TDis in PCycles, bit 32 most significant.
33:36 TRd2Cyc: Secondary cache read cycle time 2, TRdCyc2 in PCycles, bit 36 most
significant.
37:40 TRd1Cyc: Secondary cache read cycle time 1, TRdCyc1 in PCycles, bit 40 most
significant.
41 0 Reserved.
42 0 Reserved.
43 0 Reserved.
44 0 Reserved.
45 0 Reserved.
46 Pkg179: Va4000SC Package type.
0 Large (447 pin).
1 Note Small (179).

Note The behavior of the Vr4000SC is undefined when it is selected.

M Lu27525 008363bL 956 W

CHAPTER 6 BOOT TIME MODE CONTROL INTERFACE

Table 6-1 Boot Time Modes (3/4)

Serial Bit Value Mode Setting

47:49 CycDivisor: This mode determines the clock divisor for the reduced-power mode.
When the RP bit in the Status register is set to one, the pipeline clock is
divided by one of the following values.

0 Divide by 2
1 Divide by 4
2 Divide by 8
3 Divide by 16
4-7 Reserved.
50 Drv0_50: Drive the outputs out in 0.50 x MasterClock period.
0 Drive at some other fraction of a MasterClock period.
1 Drive at 0.50 x MasterClock period.
51 Drv0_75: Drive the outputs out in 0.76 x MasterClock period.
0] Drive at some other fraction of a MasterClock period.
1 Drive at 0.75 x MasterClock period. '
52 Drv1_00: Drive the outputs out in 1.00 x MasterClock period.
0 Drive at some other fraction of a MasterClock period.
1 Drive at 1.00 x MasterClock period.

53:56 InitP: initial values for the state bits that determine the pull-down di/dt and

switching speed of the output buffers. Bit 53 is the most significant.
0 Fastest pull-down rate.
1-14 intermediate pull-down rates.
15 Slowest puli-down rate.

§7:60 InitiN: Initial values for the state bits that determine the pull-up di/dt and

switching speed of the output buffers. Bit 57 is the most significant.
0 Slowest pull-up rate." * .
1-14 intermediate pull-up rates.
15 Fastest pull-up rate.

61 EnbIDPLLR: Enables the negative feedback loop that determines the di/dt and
switching speed of the output buffers only during ColdReset.

0 Disable di/dt control mechanism.
1 Enable di/dt control mechanism.

62 EnbIDPLL: Enables the negative feedback loop that determines the di/dt and
switching speed of the output buffers during ColdReset and during
normal operation. :

0 Disable di/dt control mechanism.
1 Enable di/dt control mechanism.

B Ly27525 0083637 492 W

9

CHAPTER 6 BOT TIME MODE CONTROL INTERFACE

Table 6-1 Boot Time Modes (4/4)

Serial Bit Value Mode Setting
63 DsbiPLL: Enables PLLs that match Masterin and produce RClock, TClock, SClock
and the internal clocks.
0 Enable PLLs.
1 Disable PLLs.
64 SRTristate: Controls when output-only pins are tristated
0 Only when ColdReset is asserted.

When Reset or ColdReset are asserted.

B Ly27?525 0083638 729 W

CHAPTER 7 RESET SEQUENCE FOR THE Vr4000SC PROCESSOR

The Va4000SC processor requires a multi-level reset sequence using the VopOk, ColdReset, and Reset inputs.
For a power-on reset or a cold reset the foliowing sequence must be applied to the Vr4000SC:

{1) Stable Voo of at least 4.75 volts from the +5 volt power supply must be applied to the VR4000SC continuously
for at least 100 milliseconds along with a stable continuous system clock at the desired operational frequency
of the Va4000SC.

(2) After at least 100 milliseconds of stable Voo and MasterClock the VooOk input to the VRr4000SC may be asserted.
While VooOk is de-asserted, all pins wilt be three-stated with the exception of ModeClock. The assertion of VooOk
will cause the Va4000SC to begin driving a clock on the ModeClock output and to read the boot time mode control
serial data stream. For further details on mode initialization see CHAPTER 6 BOOT TIME MODE CONTROL
INTERFACE. After the mode bits have been read in, the VrR4000SC will allow its internal phase locked loops
to lock, stabilizing the processor internal clock, PClock, the SyncOut-Syncin clock path and the master clock
output, MasterOut. VooOk must become asserted at least 100 milliseconds before the de-assertion of
ColdReset.

{3) Once the boot time mode control serial data stream has been read by the VR4000SC, the ColdReset input may
be de-asserted. ColdReset must remain asserted for at least 100 milliseconds after the assertion of VooOk.
ColdReset must be de-asserted synchronously with MasterClock. The processor internal clock, SClock, and the
system interface clock, TClock, and RClock will begin to cycle with the de-assertion of ColdReset. The state
of SClock, TClock, and RClock is undefined until ColdReset is de-asserted. The de-asserted edge of ColdReset
is used to synchronize the edges of SClock, TClock, and RClock, potentially across multiple processors in a multi-
processor system.

(4) After ColdReset is de-asserted and SClock, TClock and RClock have stabilized, Reset may be de-asserted to allow
the Va4000SC to begin to run. Reset must be held asserted for at ieast 64 MasterClock cycles after the de-
assertion of ColdReset. Reset must be de-asserted synchronously with MasterClock.

A cold reset requires the same sequence as described above except that power is presumed to have been stable
for a long time before the assertion of the reset inputs and the de-assertion of VooOk. VooOk must be de-asserted
for a minimum of 64 MasterClock cycles before re-asserting to begin the reset sequence.

To effect a warm reset, the fSeset input may be asserted synchronously with MasterClock and held asserted for
at least 64 MasterClock cycles before being de-asserted synchronously with MasterClock. The processor internal
clocks, PClock and SClock, and the system interface clocks, TClock and RClock will not be affected by a warm reset,
and the boot time mode control serial data stream will not be read by the Vr4000SC on a warm reset.

The master clock output, MasterOut, is provided for use in generating the reset related signals for the Va4000SC
that must be synchronous with MasterClock.

After a power on reset, cold reset, or warm reset, all processor internal state machines will be reset, and the
processor will begin execution at the reset vector. All processor internal state is preserved during a warm reset,

although the precise state of the caches will depend on whether a cache miss sequence has been interrupted by

resetting the processor state machines.
ColdReset must be asserted when VooOk asserts. The behavior of the Vr4000SC is undefined if VooOk asserts
while ColdReset is de-asserted.

M b427525 0083L39 bS5 WA

CHAPTER 8 PROCESSOR INTERRUPTS

The Va4000SC processor supports six hardware interrupts, two software interrupts, and a non-maskable interrupt
as described in Va4000 USER'S MANUAL (PRELIMINARY) ARCHITECTURE. The six hardware interrupts on the
VR4000SC are accessible via external write requests in the large package configuration. The large package
configuration has one pin, Int0, dedicated as the hardware interrupt. The non-maskable interrupt is accessible via
external write requests and a dedicated pin.

External writes to the processor are directed based on a processor internal address map to various processor
internal resources. An external write to any address with SysADI6..4] = 0 will be a write to the interrupt register.
During the data cycle, SysADI22..16] are the write enables for the 7 individual interrupt register bits (one non-maskable
interrupt + 6 regular interrupts), and SysADI6..0] are the values to be written into these bits. This allows us 1o set
and clear any subset of the interrupt register with a single write request. Bits 5:0 of the interrupt register are directly
readable as bits 15:10 of the Cause register. The bit 0 of the interrupt register is bitwise ORed with the current value
of the interrupt pin Int{0) and the result is directly readable as bit 10 of the Cause register. Bit 6 of the interrupt
register is ORed with the current value of the non-maskable interrupt pin NMI to form the non-maskable interrupt
input to the Vr4000SC.

B Gy2?7525 00A3k4O 347 W

CHAPTER 9 PROCESSOR STATUS OUTPUTS

The Va4000SC processor provides eight status outputs, Status(7:0), that change with each rising edge of
MasterClock to indicate the processor's internal state during each of the two most recent PCycles. Status(7:0} is
treated as two fields, Status(3:0) indicates the processor’s internal state during the most recent PCycle and
Status{7:4) indicates the processor’s internal state during the PCycle preceding the most recent PCycle. The encoding
of processor internal state for Status(7:4) or Status(3:0) is shown in Table 9-1 Encoding of Processor Internal State
for Status(7:4) or Status(3:0). The four bit decode describes the instruction occupying the WB stage during a given
PCycle.

Table 9-1 Encoding of Processor internal State for Status(7:4) or Status(3:0)

Status(7:4) or Status(3:0) Processor internal state

o] Run cycle: Other integer instruction
1 Run cycle: Integer Load

2 Run cycle: Integer Untaken Branch

3 Run cycle: Integer Taken Branch

4 Run cycle: Integer Store

5 Reserved

6 Reserved

7 Run cycle: Killed by integer slip

8 Stall cycle: Other stall type

9 Stall cycle: Primary Instruction Cache
a Stall cycle: Primary Data Cache

b Stall cycle: Secondary Cache

c Run cycle: Floating Point

d Run cycle: Killed by branch

e Run cycle: Killed by exception

f Run cycle: Killed by floating point slip

n
B L427525 00A3LY4L 213 M

P

CHAPTER 10 CLOCKING

The Vr4000SC processor bases all internal and external clocking on the single clock input MasterClock. The
processor generates the clock output SyncOut at the same frequency as MasterClock and aligns Syncin with
MasterClock. SyncOut must be connected to the clock input Syncln so that the processor can compensate for output
driver delays and input buffer delays in aligning Syncin with MasterClock. The processor generates the clock output
MasterOut at the same frequency as MasterClock and aligns MasterOut with SyncOut. MasterOut is provided for
use in clocking external logic that must cycle at MasterClock frequency, such as the reset logic.

The processor generates the internal clock PClock for all internal latches and registers at twice the frequency of
MasterClock and precisely aligns every other rising edge of PClock with the rising edge of MasterClock.

The processor divides PClock by a programmable divisor, programmed via the boot time mode control interface,
to generate the internal clock SClock. SClock is used by the processor to sample data at the system interface and
1o clock data into the processor’s system interface output registers. The rising edges of SClock are aligned with
rising edges of PClock.

Data provided to the processor must be setupa minimum of tos nano-seconds (ns) before the rising edge of SClock
and held valid for 2 minimum of tox ns after the rising edge of SClock. This setup and hold time is required for data
to propagate through the processor’s input buffers and meet the setup and hold times for the processor’s input
latches.

Data provided by the processor will become stable a minimum of tom ns after the rising edge of SClock and a
maximum of too ns after the rising edge of SClock. This drive off time is the sum of the maximum delay through
the processor’s output drivers and the maximum clock to Q delay of the processor’s output registers.

Certain processor inputs, specifically VooOk, ColdReset, and Reset are sampled based on MasterClock while
certain processor outputs, specificaily Status(7:0) are driven out based on MasterClock. The same setup, hold, and
drive off parameters, tos, tox, tom, and too, will apply to these inputs and outputs but with respect to MasterClock
instead of SClock.

The values of tos, tox, tom, and too for various speed ratings of VR4000SC processor are tabulated in the data sheet
(to be issued).

The processor generates two output clocks, RClock and TClock, at exactly the same frequency as SClock to be
used by an external agent to sample and drive data. RClock is a receive clock that can be used by an external agent
to clock its input registers. TClock is a transmit clock that can be used by an external agent to clock its output registers,
and as the global system clock for the logic that makes up the external agent.

TClock is identical to SClock and the edges of TClock are precisely aligned with the edges of SClock. RClock is
skewed with respect to TClock and SClock so that it teads TClock by 25% of the SClock, TClock, and RClock cycle
time. TClock and RClock are not used by the processor.

The alignment of SyncOut, PClock, SClock, TClock, and RClock is accomplished by the processor with internal
Phase Locked Loop (PLL) circuits that generate aligned clocks. PLL circuits by their nature are only capable of
generating aligned clocks for MasterClock frequencies in a limited range. ‘Minimum and maximum frequencies for
MasterClock for various speed ratings of the VR4000SC processor are tabulated in the data sheet (to be issued).
Clocks generated using PLL circuits contain some inherent inaccuracy in their alignment with the MasterClock called
jitter. Thatis, a clock aligned with MasterClock by the processor’s PLL circuits may lead or trail MasterClock by some
maximum amountreferred to as the maximum jitter. Maximumjitter for the clocks generated by various speed ratings
of the Va4000SC processor is tabulated in the data sheet (to be issued).

The relationship of MasterClock, SyncOut, PClock, SClock, TClock, and RClock, and the characteristics of data
on the SysAD bus when data is driven by the processor and received by the processor is illustrated in Fig. 10-1
Processor Clocks, PClock to SClock Divisor of 2 and frequency of PClock divided by two while in Fig. 10-2
Processor Clocks, PClock to SClock Divisor of 4, SClock, TClock, and RClock are programmed to the frequency

of PClock divided by four.

73
B Lu2?525 0083642 15T N

CHAPTER 10 CLOCKING

74

cycle

MasterClock

SyncQut
PClock
SClock
TClock

RClock

_ SysAD Driven

SysAD Received

Fig. 10-1 Processor Clocks, PClock to SClock Divisor of 2

M Luy27525 0083643 09: MW

CHAPTER 10 CLOCKING

Fig. 10-2 Processor Clocks, PClock to SClock Divisor of 4

cycle | 1 I 2 | 3 l 4 I

T N e W e W e
SClock \ / ' \
TClock \ / \
RClock _—____/ \—j—_
SysAD Driven :X:X o) X:X D

|tow

e |
SysAD Received :X x D x XE

10.1 Clock interfacing to a Phase Locked System

When the Vr4000SC processor is employed in a phase locked system all of the components of the system must
phase lock their operation to a common MasterClock. In such a system the delivery of data and sampling of data
will have common characteristics for all components with perhaps different delay values for the components. The
transmission time, the amount of time a signal has 1o propagate along the trace from one component to another,
between any two components A and B of a phase locked system can be calculated from the following equation:

Transmission Time = (SClock period} — {too for A) - (tos for B) r
- (Clock Jitter for A Max) - {Clock Jitter for B Max)

A block level diagram of a phase locked system employing the VR4000SC processor is shown in Fig. 10-3 Phase
Locked System Employing the Va4000SC Processor.

B Lu27525 0083bu4y T22 M

CHAPTER 10 CLOCKING

Fig. 10-3 Phase Locked System Employing the Vr4000SC Processor

MasterClock
Vad000SC External Agent
MasterClock MasterClock
SysCmd SysCmd
SysAD SysAD

SyncOut SyncOut
ey |— I D

RClock I— —1 RClock
TClock — ——1 TClock

10.2 Clock Interfacing to a System Without Phase Lock

When the VR4000SC processor is empioyed in a system in which the other components are not capable of phase
lock to a common MasterClock the output clocks RClock and TClock may be used to clock the remainder of the
system. Two clocking methodologies are possible using RClock and TClock: the first better suited to communication
with an external agent built from gate arrays and the second better suited to communication with an external agent
built from discrete CMOS logic devices.

In the first clocking methodology, tailored for communication with an external agent built from gate arrays both
RClock and TClock are used for clocking within the gate arrays. RClock is provided specifically so that a gate array
may buffer it internally and use the buffered version to clock registers that sample Va4000SC outputs. These sample
registers should be immediately followed by staging registers that are clocked by an internally buffered version of
TClock. The buffered version of TClock should be used as the global system clock for the logic inside the gate array
and as the clock for all registers that drive Va4000SC inputs.

Requiring staging registers following the registers that sample Vs4000SC outputs places a constraint on the sum
of the clock to Q delay of the sample registers and the setup time of the synchronizing registers inside the gate arrays.
The sum must be less than 25% of the RClock and TClock period minus the maximum clock jitter of both RClock
and TClock minus the maximum delay mismatch for the internal clock buffers on RClock and TClock.

The transmission time for a signal from the VaR4000SC to an external agent composed of gate arrays in a system
without phase lock can be caiculated from the following equation:

Transmission Time = (75% of TClock period) - {too for VR4000SC)

+ (External Clock Buffer Delay Min)

- {External Sample Register Setup Time)

- (Clock Jitter for Vr4000SC Internal Clocks Max)
~ {Clock Jitter for RCiock Max)

The transmission time for a signal from an external agent composed of gate arrays to the Vr4000SC in a system
without phase lock can be calculated from the following equation:

76 B L427525 0083b45 959 EE

CHAPTER 10 CLOCKING

Transmission Time = (TClock period) — {tos for Va4000SC)
- (External Clock Buffer Delay Max)
- {External Output Register Clock to Q Delay Max)
— {Clock Jitter for TClock Max)
- {Clock Jitter for Va4000SC internal Clocks Max)
A block leve! diagram of a system without phase lock employing the Vr4000SC processor and an external agent

composed of a gate array is shown in Fig. 10-4 System Without Phase Lock Employing the VrR4000SC Processor

{a).

B b427525 0083L4L 4TS5 WA

CHAPTER 10 CLOCKING

Fig. 10-4 System Without Phase Lock Employing the Vr4000SC Processor (a)

____________________ 1
o 1
I ' |
" Gate |
Array

MasterClock : :
I |
| |
Va4000SC |] |
| |
MasterClock | |
SysCmd ’ | :
| |
I |
SysAD i . '
I —< |
! N |
l | |
SyncOut ! |
Syncin |l :
l |
| N ‘
! |
RClock | (i
TClock I |
I 1
| |
' |
I }
! |
l |
' l‘ﬁ. l
l |
I |
l |
l |
l CE |
' |
I |
' i
! |
l |
' Z. I
! |
' I
l 1
l ' |
I CE |
! |
] L‘ l
! . _<] N |
- !
l |
I |
I |
L e e ———

78 B Ly27525 0083647 731 M

@

e

CHAPTER 10 CLOCKING

In the second clocking methodology tailored for communication with an external agent built from discrete CMOS
logic devices, matched delay clock buffers are used to allow the Va4000SC to generate aligned clocks for the external
logic. One of the matched delay clock buffers is inserted in the processor’s SyncOut Syncin clock alignment path.
This has the effect of skewing SyncOut, MasterOut, SClock, RClock, and TClock to lead MasterClock by the delay
of the matched delay clock buffer while leaving PClock aligned with MasterClock. The remaining matched delay clock
buffers can be used to generate a buffered version of TClock that will be aligned with MasterClock. The alignment
error of the buffered version of TClock will be the sum of the maximum delay mismatch of the matched delay clock
buffers and the maximum clock jitter of TClock. The buffered version of TClock will be used to clock registers that
sample Va4000SC outputs, as the global system clock for the discrete logic that forms the external agent, and to
clock registers that drive Vr4000SC inputs.

The transmission time for a signal from the VR4000SC to an external agent composed of discrete CMOS logic
devices can be calculated from the following equation:

Transmission Time = (TClock period) - {too for Vr4000SC)

— (External Sample Register Setup Time)

- (External Clock Buffer Delay Mismatch Max)

— (Clock Jitter for Vr4000SC Internal Clocks Max}
~ {Clock Jitter for TClock Max)

The transmission time for a signal from an external agent composed of discrete CMOS logic devices can be
calculated from the following equation:

Transmission Time = (TClock period) — {tos for Va4000SC)

- (External Output Register Clock to Q Delay Max}
— (External Clock Buffer Delay Mismatch Max)

— (Clock Jitter for VaR4000SC Internal Clocks Max)
-~ (Clock Jitter for TClock Max)

Note that using this clocking methodology the hold time of data driven from the Va4000SC to an external sampling
register is a critical parameter. In order to guarantee hold time, the minimum output delay of the VRr4000SC, tom,
must be greater than the sum of the minimum hold time for the external sampling register, the maximum clock jitter
for VR4000SC internal clocks, the maximum clock jitter for TClock, and the maximum delay mismatch of the external
clock buffers.

A block ievel diagram of a system without phase lock employing the VrR4000SC processor and an external agent
composed of both a gate array and discrete CMOS logic devices is shown in Fig. 10-5 System Without Phase Lock
Employing the Vr4000SC Processor {b). ’

-) 79
642?525 0083k48 L75 HE

CHAPTER 10 CLOCKING

Fig. 10-5 System Without Phase Lock Employing the Va4000SC Processor (b)

oo
|
Bk
-
PN
Memory

R L427525 0083L49 504 W

CHAPTER 11 OUTPUT BUFFER di/dt CONTROL MECHANISM

The speed of the Va4000SC output drivers is controlled by a negative feedback loop that insures that the drive
off times are only as fast as necessary to meet the system requirement of single cycle transfers. This guarantees
the minimum ground bounce due to the L*di/dt of the switching buffers consistent with the system timing
requirements. Four bits are used to control each of the pullup and pull-down delays. They are initially set to the
values in the mode bits InitN<3..0> for pull-up and InitP<3 0> for pull-down.

Under normal conditions, the di/dt control mechanism s expected to be constantly enabled so that it can
compensate the output buffer delay for any changes in the temperature or power supply voltage. The EnbIDIDT mode
bit should be set for this mode of operation.

For situations where the jitter associated with the operat:on ot the di/dt control mechanism cannot be tolerated
and where the variation in temperature and supply vohage atter ColdReset is expected to be small, the di/dt control
mechanism can be instructed to lock only during ColdRese! and thereafter retain its control values. The EnbIDIDTR
mode bit should be set and the EnbIDIDT mode bit shouxd be cleared for this mode of operation.

In addition, if both the EnbiDIDT and EnbIDIDTR mode bits are cleared, the speed of the output buffers can be
set with the InitP<3..0> and InitN<3..0> mode bits

The drive off delays can be set through the mode bits Currently, delay of 0.5T, 0.75T, and T are supported
corresponding to the Drv0.50, Drv0.75, and Drv1.00 mode bits where T is the MasterCiock period. For example,
in the Drv0.75 mode, the entire signal transmission path inciuging the clock-to-Q, output buffer drive time, board
flight time, input buffer delay, and setup time will be traversed in 0.75 * the MasterClock period plus or minus the
jitter due to the di/dt control mechanism.

All output drivers on the Vr4000SC, with the exception of the clock drivers, are controllied by the di/dt control

mechanism. The delay due to the output buffer drive time component of the SCAddr<17..0>, SC64Addr, SCOEB,
SCWRB, SCDCSB, and SCTCSB pins is approximately 66% ot the delay of drivers of the other pins.

The Va40005C determines the worst case propagation delay from an Vr4000SC output driver to a receiving device
by measuring the transmission line delay of the trace that connects the Va4000SC 10_Out and 10_in pins. This
representative trace must have one and a half times the length and approximately the same capacitive loading as
the worst case trace on any Vr4000SC output.

The designer determines the trace characteristics by:

s measuring the longest path from an Vr4000SC output driver to a receiving device: L

¢ caiculating the maximum capacitive loading on any signal pin: C

¢ connecting an "incident wave" trace of length L with a capacitive loading of C between the |0_In and I0_Out
pins of the Va4000SC

« and connecting a “reflected wave” trace of length L/2 to the 10_in pin of the Va4000SC.

A VR4000SC with appropriate traces connected to the 1O_in and 10_Out pins is illustrated in Fig. 11-1 10_in/
10_Out Board Trace.

81
B E427525 0083650 226 W

CHAPTER 11 OUTPUT BUFFER di/dt CONTROL MECHANISM

Fig. 11-1 10_In/l1O_Out Board Trace

CPU Board

The longest trace from
a ~*— 3 Vr4000SC output driver
10 a receiving device

v

[+

Vr4000SC d

10_0Out 10_In

{«t—————— "Reflected Wave" trace

Length=L/2
il B
Cuwm=C
*Incident Wave" Trace
L = a+b+c+d

C = Total Capacitance Loading of the worst case trace

! 82 B Ly27525 0083651 1k N

@

CHAPTER 12 PLL PASSIVE COMPONENTS

The Phase Locked Loops require several passive components for their operation. These passive components
are attached to the PLLCap0, PLLCap1, VooP, and GndP pins and are illustrated below. The capacitors for the PLLCap0
and PLLCap1 pins are connected in the figure to GndP but they could also be connected to VooP. Note that the
capacitors connecting the PLLCap0 and PLLCap1 pins to either VooP or GndP are 10 be provided externally.

A schematic diagram showing the passive components and their interconnect to the Va4000SC is illustrated in
Fig. 12-1 PLL Passive Components.

it is essential to isolate the analog power and ground (VooP/GndP) from the other power and ground pins. Initial
evaluations with R=5 Q, C1=1 nF, C2=0.1 uF, C3=10 uF, and Cp=470 pF have yielded good resuits on test boards.
Since the optimum values for the filter components depend on the application and the system noise environment,
these values should be considered as starting points for further experimentation within the application specific
context. In addition, the chocks ({inductors} can be considered as an alternative to the resistors for power supply
filtering.

Remark The test refers 10 the pins connecting PLLCap0 and PLLCap1 to pins. These pins are not externélly

available through pins on the package. The connections to the bond pads PLLCap0 and PLLCap1 are
incorporated in the package.

B L427525 0083L52 0OTY M

CHAPTER 12 PLL PASSIVE COMPONENTS

Fig. 12-1 PLL Passive Components

Voo
R L
PLLCa PLLCap?
VooP p0 P
Vrd000SC i . i 1 i
——— C1 r—— Cc2 __C3 —— Cp ——p— Cp
GndP < ‘
R L
Gnd

Remark 1. The inductors may be used to replace the resistors in the filter circuit. They may be also excluded,
used in parallel with the resistors or used in place of the resistors. Since noise filtering is application
specific, inductors may improve noise reduction in some applications.

2. Since noise filtering is, in part, application specific, the values given for the filter elements are only
suggested values that may be changed depending on the application. The suggested starting value
for the inductor is 1000 uH.

84 Bl L427525 0083653 T35 M

CHAPTER 13 JTAG INTERFACE

The Vr4000SC processor provides a boundary scan interface using the industry standard JTAG protocol.
13.1 JTAG Interface Signal Summary

JTDI: i) JTAG serial data in.
JTDO: (o) JTAG serial data out.
JTMS: () JTAG command signal.
JTCK: () JTAG serial clock input.

13.2 JTAG Functionality

The JTAG boundary scan mechanism is intended to provide a capability for testing the interconnect between the
VR4000SC processor, the printed circuit board to which it is attached, and the other components on the board. In
addition the JTAG boundary scan mechanism is intended to provide a rudimentary capability for low speed logical
testing of the secondary cache RAMs. The JTAG boundary scan mechanism is not intended to provide any capability
for testing the VR4000SC processor itself.

In accordance with the JTAG specification the Va4000SC processor contains a TAP controller, JT. AG instruction
register, JTAG boundary scan register, and JTAG bypass register. However, the VR4000SC JTAG implementation
provides only the external test functionality of the boundary scan register.

13.2.1 JTAG Test Access Port (TAP)

The JTAG Test Access Port consists of the 4 pins described above. Data is serially scanned into one of the three

registers {instruction register, Bypass register, Boundary Scan register) from the JTD! pin, and is scanned out from
the selected one of these registers onto the JTDO pin. The JTD! input feeds the LSB of the selected register, and
the MSB of the selected register appears on the JTDO output. The JTMS input controls the state transitions of the
main TAP controlier state machine. .

Data on the JTDI and JTMS pins is sampled on the rising edge of the JTCK input clock signal. Data on the JTDO
pin changes on the falling edge of the JTCK clock signal.

13.2.2 JTAG TAP Controlier

The Va4000SC implements the 16-state JTAG TAP controller as defined in the |EEE JTAG specification.

The TAP controller state machine can be put in its Reset state in one of two ways. Deassertion of the VooOk
input will reset the TAP controlier. Keeping the JTMS input signal asserted through five consecutive rising edges
of the JTCK clock input will also send the TAP controller state machine into its Reset state. In either case, keeping
JTMS asserted will maintain the Reset state.

13.2.3 Instruction Register
The Vr4000SC's JTAG instruction register is three bits wide and is encoded as follows.

MSB...LSB Selected Data Register
000 Boundary Scan register {External Test only)
x x 1 Bypass Register
x1x Bypass Register
1 xx Bypass Register

M L427525 DD&3L54 971 W

CHAPTER 13 JTAG INTERFACE

The Instruction register is composed of two stages - the shift register stage and the paraliel output latch. When
the TAP controller is in the Reset state, the value 7 (111} is loaded into the parallel output latch, thus selecting the
Bypass register as the default. When the TAP controller is in the Capture-IR state, the value 4 {100} is loaded into
the shift register stage. When the TAP controller is in the Shift-iR state, data is serially shifted into the shift register
stage of the Instruction register from the JTDI input pin, and the MSB of the Instruction register’s shift register stage
is shifted out onto the JTDO pin. When the TAP controller is in the Update-IR state, the current data in the shift
register stage is loaded into the parallel output latch.

13.2.4 Bypass Register

The Bypass Register is one bit wide. When the TAP controller 1s in the Smiti-DR (Bypass) state, the data on the
JTDI pin is shifted into the bypass register, and the bypass register s output 1s shifted out onto the JTDO output
pin.

13.25 Boundary Scan Register

The Boundary Scan register is 319 bits wide. The three most significant bits control the output enabies on the
various bidirectional buses. The most significant bit is the JTAG output enabie bit for the SysAD, SysADC, SysCmd
and SysCmdP buses. The next most significant bit is the JTAG output enabie for the SCData and SCDChk buses.
The third most significant bit is the JTAG output enable for the SCTsg ana SCTChk buses. The remaining 316 bits
correspond to 316 signal pads of the Va4000SC. The scan order of these bits is listed in APPENDIX C JTAG
ORDERING at the end of this document.

When the TAP controller is in the Reset state, the three most sionificant bits of the Boundary Scan reqgister are
set to "0 (the default JTAG output enable control on all the bidirectional pins is to disable the outputs). When the
TAP controller is in the Capture-DR (Boundary Scan) state, the data currently present on all the VR4000SC's input
and I/O pins are latched into the Boundary Scan register. The Boundary Scan register bits corresponding to output
nins are arbitrary in this state and must not be checked during the scan out process. When the TAP controller is
in the Shift-DR (Boundary Scan) state, data is serially shifted into the Boundary Scan register from the JTDI pin, and
the contents of the Boundary Scan register are shifted out onto the JTDO pin. When the TAP controller is in the
Update-DR (Boundary Scan) state, the current data in the Boundary Scan register is latched into its paraliel output
latch, and the bits corresponding to output pins and those 10 pins whose outputs are enabled (by the three MSBs
of the Boundary Scan register) are enabled onto the Va4000SC's pins.

13.3 Implementation Specific Details

¢ The MasterClock, MasterQut, Syncin and SyncOut pads do not have JTAG.

* Some pairs of output pads share a single JTAG bit. These are: SCAddrOW and SCAddrOX, SCAddrOY and
SCAddrozZ, SCWrBW and SCWrBX, SCWrBY and SCWrBZ, TClocki0] and TClock(1], RClock{0} and RClocki1].

* Allinput pads data are first latched into a Processor Clock based register in the pad cell before they are captured
into the Boundary Scan register in the Capture-DR (Boundary Scan) state. When the Phase locked loop is
disabled, the processor clock is half the frequency of MasterClock. Therefore the data setup required at the
input pads is greater than two MasterClock periods before the rising edge of JTCK when the TAP controller
is in the Capture-DR (Boundary Scan} state.

* The output enable controls generated from the three most significant bits of the Boundary Scan register are
latched into a Processor Clock based register before they actually enable the data onto the pads. Therefore
the delay from the rising edge of JTCK in the Update-DR (Boundary Scan) state to data valid at the output pins
of the chip is greater than two MasterClock periods.

86 B Lu427525 DOA3L55 408 mm

@

CHAPTER 14 PIN SUMMARY

Secondary cache interface pins available only on the large package configuration:

SCData(127:0): (i/o)
SCDChk({15:0): {i/o}

SCTag{24:0): (/o)
SCTChk(6:0): (i/o}

SCAddr(17:1): (o)
SCAddr0Z: (o}
SCAddroY: (o)
SCAddroX: (o)
SCAddrOW: (0}
SCAPar(2:0): (o}

SCOE: (o)
SCWr2: (o)
SCWrY: {o)
SCWrX: {0)
SCWrW: (o)
SCDCS: (©)
SCTCS: {o)

A 128-bit bus used to read or write cache data from/to the secondary cache.

A 16-bit bus which conveys two ECC fields that cover the upper or lower 64 bits of the
SCData from/to the secondary cache.

A 25-bit bus used to read or write cache tags from/to the secondary cache.

A 7-bit bus which conveys an ECC field that covers the SCTag from/to the secondary
cache.

A 17-bit bus which addresses the secondary cache.
Bit 0 of the secondary cache address.
Bit O of the secondary cache address.
Bit 0 of the secondary cache address.
Bit 0 of the secondary cache address.

A 3-bit bus which conveys the parity of the SCAddr bus and the cache control lines
SCOE, SCWR, SCDCS and SCTCS.

A signa! which enables the outputs of the secondary cache RAMSs.
Secondary cache write enable.
Secondary cache write enable.
Secondary cache write enable.
Secondary cache write enable.

A signal which enables the chip select pins of the secondary cache RAMs associated
with SCData and SCDChk. '

A signal which enables the chip select pins of the secondary cache RAMs associated
with SCTag and SCTChk.

System interface pins available on both package configurations:

SysAD(63:0): (/o)

SysADC(7:0): (/o)
SysCmd(8:0): {i/o)

SysCmdP: {i/o)
Validin: {i)

VaiidOut: {o}

ExtRqst: 0}
Release: (o)

A 64-bit bus used for address and data transmission between the processor and an
external agent.

An 8-bit bus containing check bits for the SysAD bus.

A 9-bit bus used for command and data identifier transmission between the processor
and an external agent.

A single even parity bit over the SysCmd»bus.»

Signals that an external agent is driving a valid address or valid data on the SysAD bus
and a valid command or data identifier on the SysCmd bus during this cycle.

Signals that the processor is driving a valid address or valid data on the SysAD bus and
a valid command or data identifier on the SysCmd bus during this cycle.

Signals that the system interface needs to submit an external request.

Signals that the processor is releasing the system interface to slave state.

B L4y2?525 0083k5kL 74y EH

CHAPTER 14 PIN SUMMARY

RdRdy: iy Signals that an external agent is capable of accepting a processor read, invalidate, or
update request in both non-overlap and overlap mode or a read followed by a potential
invalidate or update request in overlap mode.

WrRdy: (i) Signals that an external agent is capable of accepting & processor write request in both
non-overlap and overlap mode.

interrupt pin available on both package configurations:

int(0): (i) One of six general processor interrupts, bit-wise ORed with bit 0 of the interrupt register.
Non-maskable interrupt pin available on both package configurations:.

NMi:) Non-maskable interrupt, ORed with bit 6 of the interrupt register.
Boot time mode control interface pins available on both package configurations:

Modein: iy Serial boot mode data in.

ModeClock: (o) Serial boot mode data clock out at the system clock frequency divided by 256.
JTAG interface pins available on both package configurations:

JTDI: () JTAG serial data in.

JTDO: (o) JTAG serial data out.

JTMS: i JTAG command signal, signals that the serial data in is command data.
JTCK: i) JTAG serial clock input.

Maintenance pins avallable on both package configurations:
TClock({1:0): (o) Two identical transmit clocks at the operation frequency of the system interface.
RClock{1:0): (o) Two identical receive clocks at the operation frequency of the system interface.
MasterClock: (i) Master clock input at the operation frequency of the processor.
. MasterOut: (o) Master clock output aligned with MasterClock.
SyncOut: (o) Synchronization clock output.

Schln: (i) Synchronization clock input.

100ut: {o) Output slew rate control feedback loop output. Must be connected to 10In through a
delay loop that models the 10 path from the Va4000SC to an external agent.

1Oin: (il Output slew rate control feedback loop input.

VooOk: i} When asserted, this signal indicates to the Va4000SC that the +5 volt power supply has

been above 4.75 volts for more than 100 milliseconds and will remain stable. The
assertion of VooOk will initiate the reading of the boot time mode control serial stream.

ColdReset: () This signal must be asserted for a power on reset or 8 cold reset. The clocks SClock,
TClock, and RClock begin to cycle and are synchronized with the deassertion edge of
ColdReset. ColdReset must be de-asserted synchronously with MasterClock.

Reset: (i) This signal must be asserted for any reset sequence. It may be asserted synchronously
or asynchronously for a cold reset, or synchronously to initiate a warm reset. Reset must
be de-asserted synchronously with MasterClock.

GrpRun: {o) Run pulse generated after a group of instructions completes.

GrpStall: i) Stall signal which will stall the processor after the current group of instructions com-
pletes.

Fault: {o) Mismatch output of boundary comparators.

88 B L427525 0083657 A0 EM

-

CHAPTER 14 PIN SUMMARY

VooP: iy Quiet Voo for the internal phase locked loop.
GndP: iy Quiet Gnd for the internai phase locked loop.
Maintenance pins available only on the large package configuration:
Status{7:0): (o) An 8-bit bus that indicates the current operation status of the processor.

VooSense: (ifo) This is a special pin used only in component testing and characterization. It provides a
separate, direct connection from the on-chip Vop node to a package pin without attaching
to the in-package power planes. Test fixtures treat VooSense as an analog output pin;
the voltage at this pin directly shows the behavior of the on-chip Voo. Thus, charac-
terization engineers can easily observe the effects of di/dt noise, transmission line
reflections, etc. VooSense should be connected to Voo in functiona! system designs.

GndSense: {i/o) GndSense providesa separate, direct connection from the on-chip Gnd node to a package

pin without attaching to the in-package ground planes. GndSense should be connected ‘

to Gnd in functional system designs.

.Ml by2?525 0083b54 517 -

APPENDIX A SUB-BLOCK ORDERING

Sub-block ordering is an order for transmitting the data elements that form a block of data when the data element
transmitted first is not the data element at the beginning of the block. Sub-block ordering causes the data elements
of the block to be transmitted in an order that fills out sub-blocks of increasing size. For the VrR4000SC, the smallest
data element of a block transfer is a double word, therefore, the double word at the target address is transferred
first, followed by the double word that fills out the quad word that contains the starting double word. Next the quad
word that fills out an octa! word containing the starting quad word is transferred in the same order as the first quad
word, followed by the octal word that fills out a hex word containing the starting octal word in the same order as
the first octal word, and so on through sub-blocks of increasing size until the entire block has been transferred.

Perhaps an easier way to consider sub-block ordering is to look at a method for generating the addresses, within
the block, of the double words to be transferred for sub-block ordering. A simple method for generating such
addresses is to bit-wise XOr the starting double word address with the output of a binary counter that is counting
the double words in the block starting at double word zero.

The following tables illustrate the sequence of double words transferred using sub-block ordering for a thirty-two
word block based on three different starting block addresses. For these illustrations the double words in the block
will be identified by their block addresses. The block address for each double word in a block is derived by numbering
the double words in the block sequentially starting with zero.

The tabies also include a binary count of the double words in the block to illustrate the XOr relationship between
this count, the starting address and the block addresses of the double words transferred.

Table A-1 Sequence of Double Words Transferred Using Sub-block Ordering (a)

StartingBinaryDouble word
Cycle block address count transferred

1 0010 0000 0010
2 0010 0001 0011
3 0010 0010 0000
4 0010 0011 0001
5 0010 0100 0110
6 0010 0101 o1
7 0010 0110 0100
8 0010 0111 0101
9 0010 1000 1010
10 0010 1001 101
1 0010 1010 1000
12 0010 on 1001
13 0010 1100 1110
14 0010 1101 11N
15 0010 1110 1100
16 0010 1mnm 1101

: 91
.Ml b427525 0083659 453 MM

APPENDIX A SUB-BLOCK ORDERING

Table A-2 Sequence of Double Words Transferred Using Sub-block Ordering (b)

StartingBinaryDouble word

Cycle block address count transferred
1 1011 0000 1011
2 1011 0001 1010
3 1011 0010 1001
4 1011 0011 1000
5 1011 0100 1111
6 101 0101 1110
7 101 0110 1101
8 1011 0111 1100
9 1011 1000 0011
10 1011 1001 0010
11 1011 1010 0001
12 1011 1011 0000
13 1011 1100 o1
14 1011 1101 0110
15 1011 1110 0101
16 101 1M 0100

Table A-3 Sequence of Double Words Transferred Using Sub-block Ordering (c)

StartingBinaryDouble word

Cycle block address count transferred
1 0101 0000 0101
2 0101 0001 0100
3 0101 0010 0111
4 0101 0011 0110
5 0101 0100 0001
6 0101 0101 0000
7 0101 0110 0011
8 0101 0111 0010
9 0101 1000 1101
10 0101 1001 1100
11 0101 1010 1111
12 0101 1011 1110
13 0101 1100 1001
14 0101 1101 1000
15 0101 1110 1011
16 0101 1M 1010

B Luy27525 0083660 175 MW

APPENDIX B EVEN PARITY

The descriptions of parity as even or odd often have different meanings to different people. Even parity is defined
for the Vr4000SC as follows:

For a field of n bits protected by a single parity bit, if the number of ones among the n data bits is an even number,
then the even parity bit will be a 0. If the number of ones among the n data bits is an odd number, then the even
parity bit will be a 1. For example, if all n of the data bits are 0, the parity bit will also be a 0 if there are no data
bits in error. If all n of the data bits are 1, and the number of data bits n is an odd number, then the parity bit will
be a 1 if there are no data bits in error.

M Lu427525 0083kL1l 001 W

The following list is the order of the pins associated with the JTAG Boundary Scan Register starting from JTDI

APPENDIX C JTAG ORDERING

and ending at JTDO.
SCDChk[13] SysADI[29]
SysADCI1] SCData[125]
SCDChk[1] Reset
SysADCI5] SCTagl20}
SCDChkI5] SCDatal93}
Status(0] SCDatal60]
Status|1] SysAD(60)
Status|2] SCData28])
Status{3] SysAD[28]
ivdErr SCData(124]
Statusl(4] ColdReset
ivdAck SCTagl21)
Status|5] SCData[92}
Statusi6] SCDatal59]
Status{7] SysAD[59]
SCDChki7] SCDatal27]
SysADCI{7] SysADI27}
SCDChkI3] SCDatal123]
SysADCI3] 10In
SCDChkI15] 8CTagl22]
VooOk SCDatai91)
SCTagl16] SCDatal58]
SCDChk[11) SysADISS]
SCData(63] SCDatal26]
SysADI63] SysADI[26]
SCDatsl31] SCDatal122]
SysADI[31] 100ut
SCData[127]) SCTagl23]
SCTagl17} SCDatal90)
SCData[95] SCDatal57]
SCDatal62] SysADI57]
SysADI62] SCDatal25]
SCDatal30] SysAD[25)
SysADI30} SCDatal121}
SCData{126} GrpRun
SCTagl18] SCTagl24]
SCData[94] SCDatal89]
RClockl1..0] (share the same JTAG bit} .SCDatal56)
SCTagl19] -SysADIS6]
SCDatal61] SCDatal24]
SysADI61] SysAD[24]
SCDatal29] SCDatal120}

M L42?525 0083kkL2 Tud HE

APPENDIX C JTAG ORDERING

GrpStall
SCTChk[0]
SCDatal88]
SCDChk(6]
SysADCI6]
SCDChk([2]
SysADC[2]
SCDChk[14]
NMI
SCTChki1]
SCDChk[10}
SCData[55]
SysADI|55]
SCData[23]
SysAD|23]
SCDatal119]
fRelease
SCTChki2]
SCData[87]
SCDatal54)
SysADI[54]
SysAD[22]
Modeln
SCDatal22]
RdRdy
SCDatal118]
SCDatal86l
SCDatal53]
SysADI53]
SCDatal21]
SysAD[21]
SCDatal117]
ExtRast
SCTChk{3]
SCDatal85]
SCDatal52]
SysADI52]
SCDatal20]
SysAD[20]
SCDatal116]
ValidOut
SCTChki4l
SCDatal84]
SCDatal51]
SysADI51]
SCData{19]
SysAD{19]
SCDatal115)

Validin
SCTChki5]
SCDatal83)

SCAddrow,X (share the same JTAG bit)
SCAddroY,Z (share the same JTAG bit)

SCAddrl{1]
SCData{50]
SysADIS0]
SCDatal18]
SysAD[18]
SCDatal114]
nt[0]
SCTCHkI6)
SCDatal82]
SCDatal49]
SysADI[49]
SCDatal17]
SysAD[17]
SCDatal113}
SCAddr[2Vint(T)
SCAddr(3}
SCDatal81]
SCDatal48]
SysADI48]
SCDatal16]
SysADI[16]
SCDatal112]
SCAddri4)/inti2]
SCAddr5]
SCDatai80]
SCAddri6]
SCAddrl7]
SCAddri8]
SCAddri8]
SCAddr{10]
SCAddr{11]
SC64Addr
SCAddr{12]
SCAddr{13]

- SCAddrl[14]

SCAddr[15]}
SCAddr{16]
SCAddr{17}
SCData[64]
SCAPar{0]
SCAParl1Vint(3]
SCDatal96]
SysADI0]

B L427525 00A36L3 94y W

APPENDIX C JTAG ORDERING

SCDatal0]
SysADI[32]
SCDatal32]
SCData[65)
SCAPar(2]
SCOE/inti4]
SCDatal97]
SysAD[1]
SCDatal1]
SysADI33]
SCDatal33]
SCDatal66]
SCDCS
SCTCS/intl5]
SCDatal98]
SysADI[2}
SCDatal2]
SysAD[34]
SCDatal34]
SCTagl0]
SCWrW X (share the same JTAG bit)
SCWIY,Z (share the same JTAG bit)
SCDatal67]
SCTagl1]
SysCmdl0]
SCDatal99]
SysADI3]
SCDatal3]
SysADI35]
SCDatal35)
SCData[68]
SCTagi2)
SysCmd(1]
SCDatal100]
SysADI4]
SCDatal4}
SysADI[36]
SCDatal[36]
SCDatal69]
SCTagl3]
SysCmd(2}]
SCDatal101]
SysADI5]
SCDatal5]
SysADI37]
SCDatal37]
SCData{70]
WrRdy

I bY27525 0083bbY 410 M

ModeClk
SCDatal[102]
SysADIB]
SCDatal6]
SysADI[38]
SCDatal38]
SCDatal71]
SCTagl4]
SysCmdI3]
SCData{103)
SysADI[7}
SCDatal7]
SysADI[39]
SCDatal39]
SCDChkI8]
SCTagl5]
SysCmad{4}
SCDChk[12]
SysADCI0]
SCDChkIO)
SysADCI[4]
SCDChki4]
SCDatal72]
SCTagl6}
SysCmdiS)
SCData[104}
SysADI8]
SCData[8]
SysAD{40]
SCDatal40]
SCDatal(73]
SCTagl7]
SysCmd[6}
SCDatal 105}
SysAD[9]
SCDatal9l]
SysADI{41]
SCDatal41)
SCData[74]
SCTagi8]
SysCmd(7]
SCDatal106]
SysAD[10]
SCData[10}
SysADI[42]
SCDatal42]
SCDatal75]
SCTagl9]

APPENDIX C JTAG ORDERING

SysCmdi8]
SCDatal107]
SysADI[11]
SCData[11]
SysAD[43]
SCDatal43]
SCDatal76)
SCTagl10}
SysCmdP
SCData[108]
SysADI[12]
SCDatal12}
SysADI[44]
SCDatal44]
SCDatal77]
SCTagl11})
Fault
SCDatal109]
SysAD{13]
SCDatal13]
SysADI{45]
SCDatal45]
SCTagl12]

TClock[1..0] (share the same JTAG bit)

SCDatal78}
SCTag|13]
SCData[110}
SysAD[14]
SCDatal14)
SysAD[46]
SCData{46)
SCData(79)
SCTagl14]
SCDatal111]
SysADI15]
SCDatal15]
SysADI47]
SCDatal47]
SCDChkl9]
SCTag[15)

SCTag_OE {JTAG output enable contro! for SCTag and SCTChk buses)
SCData_OE (JTAG output enable control for SCData and SCDChk buses)

SysAD_OE (JTAG output enable control for SysAD, SysADC, SysCmd and SysCmdP buses)

B bLuy27?525 0083bL5 757 M

