DUAL RAD TOLERANT + /-VOLTAGE REGULATOR SERIES M.S.KENNEDY CORP.

4707 Dey Road Liverpool, N.Y. 13088

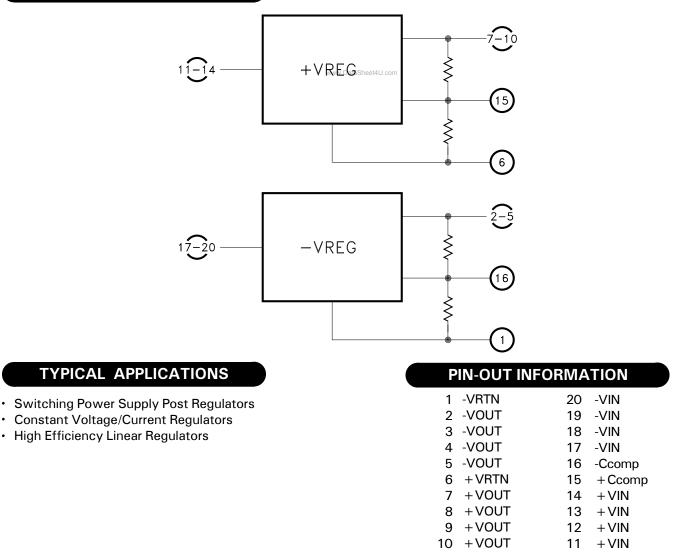
FEATURES:

- 25KRAD(SI) Total Dose Performance
- Internal Thermal Overload Protection
- Output Current to 1.5 Amps
- Output Voltage Internally Trimmed to ±1% Accuracy
- Available to DSCC SMD #TBD
- · Lead Form Options: Straight and Gull Wing
- Alternate Voltage Combinations Available

DESCRIPTION:

•

MIL-PRF-38534 CERTIFIED


MSK590XRH

MSK590XRHG

(315) 701-6751

The MSK 5901RH series are dual Radiation Tolerant +/- voltage regulators offering low dropout and output accuracy to ±1% maximum. Excellent line and load regulation characteristics ensure highly accurate performance. In radiation environments, a total dose rating of 25KRAD(SI) provides highly reliable performance. The MSK 5901RH series regulators are equipped with internal thermal overload protection. The devices are packaged in a space efficient 20 pin flatpack with two lead form options, straight and gull wing.

EQUIVALENT SCHEMATIC

ABSOLUTE MAXIMUM RATINGS

$+V_{IN}$	+ Input Voltage (VIN-VOUT)	+ 40V DC
-Vin	-Input Voltage (VIN-VOUT)	
PD	Power Dissipation	Internally Limited
+ І оит	+ Output Current	1.5A
-lout	-Output Current	1.5 A
TJ	Junction Temperature	+150°C

8

ELECTRICAL SPECIFICATIONS

- Tst Storage Temperature Range -65°C to +150°C
- (10 Seconds)
- Tc Case Operating Temperature MSK 5901RH-5909RH(K/H/E) . . . -55°C to +125°C

Parameter	Test Conditions ⑦	Group A Subgroup	MSK 590XRH K/H/E		MSK 590XRH			Units	
		(4)	Min.	Тур.	Max.	Min.	Тур.	Max.	Onico
POSITIVE OUTPUT REGULATO	RS:								
Output Voltage Tolerance	IOUT = 10mA; VIN = VOUT + 3V	1	-	±0.2	±1.0	-	±0.2	±1.5	%
		2,3	-	±0.8	±3.0	-	-	-	%
Dropout Voltage	Iout=0.5A; Δ Vout=1%	1	-	1.6	3.0	-	1.6	3.5	V
		2,3	-	1.9	3.0	-	-	-	V
Load Regulation	10mA≤louт≤0.5A	1	-	±0.2	±2.0	-	±0.2	±2.5	%
	$V_{IN} = V_{OUT} + 3V$	2,3	-	±0.4	±2.5	-	-	-	%
Line Regulation	Iout = 10mA	1	-	±0.6	±1.5	-	±0.6	±2.0	%
	Vout+3V≤Vin≤35V	2,3	-	±1.0	±2.5	-	-	-	%
Thermal Resistance $①$	JUNCTION TO CASE @ 125°C	-	-	9.5	10.5	-	9.5	11.0	°C/W
NEGATIVE OUTPUT REGULATO	DRS:								
Output Voltage Tolerance	IOUT = 10mA; VIN = VOUT -3V	1	-	±0.2	±1.0	-	±0.2	±1.5	%
		2,3	-	±0.8	±3.0	-	-	-	%
Dropout Voltage	Iout = 0.5A; ΔVout = 1%	1	-	1.9	3.0	-	1.9	3.0	V
		2,3	-	1.5	3.0	-	-	-	V
Load Regulation	10mA≤louт≤0.5A	1	-	±0.2	±2.0	-	±0.2	±2.5	%
	VIN = VOUT -3V	2,3	-	±0.4	±2.5	-	-	-	%
Line Regulation	Iout = 10mA	1	-	±0.1	±1.5	-	±0.1	±2.0	%
	-30V≤Vin≤Vout-3V	2,3	-	±0.2	±2.5	-	-	-	%
Thermal Resistance ①	JUNCTION TO CASE @ 125°C	-	-	11.5	12.5	-	11.5	13.0	°C/W

NOTES:

- ① Guaranteed by design but not tested. Typical parameters are representative of actual device performance but are for reference only.
- 2 3 4 Industrial grade and "E" suffix devices shall be tested to subgroup 1 unless otherwise specified.
- Military grade devices shall be 100% tested to subgroups 1,2 and 3.
- Subgroup 1 $T_A = T_C = +25 \,^{\circ}C$
- Subgroup 2 $T_A = T_C = +125 \,^{\circ}C$ Subgroup 3 $T_A = T_C = -55^{\circ}C$
- Please consult the factory if alternate output voltages are required.
- 6 For positive regulator, output decoupled to ground using 1μ F minimum tantalum capacitor unless otherwise specified. For negative regulator, output decoupled to ground using $1\mu F$ minimum tantanlum capacitor.
- For complete radiation test data, consult "MSK 5901RH Total Dose Test Report".
- 8 Continuous operation at or above absolute maximum ratings may adversly effect the device performance and/or life cycle.

PART 5	OUTPUT VOLTAGES		
NUMBER	POSITIVE	NEGATIVE	
MSK5901	5.0	5.0	
MSK5902	5.0	5.2	
MSK5903	12.0	5.0	
MSK5904	12.0	12.0	
MSK5905	15.0	15.0	
MSK5906	15.0	5.0	
MSK5907	5.0	12.0	
MSK5908	5.0	15.0	
MSK5909	10.0	10.0	

APPLICATION NOTES

CAPACITOR SELECTION

POSITIVE REGULATOR

INPUT CAPACITOR:

An input bypass capacitor is recommenced when using the MSK 5901 series regulators. This is especially true if the regulator is located farther than 6 inches from the power supply filter capacitors. For most applications a 1μ F solid tantalum capacitor will be suitable.

OUTPUT CAPACITOR:

A minimum of a 1μ F solid tantalum capacitor should also be used at the output to insure stability. Any increase of this output capacitor larger than 10μ F will only improve output impedance.

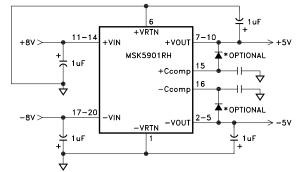
+ CCOMP CAPACITOR:

For improved ripple rejection, + Ccomp can be bypassed to ground with a 10 μ F tantalum capacitor. This bypass capacitor will provide 80dB ripple rejection. Increased capacitance above 10 μ F does not improve the ripple rejection at frequencies above 120Hz. If the Ccomp bypass capacitor is used, it may be necessary to add a protection diode to protect the regulator from capacitor discharge damage. See Typical Applications Circuit for clarification. If the bypass capacitor is not used, it should be left open since it is internally connected to the regulator.

NEGATIVE REGULATOR

INPUT CAPACITOR:

Once again, if the regulator will be farther than 6 inches from power supply filter capacitors, then an input capacitor will be required on the negative regulator. It is recommended that a 1μ F solid tantalum capacitor be used.


OUTPUT CAPACITOR:

A minimum of a 1μ F solid tantalum capacitor should also be used at the output to insure stability. Any increase of this output capacitor larger than 10μ F will only improve output impedance.

-CCOMP CAPACITOR:

For improved ripple rejection, -Ccomp can be bypassed to ground with a 10μ F tantalum capacitor. This bypass capacitor will provide 80dB ripple rejection. Increased capacitance above 10μ F does not improve the ripple rejection at frequencies above 120Hz. If the Ccomp bypass capacitor is used, it may be necessary to add a protection diode to protect the regulator from capacitor discharge damage. See Typical Applications Circuit for clarification. If the bypass capacitor is not used, it should be left open since it is internally connected to the regulator.

TYPICAL APPLICATION CIRCUIT

LOAD REGULATION

It is important to keep the output connection between the regulator and the load as short as possible since this directly affects the load regulation. For example, if 20 gauge wire were used which has a resistance of about 0.008 ohms per foot, this would result in a drop of 8mV/ft at 1Amp of load current. It is also important to follow the capacitor selection guidelines to achieve best performance.

HEAT SINKING

To determine if a heat sink is required for your application and if so, what type, refer to the thermal model and governing equation below.

Governing Equation: $Tj = Pd x (R_{\theta}jc + R_{\theta}cs + R_{\theta}sa) + Ta$

WHERE

Tj = Junction Temperature Pd = Total Power Dissipation Rejc = Junction to Case Thermal Resistance Recs = Case to Heat Sink Thermal Resistance Resa = Heat Sink to Ambient Thermal Resistance Tc = Case Temperature Ta = Ambient Temperature

Ts = Heat Sink Temperature

EXAMPLE:

This example demonstrates an analysis where the output currents are at 0.5 amp each and both inputs are 8V.

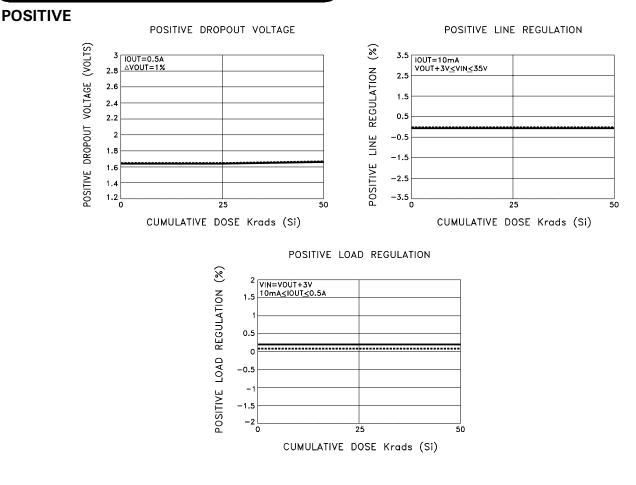
Conditions for MSK 5901RH:

+ Vin = + 8.0V; lout = 0.5A Positive Regulator

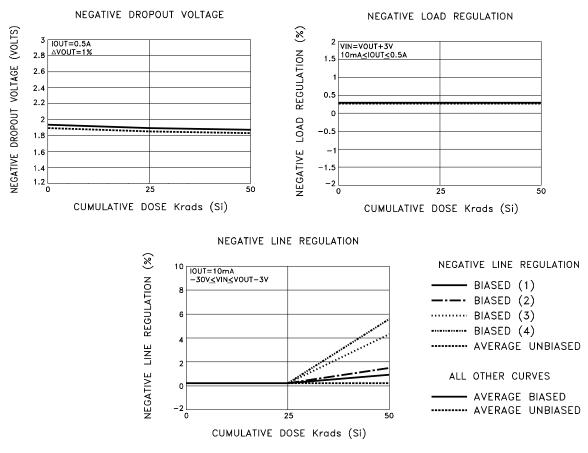
1.) Assume 45° heat spreading model.

2.) Find positive regulator power dissipation:

```
Pd = (Vin - Vout)(lout)

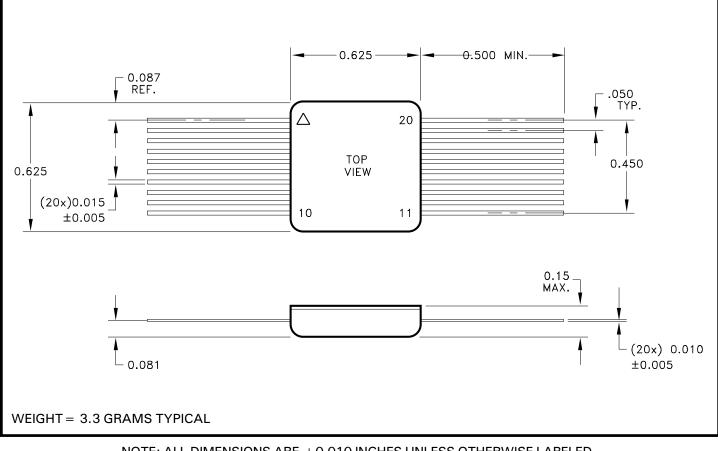

Pd = (+8V-5V)(0.5A)

Pd = 1.5W
```


- 3.) For conservative design, set $Tj = +125^{\circ}C$ Max.
- 4.) For this example, worst case $Ta = +90^{\circ}C$.
- 5.) $R_{\theta jc} = 10.5 \,^{\circ}C/W$ from the Electrical Specification Table.
- 6.) $R_{\theta}cs = 0.15^{\circ}C/W$ for most thermal greases.
- 7.) Rearrange governing equation to solve for Resa:
 - $R_{\theta}sa = ((Tj Ta)/Pd) (R_{\theta}jc) (R_{\theta}cs)$
 - = (125°C-90°C)/1.5W 10.5°C/W 0.15°C/W = 12.7°C/W

The same exercise must be performed for the negative regulator.

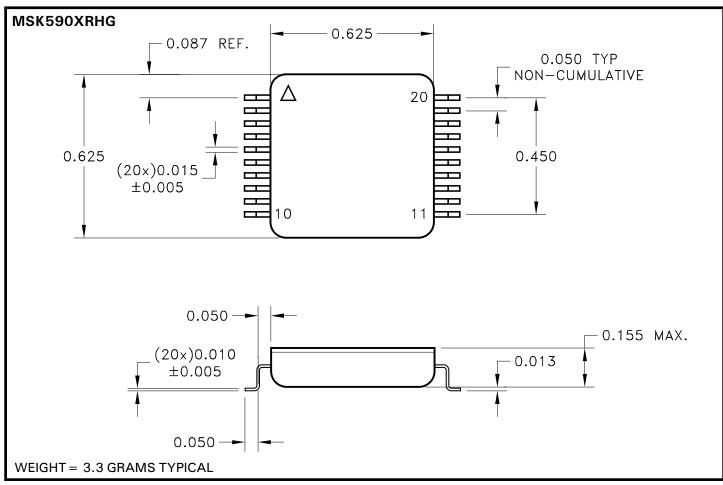
TYPICAL PERFORMANCE CURVES



NEGATIVE

MECHANICAL SPECIFICATIONS

MSK590XRH



NOTE: ALL DIMENSIONS ARE ± 0.010 INCHES UNLESS OTHERWISE LABELED. ESD Triangle indicates pin 1.

ORDERING INFORMATION		
Part Number	Screening Level	
MSK590XRH	Industrial	
MSK590XHRH	MIL-PRF-38534 CLASS H	
MSK590XKRH	MIL-PRF-38534 CLASS K	
MSK590XERH	EXTENDED RELIABILITY	
DSCC SMD TBD	TBD	

X - Designates voltage selection (MSK 5901-5909)

MECHANICAL SPECIFICATIONS CONTINUED

NOTE: ALL DIMENSIONS ARE ±0.010 INCHES UNLESS OTHERWISE LABELED. ESD Triangle indicates pin 1.

ORDERING INFORMATION

Part Number	Screening Level
MSK590XRHG	Industrial
MSK590XHRHG	MIL-PRF-38534 CLASS H
MSK590XKRHG	MIL-PRF-38534 CLASS K
MSK590XERHG	EXTENDED RELIABILITY
DSCC SMD TBD	TBD

X - Designates voltage selection (MSK 5901-5909)

M.S. Kennedy Corp. 4707 Dey Road, Liverpool, New York 13088 Phone (315) 701-6751 Fax (315) 701-6752 www.mskennedy.com

The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make changes to its products or specifications without notice, however and assumes no liability for the use of its products. Please visit our website for the most recent revision of this datasheet. Contact MSK for MIL-PRF-38534 Class H, Class K and Appendix G (radiation) status.