

RoHS

HALOGEN

FRFF

Improved Quad SPST CMOS Analog Switches

DESCRIPTION

The DG441B, DG442B are monolithic quad analog switches designed to provide high speed, low error switching of analog and audio signals. The DG441B, DG442B are upgrades to the original DG441, DG442.

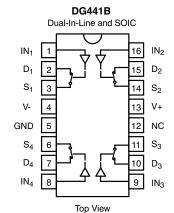
Combing low on-resistance (45 Ω , typ.) with high speed $(t_{ON}\,120\,$ ns, typ.), the DG441B, DG442B are ideally suited for Data Acquisition, Communication Systems, Automatic Test Equipment, or Medical Instrumentation. Charge injection has been minimized on the drain for use in sample-and-hold circuits.

The DG441B, DG442B are built using Vishay Siliconix's high-voltage silicon-gate process. An epitaxial layer prevents latchup.

When on, each switch conducts equally well in both directions and blocks input voltages to the supply levels when off.

FEATURES

- Halogen-free according to IEC 61249-2-21 Definition
- Low On-Resistance: 45 Ω
- Low Power Consumption: 1 mW
- Fast Switching Action t_{ON}: 120 ns
- Low Charge Injection Q: 1 pC
- TTL/CMOS-Compatible Logic
- Single Supply Capability
- Compliant to RoHS Directive 2002/95/EC


BENEFITS

- Less Signal Errors and Distortion
- Reduced Power Supply Requirements
- Faster Throughput
- Reduced Pedestal Errors
- Simple Interfacing

APPLICATIONS

- Audio Switching
- **Data Acquisition**
- Sample-and-Hold Circuits
- Communication Systems
- Automatic Test Equipment
- Medical Instruments

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

DC441B

	DG441B					
	QFN16 (4 x 4 mm) D ₁ IN ₁ IN ₂ D ₂					
	16 15 14 13					
	● ៎ ៎ ៎					
S ₁		S ₂				
V-	2 11	V+				
GND	3	NC				
S_4	4-4-9	S_3				
	5 6 7 8					
	D ₄ IN ₄ IN ₃ D ₃					
	Top View					

TRUTH TABLE							
Logic	DG441B	DG442B					
0	ON	OFF					
1	OFF	ON					

Logic "0" ≤ 0.8 V Logic "1" ≥ 2.4 V

ORDERING INFORMATION								
Temp Range	Package	Part Number						
		DG441BDJ						
	16-pin Plastic DIP	DG441BDJ-E3						
	10-pii11 lastic Dii	DG442BDJ						
		DG442BDJ-E3						
- 40 °C to 85 °C		DG441BDY-E3						
- 40 0 10 05 0	16-pin Narrow SOIC	DG441BDY-T1-E3						
	10-piii Naiiow 3010	DG442BDY-E3						
		DG442BDY-T1-E3						
	16 pin QFN 4 x 4 mm	DG441BDN-T1-E4						
	10 piii Qi N 4 X 4 IIIIII	DG442BDN-T1-E4						

Document Number: 72625 S11-1350-Rev. B, 04-Jul-11

DG441B, DG442B

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C, unless otherwise noted)						
Parameter		Symbol	Limit	Unit		
V+ to V-			44			
GND to V-			25	V		
Digital Inputs ^a , V _S , V _D			(V-) - 2 to (V+) + 2 or 30 mA, whichever occurs first			
Continuous Current (Any Termina	al)		30	mΛ		
Current, S or D (Pulsed at 1 ms,	10 % duty cycle)		100	- mA		
Storage Temperature			- 65 to 125	°C		
	16-pin Plastic DIP ^c		470			
Power Dissipation (Package) ^b	16-pin Narrow Body SOIC ^d		900	mW		
	QFN-16 ^d		850	1		

a. Signals on S_X , D_X , or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

b. All leads welded or soldered to PC Board.

c. Derate 6 mW/°C above 75 °C.

d. Derate 12 mW/°C above 75 °C.

			Test Conditions		Limits			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			•		- 4	0 °C to 85	°C	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter	Symbol	- ,	Temp b	Min d	Typ C	May d	Unit
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Symbol		Temp.	IVIIII.	Typ.	WIGA.	01111
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	VANALOG		Full	- 15	1	15	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain-Source	_	$I_S = 1 \text{ mA}, V_D = \pm 10 \text{ V}$	Room		45	80	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	On-Resistance Match Between Channels ^e	$\Delta R_{DS(on)}$	$I_S = 1 \text{ mA}, V_D = \pm 10 \text{ V}$			2	-	Ω
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Switch Off Leakage Current	I _{S(off)}	$V_D = \pm 14 \text{ V}. V_C = \pm 14 \text{ V}$	Full	- 5		5	
Digital Control Full -10 10 10 10	Comer on Lounage Garrent	I _{D(off)}		Full	- 5		5	nA
$ \begin{array}{ c c c c c }\hline Input Voltage Low & V_{INL} \\\hline Input Voltage High & V_{INH} \\\hline Input Current V_{IN} Low & I_{INL} & V_{IN} under test = 0.8 \ V \\\hline Input Current V_{IN} Low & I_{INL} & V_{IN} under test = 0.8 \ V \\\hline Input Current V_{IN} High & I_{INH} & V_{IN} under test = 2.4 \ V \\\hline Input Current V_{IN} High & I_{INH} & V_{IN} under test = 2.4 \ V \\\hline Input Current V_{IN} High & I_{INH} & V_{IN} under test = 2.4 \ V \\\hline Input Current V_{IN} High & I_{INH} & V_{IN} under test = 2.4 \ V \\\hline Input Current V_{IN} High & I_{INH} & V_{IN} under test = 2.4 \ V \\\hline Input Current V_{IN} High & I_{INH} & V_{IN} under test = 2.4 \ V \\\hline Input Current V_{IN} High & I_{INH} & V_{IN} under test = 0.8 \ V \\\hline Input Current V_{IN} High & I_{INH} & V_{IN} under test = 0.8 \ V \\\hline Input Current V_{IN} High & I_{INH} & V_{IN} under test = 0.8 \ V \\\hline Input Current V_{IN} High & I_{INH} & V_{IN} under test = 0.8 \ V \\\hline Input Current V_{IN} Low & Full & -1 & -0.01 & 1 \\\hline Input Current V_{IN} High & I_{INH} & V_{IN} under test = 0.8 \ V \\\hline Input Current V_{IN} Under $	Channel On Leakage Current	I _{D(on)}	$V_{S} = V_{D} = \pm 14 \text{ V}$			± 0.02		
$ \begin{array}{ c c c c c c }\hline Input Voltage High & V_{INH} & Full & 2.4 & & & & & \\ Input Current V_{IN} Low & I_{INL} & V_{IN} under test = 0.8 \ V & All Other = 2.4 \ V & & & & & \\ Input Current V_{IN} High & I_{INH} & V_{IN} under test = 2.4 \ V & All Other = 0.8 \ V & & & \\ \hline Input Current V_{IN} High & I_{INH} & V_{IN} under test = 2.4 \ V & All Other = 0.8 \ V & & \\ \hline Dynamic Characteristics & & & & \\ \hline Turn-On Time & t_{ON} & R_L = 1 \ k\Omega, C_L = 35 \ pF & Room & 120 & 220 \ Room & 65 & 120 \\ \hline Turn-Off Time & t_{OFF} & V_S = 10 \ V, See Figure 2 & Room & 65 & 120 \\ \hline Charge Injection^e & Q & C_L = 1 \ nF, \ V_S = 0 \ V & V_{gen} = 0 \ V, R_{gen} = 0 \ \Omega & Room & -1 & pC \\ \hline Off Isolation^e & OIRR & R_L = 50 \ \Omega, C_L = 15 \ pF & Room & -90 & dB \\ \hline Crosstalk (Channel-to-Channel) & X_{TALK} & V_S = 1 \ V_{RMS}, \ f = 100 \ kHz & Room & -95 & dB \\ \hline SourceOff Capacitance^e & C_S(off) & Room & 4 & pF \\ \hline Channel On Capacitance^e & C_D(off) & V_S = V_D = 0 \ V, \ f = 1 \ MHz & Room & 16 & Power Supplies \\ \hline Power Supplies & V_{VIN} = 0 \ or 5 \ V & V_{IN} = 0 \ or 5 \ V & Room & -1 & PA \\ \hline Room & -1 & PA & Room & -1 & PA \\ \hline Room & -1$	Digital Control	<u>'</u>				l		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Voltage Low	V _{INL}		Full			0.8	.,
Input Current V_{IN} Low Input Current V_{IN} High Input	Input Voltage High	V _{INH}		Full	2.4			v
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Current V _{IN} Low	I _{INL}	All Other = 2.4 V	Full	- 1	- 0.01	1	
Turn-On Time t_{ON} $R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$ $Room$ 120 220 $Room$ 120 220 $Room$ 120 120 $Room$ 120	Input Current V _{IN} High	I _{INH}	""	Full	- 1	0.01	1	μΑ
Turn-Off Time t_{OFF} $V_S = 10 \text{ V}, \text{ See Figure 2}$ Room $65 \ 120 \ \text{ns}$ Charge Injection ^e Q $C_L = 1 \text{ nF}, V_S = 0 \text{ V}$ $V_{gen} = 0 \text{ V}, R_{gen} = 0 \Omega$ Room $-1 \ pC$ Off Isolation ^e OIRR $R_L = 50 \Omega$, $C_L = 15 \text{ pF}$ Room $-90 \ \text{dB}$ Crosstalk (Channel-to-Channel) X_{TALK} $V_S = 1 \text{ V}_{RMS}, f = 100 \text{ kHz}$ Room $-95 \ \text{dB}$ SourceOff Capacitance ^e $C_{S(off)}$ $f = 1 \text{ MHz}$ Room $4 \ \text{Room}$	Dynamic Characteristics	1		<u> </u>				
Turn-Off Time t_{OFF} $V_S = 10 \text{ V}$, See Figure 2 Room 65 120 $C_L = 1 \text{ nF}$, $V_S = 0 \text{ V}$ $V_{gen} = 0 \text{ V}$, $V_{gen} = 0 \text{ V}$ $V_{gen} = 0 \text{ Q}$ $V_$	Turn-On Time	t _{ON}	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$	Room		120	220	no
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Time	t _{OFF}		Room		65	120	115
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Charge Injection ^e	Q		Room		- 1		рС
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Off Isolation ^e	OIRR	$R_L = 50 \Omega$, $C_L = 15 pF$	Room		- 90		٩D
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Crosstalk (Channel-to-Channel)	X _{TALK}	$V_S = 1 V_{RMS}$, $f = 100 kHz$	Room		- 95		ub
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SourceOff Capacitance ^e	C _{S(off)}	f _ 1 MU¬	Room		4		
Power Supplies Positive Supply Current I+ V+ = 16.5 V, V- = - 16.5 V Room Full 1 5 μA Negative Supply Current I- V _{IN} = 0 or 5 V Room - 1 -1 μA	Drain Off Capacitance ^e	C _{D(off)}	I = I WITZ	Room		4		pF
Positive Supply Current	Channel On Capacitance ^e	C _{D(on)}	$V_S = V_D = 0 V$, $f = 1 MHz$	Room		16		1
Positive Supply Current $V_{\text{IN}} = 0 \text{ or } 5 \text{ V}$ Negative Supply Current $V_{\text{IN}} = 0 \text{ or } 5 \text{ V}$ Full $V_{\text{IN}} = 0 \text{ or } 5 \text{ V}$ Room $V_{\text{IN}} = 0 \text{ or } 5 \text{ V}$	Power Supplies	· ·						•
Negative Supply Current I- Room -1 Room -1	Positive Supply Current	l+	The state of the s					пА
	Negative Supply Current	I-	$V_{IN} = 0 \text{ or } 5 \text{ V}$					μΑ

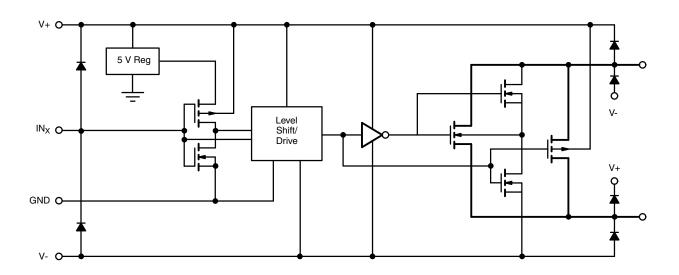
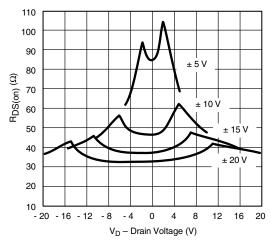
SPECIFICATIONS (for single supply)							
		Test Conditions Unless Otherwise Specified V+ = 12 V, V- = 0 V		- 4	Limits 0 °C to 85	°C	
Parameter	Symbol	$V_{IN} = 2.4 \text{ V}, 0.8 \text{ V}^{e}$	Temp.b	Min. ^d	Typ. ^c	Max. ^d	Unit
Analog Switch							
Analog Signal Range ^e	V _{ANALOG}		Full	0		12	V
Drain-Source On-Resistance	R _{DS(on)}	I _S = 1 mA, V _D = 3 V, 8 V	Room Full		90	160 200	Ω
Dynamic Characteristics			•				
Turn-On Time	t _{ON}	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}, V_S = 8 \text{ V}$	Room		120	300	ns
Turn-Off Time	t _{OFF}	See Figure 2	Room		60	200	115
Charge Injection	Q	$C_L = 1 \text{ nF, } V_{gen} = 6 \text{ V, } R_{gen} = 0 \Omega$	Room		4		рC
Power Supplies							
Positive Supply Current	l+	V _{IN} = 0 V or 5 V	Room Full			1 5	μΑ
Negative Supply Current	l-	V _{IN} = 0 V OI 0 V	Room Full	- 1 - 5			μΑ

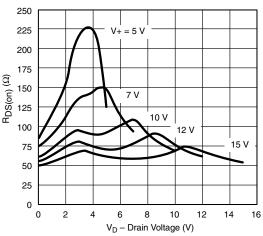
Notes:

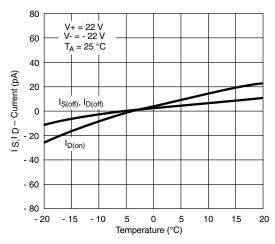
- a. Refer to PROCESS OPTION FLOWCHART.
- b. Room = 25 $^{\circ}$ C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.

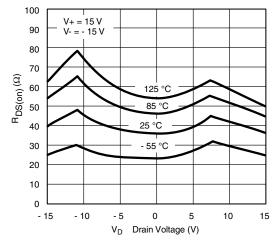
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

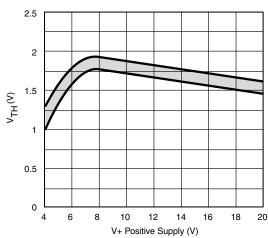
SCHEMATIC DIAGRAM (typical channel)

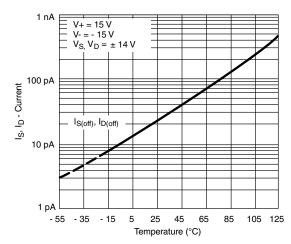




Figure 1.

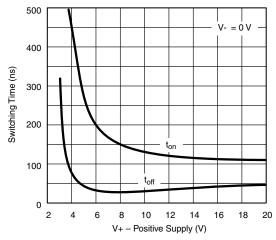

TYPICAL CHARACTERISTICS $(T_A = 25 \, ^{\circ}\text{C}, \text{ unless otherwise noted})$

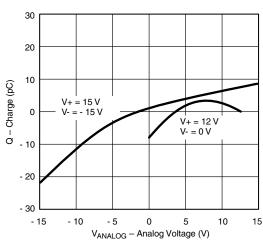

 $R_{DS(on)}$ vs. V_D and Power Supply Voltages


R_{DS(on)} vs. V_D and Single Power Supply Voltages

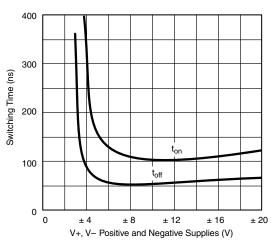

Leakage Currents vs. Analog Voltage

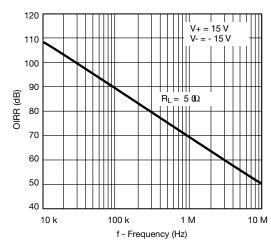
 $R_{DS(on)}$ vs. V_D and Temperature

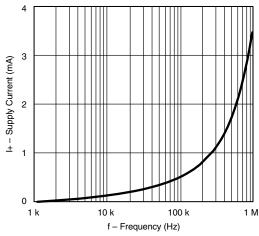

Input Switching Threshold vs. Supply Voltage


Leakage Currents vs. Temperature

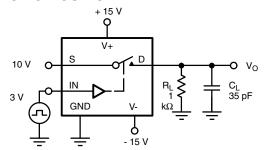
VISHAY

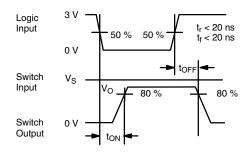

TYPICAL CHARACTERISTICS ($T_A = 25$ °C, unless otherwise noted)


Switching Time vs. Single Supply Voltage

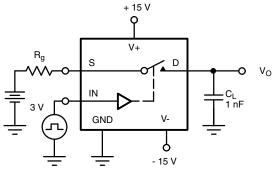

Q_S, Q_D - Charge Injection vs. Analog Voltage

Switching Times vs. Power Supply Voltage


Off Isolation vs. Frequency


Supply Current vs. Switching Frequency

TEST CIRCUITS



C_L (includes fixture and stray capacitance)

Note: Logic input waveform is inverted for DG442.

Figure 2. Switching Time

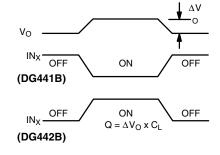
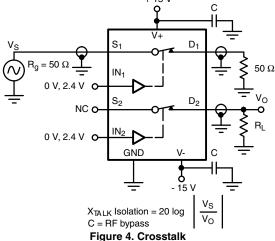



Figure 3. Charge Injection

C = 1 mF tantalum in parallel with 0.01 mF ceramic

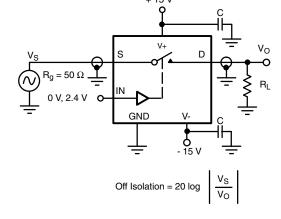


Figure 5. Off Isolation

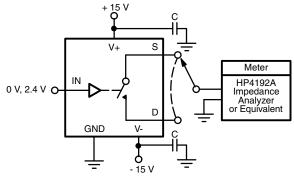
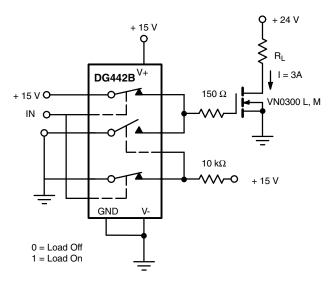



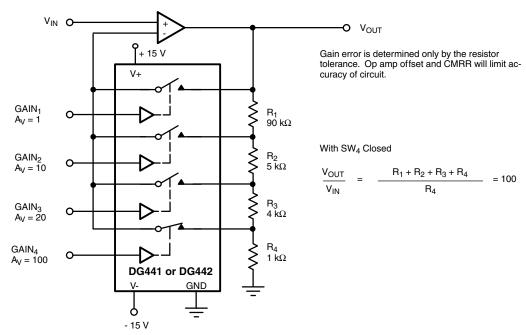
Figure 6. Source/Drain Capacitances

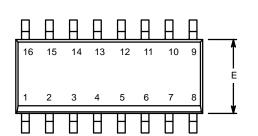
APPLICATIONS

+ 15 V V_{IN} 1/4 DG442B D V_{OUT} IN O - 15 V H = Sample L = Hold

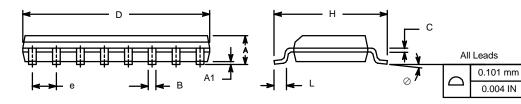
Figure 7. Power MOSFET Driver

Figure 8. Open Loop Sample-and-Hold



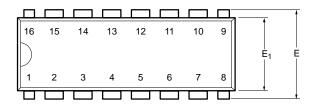

Figure 9. Precision-Weighted Resistor Programmable-Gain Amplifier

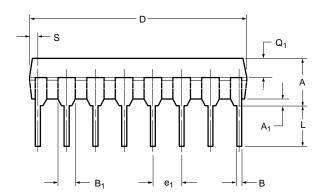
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?72625.

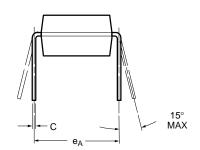

SOIC (NARROW): 16-LEAD
JEDEC Part Number: MS-012

	MILLIM	IETERS	INC	HES			
Dim	Min	Max	Min	Max			
Α	1.35	1.75	0.053	0.069			
A ₁	0.10	0.20	0.004	0.008			
В	0.38	0.51	0.015	0.020			
С	0.18	0.23	0.007	0.009			
D	9.80	10.00	0.385	0.393			
E	3.80	4.00	0.149	0.157			
е	1.27	BSC	0.050	BSC			
Н	5.80	6.20	0.228	0.244			
L	0.50	0.93	0.020	0.037			
0	0°	8°	0°	8°			
FCN: S-0	FCN: S-03946—Rev. F. 09-Jul-01						

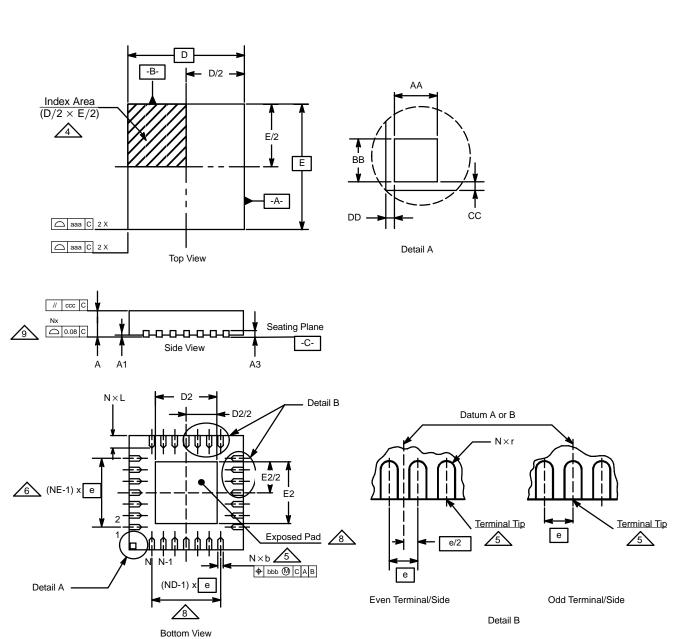
ECN: S-03946—Rev. F, 09-Jul-01


DWG: 5300




Document Number: 71194 www.vishay.com 02-Jul-01 sww.vishay.com

PDIP: 16-LEAD


	MILLIN	IETERS	INC	HES		
Dim	Min	Max	Min	Max		
Α	3.81	5.08	0.150	0.200		
A ₁	0.38	1.27	0.015	0.050		
В	0.38	0.51	0.015	0.020		
B ₁	0.89	1.65	0.035	0.065		
С	0.20	0.30	0.008	0.012		
D	18.93	21.33	0.745	0.840		
E	7.62	8.26	0.300	0.325		
E ₁	5.59	7.11	0.220	0.280		
e ₁	2.29	2.79	0.090	0.110		
e _A	7.37	7.87	0.290	0.310		
L	2.79	3.81	0.110	0.150		
Q ₁	1.27	2.03	0.050	0.080		
S	0.38	1.52	.015	0.060		
	ECN: S-03946—Rev. D, 09-Jul-01 DWG: 5482					

Document Number: 71261 www.vishay.com 06-Jul-01 www.vishay.com

QFN-16 (4×4 mm)

JEDEC Part Number: MO-220

Document Number: 71921 www.vishay.com 19-Aug-02

Package Information

Vishay Siliconix

QFN-16 (4×4 mm)

JEDEC Part Number: MO-220

	MII	LLIMETEF	RS*	INCHES			
Dim	Min	Nom	Max	Min	Nom	Max	Notes
Α	0.80	0.90	1.00	0.0315	0.0354	0.0394	
A1	0	0.02	0.05	0	0.0008	0.0020	
A3	-	0.20 Ref	-	-	0.0079	-	
AA	-	0.345	-	-	0.0136	-	
aaa	-	0.25	-	-	0.0098	-	
BB	-	0.345	=	-	0.0136	-	
b	0.23	0.30	0.38	0.0091	0.0118	0.0150	5
bbb	-	0.10	-	-	0.0039	-	
CC	-	0.18	-	-	0.0071	-	
CCC	-	0.10	-	-	0.0039	-	
D		4.00 BSC			0.1575 BSC		
D2	2.00	2.15	2.25	0.0787	0.0846	0.0886	
DD	-	0.18	-	-	0.0071	-	
Е		4.00 BSC			0.1575 BSC		
E2	2.00	2.15	2.25	0.0787	0.0846	0.0886	
е		0.65 BSC			0.0256 BSC		
L	0.45	0.55	0.65	0.0177	0.0217	0.0256	
N		16			16		3, 7
ND	-	4	=	-	4	-	6
NE	-	4	=	-	4	-	6
r	b(min)/2	-	-	b(min)/2	-	-	

^{*} Use millimeters as the primary measurement.

ECN: S-21437—Rev. A, 19-Aug-02 DWG: 5890

NOTES:

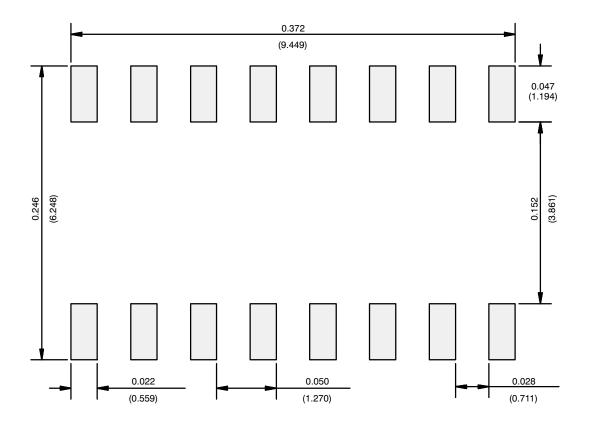
- Dimensioning and tolerancing conform to ASME Y14.5M-1994.
- All dimensions are in millimeters. All angels are in degrees.
- 3. N is the total number of terminals.

The terminal #1 identifier and terminal numbering convention shall conform to JESD 95-1 SPP-012. Details of terminal #1 identifier are optional, but must be located within the zone indicated. The terminal #1 identifier may be either a molded or marked feature. The X and Y dimension will vary according to lead counts.

5. Dimension b applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip.

6 ND and NE refer to the number of terminals on the D and E side respectively.

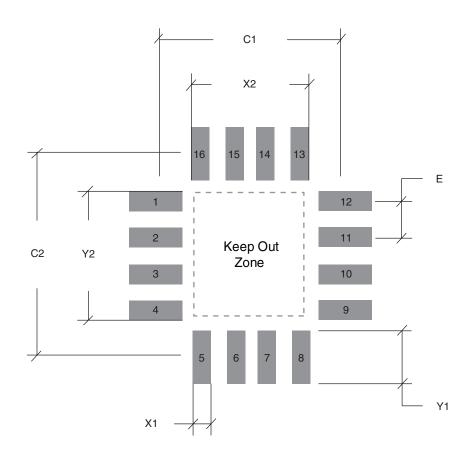
Depopulation is possible in a symmetrical fashion.


28 Variation HHD is shown for illustration only.

9. Coplanarity applies to the exposed heat sink slug as well as the terminals.

www.vishay.com Document Number: 71921 19-Aug-02

RECOMMENDED MINIMUM PADS FOR SO-16


Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Ш

RECOMMENDED MINIMUM PADS FOR QFN-16 (4 x 4 MM BODY)

	Inches	Millimeters
C1	0.142	3.60
C2	0.142	3.60
E	0.026	0.65
X1	0.014	0.35
X2	0.089	2.25
Y1	0.037	0.95
Y2	0.089	2.25

Note:

QFN-16 (4 x 4) has an exposed center pad that must not come into contact with any metalized structure on the PCB. This area is considered a Keep Out Zone.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com Revision: 11-Mar-11