Low Voltage 1:5 Differential LVDS Clock Fanout Buffer

MC100ES8014

The MC100ES8014 is a HSTL differential clock fanout buffer. Designed for the most demanding clock distribution systems, the MC100ES8014 supports various applications that require the distribution of precisely aligned differential clock signals. Using SiGe technology and a fully differential architecture, the device offers very low skew outputs and superior digital signal characteristics. Target applications for this clock driver are in high performance clock distribution in computing, networking and telecommunication systems.

The MC100ES8014 is designed for low skew clock distribution systems and supports clock frequencies up to 400MHz. The device accepts two clock sources. The CLK0 input accepts HSTL compatible signals and CLK1 accepts PECL compatible signals. The selected input signal is distributed to 5 identical, differential HSTL compatible outputs.

Features

- 1:5 differential clock fanout buffer
- 50 ps maximum device skew
- SiGe Technology
- Supports DC to 400 MHz operation
- 1.5V HSTL compatible differential clock outputs
- PECL and HSTL compatible differential clock inputs
- 3.3V power supply for device core, 1.5V or 1.8V HSTL output supply
- Supports industrial temperature range
- Standard 20 lead TSSOP package

1:5 DIFFERENTIAL HSTL

CLOCK FANOUT DRIVER

20 LEAD TSSOP PACKAGE CASE 948E

ORDERING INFORMATION

Device	Package
MC100ES8014DT	TSSOP-20
MC100ES8014DTR2	TSSOP-20

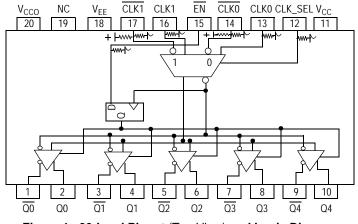


Figure 1. 20-Lead Pinout (Top View) and Logic Diagram

Table 1. Pin Description

Pin	Function
CLK0, CLK0	HSTL Data Inputs
CLK1, CLK1	PECL Data Inputs
Q[0:4], <u>Q[0:4]</u>	HSTL Data Outputs
CLK_SEL	LVCMOS Active Clock Select Input
EN	LVCMOS Sync Enable
V _{CC}	Positive Supply of device core (3.3V)
V _{CCO} Positive power supply of the HSTL outputs. All VCCO pins must be connected to the power supply (1.5V or 1.8V) for correct DC and AC operation.	
V _{EE}	Negative Supply
nc	no connect

Table 2. Function Table

Control	Default	0	1
CLK_SEL	0 CLK0, CLK0 (HSTL) is the active differential clock CLK1, CLK1 (PECL) is the active differential clock input		CLK1, CLK1 (PECL) is the active differential clock input
EN	0	Q[0:4], $\overline{Q[0:4]}$ are active. Deassertion of \overline{EN} can be asynchronous to the reference clock without generation of output runt pulses.	$\underline{Q}[0:4] = L, \overline{Q}[0:4] = H$ (outputs disabled). Assertion of \overline{EN} can be asynchronous to the reference clock without generation of output runt pulses.

Table 3. General Specifications

Characteristics	Value	
Internal Input Pulldown Resistor		TBD
Internal Input Pullup Resistor	TBD	
ESD Protection	Human Body Model Machine Model	TBD
D _{JA} Thermal Resistance (Junction to Ambient) 0 LFPM, 8 SOIC 500 LFPM, 8 SOIC		TBD

Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test

Table 4. Absolute Maximum Ratings¹

Symbol	Parameter	Conditions	Rating	Unit
V _{SUPPLY}	Power Supply Voltage	Difference between $V_{CC} \& V_{EE}$	3.9	V
V _{IN}	Input Voltage	$V_{CC} - V_{EE} \le 3.6V$	V _{CC} + 0.3 V _{EE} - 0.3	V V
I _{OUT}	Output Current	Continuous Surge	50 100	mA mA
T _A	Operating Temperature Range		-40 to +85	°C
T _{STG}	Storage Temperature Range		-65 to +150	°C

Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions
or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not
implied.

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
HSTL differe	ntial input signals (CLK0, CLK0)					·
V _{DIF}	Differential input voltage ²	0.2			V	
V _{X, IN}	Differential cross point voltage ³	0.25	0.68 - 0.9	V _{CC} – 1.3	V	
V _{IH}	Input high voltage	V _X + 0.1			V	
V _{IL}	Input low voltage			$V_{X} - 0.1$	V	
I _{IN}	Input current			±150	mA	$V_{IN} = V_X \pm 0.1V$
PECL differe	ntial input signals (CLK1, CLK1)					·
V _{PP}	Differential input voltage ⁴	0.15		1.0	V	Differential Operation
V _{CMR}	Differential cross point voltage ⁵	1.0		V _{CC} – 0.6	V	Differential Operation
V _{IH}	Input high voltage	V _{CC} – 1.165		V _{CC} -0.880	V	
V _{IL}	Input low voltage	V _{CC} - 1.810		V _{CC} – 1.475	V	
I _{IN}	Input current			±150	mA	$V_{IN} = V_{IH} \text{ or } V_{IN}$
LVCMOS co	ntrol inputs EN, CLK_SEL					
V _{IL}	Input low voltage			0.8	V	
V _{IH}	Input high voltage	2.0			V	
I _{IN}	Input current			±150	mA	$V_{IN} = V_{IH} \text{ or } V_{IN}$
HSTL clock	outputs (Q[0:4], Q[0:4])					
V _{X, OUT}	Output differential crosspoint	0.68	0.75	0.9	V	
V _{OH}	Output high voltage	1			V	
V _{OL}	Ouput low voltage			0.4	V	
Supply Curre	ent					·
I _{CC}	Maximum Quiescent Supply Current without output termination current		TBD	TBD	mA	V _{CC} pin (core)
I _{CCO}	Maximum Quiescent Supply Current, outputs terminated 50 Ω to V_{TT}		TBD	TBD	mA	V _{CCO} pin (outputs)

Table 5. DC Characteristics $(V_{CC} = 3.3V \pm 5\%; T_J = 0^{\circ}C \text{ to } 110^{\circ}C)^1$

1. DC characteristics are design targets and pending characterization.

2. V_{DIF} (DC) is the minimum differential HSTL input voltage swing required for device functionality.

3. V_X (DC) is the crosspoint of the differential HSTL input signal. Functional operation is obtained when the crosspoint is within the V_X (DC) range and the input swing lies within the V_{PP} (DC) specification.

4. V_{PP} (DC) is the minimum differential input voltage swing required to maintain device functionality.

5. V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} (DC) range and the input swing lies within the V_{PP} (DC) specification.

Symbol	Characteristic	Min	Тур	Мах	Unit	Condition
HSTL/LVDS						
V _{DIF}	Differential input voltage (peak-to-peak) ³	0.4			V	
V _{X, IN}	Differential cross point voltage ⁴	0.68		0.9	V	
f _{CLK}	Input Frequency		0 - 400	TBD	MHz	Differential
t _{PD}	Propagation Delay			TBD	ps	Differential
PECL differ	ential input signals (CLK1, CLK1)					
V _{PP}	Differential input voltage (peak-to-peak) ⁵	0.2		1.0	V	
V _{CMR}	Differential cross point voltage ⁶	1		V _{CC} - 0.6	V	
f _{CLK}	Input Frequency		0 - 400		MHz	Differential
t _{PD}	Propagation Delay			TBD	ps	Differential
HSTL clock	outputs (Q[0:4], Q[0:4])					
$V_{X, OUT}$	Output differential crosspoint	0.68	0.75	0.9	V	
V _{OH}	Output high voltage	1			V	
V _{OL}	Ouput low voltage			0.5	V	
V _{O(P-P)}	Differential output voltage (peak-to-peak)	0.5			V	
t _{SK(O)}	Output-to-output skew			50	ps	Differential
t _{SK(PP)}	Output-to-output skew (part-to-part)			TBD	ps	Differential
t _{JIT(CC)}	Output cycle-to-cycle jitter			TBD		
DCO	Output duty cycle	TBD	50	TBD	%	DC _{fref} = 50%
t _r / t _f	Output Rise/Fall Times	0.05		TBD	ns	20% to 80%
t _{PDL}	Output disable time ⁷	2.5*T +t _{PD}		3.5*T +t _{PD}	ns	T = CLK period
t _{PLD}	Output enable time ⁸	3*T +t _{PD}		4*T +t _{PD}	ns	T = CLK period

Table 6. AC Characteristics $(V_{CC} = 3.3V \pm 5\%; T_J = 0^{\circ}C \text{ to } 110^{\circ}C)^{1.2}$

1. AC characteristics are design targets and pending characterization.

2. AC characteristics apply for parallel output termination of 50Ω to V_{TT.}

3. V_{DIF} (AC) is the minimum differential HSTL input voltage swing required to maintain AC characteristics including tpd and device-to-device skew.

4. V_X (AC) is the crosspoint of the differential HSTL input signal. Functional operation is obtained when the crosspoint is within the V_X (AC) range and the input swing lies within the V_{DIF} (AC) specification. Violation of V_X (AC) or V_{DIF}(AC) impacts the device propagation delay, device and part-to-part skew.

5. V_{PP} (AC) is the minimum differential PECL input voltage swing required to maintain AC characteristics including tpd and device-to-device skew.

V_{CMR} (AC) is the crosspoint of the differential PECL input signal. Normal AC operation is obtained when the crosspoint is within the V_{CMR} (AC) range and the input swing lies within the V_{PP} (AC) specification. Violation of V_{CMR} (AC) or V_{PP}(AC) impacts the device propagation delay, device and part-to-part skew.

7. Propagation delay EN deassertion to differential output disabled (differential low: true output low, complementary output high).

8. Propagation delay \overline{EN} assertion to output enabled (active).

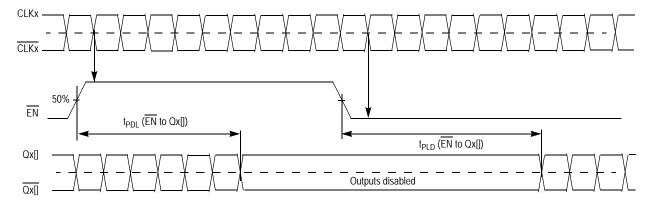
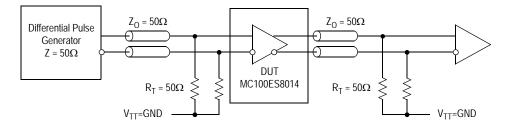



Figure 2. MC100ES8014 AC Test Reference

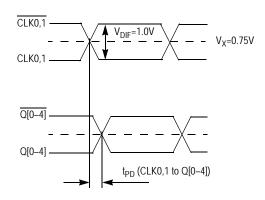


Figure 4. MC100ES8014 AC Reference Measurement Waveform (HSTL Input)

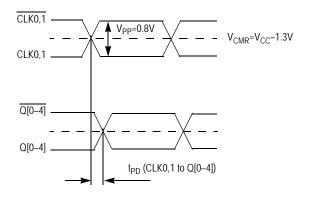
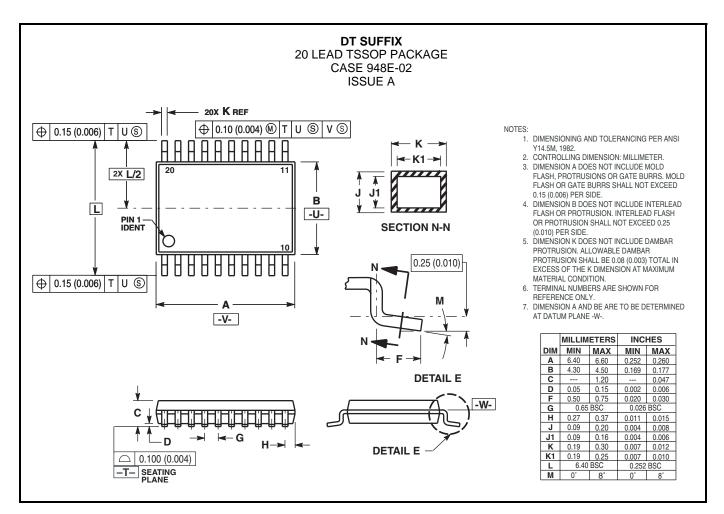



Figure 5. MC100ES8014 AC Reference Measurement Waveform (PECL Input)

PACKAGE DIMENSIONS

IDT[™] Low Voltage 1:5 Differential LVDS Clock Fanout Buffer

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

netcom@idt.com 480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339

© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA