

LXT312A/LXT315A

Low Power T1 PCM Repeaters/Transceivers

Datasheet

This data sheet also applies to the LXT312/LXT315 products.

The LXT312A and LXT315A are integrated repeater/transceiver circuits for T1 carrier systems. The LXT312A is a dual repeater/transceiver and the LXT315A is a single repeater/transceiver. The LXT312A and LXT315A are designed to operate as regenerative repeaters/transceivers for 1.544 Mbps data rate PCM lines. Each includes all circuits required for a regenerative repeater/ transceiver system including the equalization network, automatic line build-out (ALBO), and a state-of-the-art analog/digital clock extraction network tuned by an external crystal.

The key feature of the LXT312A family is that it requires only a crystal and a minimum of other components to complete a repeater/transceiver design. Compared with traditional tuned coiltype repeaters/transceivers, they offer significant savings in component and labor costs, along with reduced voltage drop/power consumption, and improved reliability. To ensure performance for all loop lengths, the LXT312A and LXT315A are 100% AC/DC tested using inputs generated by Intel's proprietary transmission line and network simulator.

The LXT312A and LXT315A are advanced CMOS devices which require only a single 5-volt power supply.

Product Features

- Integrated repeater/transceiver circuit on a Recovered Clock Output single CMOS chip
- On-chip equalization network
- On-chip ALBO
- Low power consumption
- No tuning coil
- On-chip Loopback

- 0 to 36 dB dynamic range
- -11 dB interference margin
- Compatible with CB113/TA24 specifications
- Single 5 V CMOS technology
- Available in 16-pin PDIP and 44-pin PLCC

Order Number: 249071-001

January 2001

Information in this document is provided in connection with Intel[®] products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The LXT312A/LXT315A may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 2001

*Third-party brands and names are the property of their respective owners.

1.0	Pin A	Assignments and Signal Descriptions	6
2.0	Fun	ctional Description	8
	2.1	Introduction	
	2.2	Receive Function	
		2.2.1 Timing Recovery Function	
	2.3	Transmit Function	
	2.4	Loopback Function	
		(LXT312A Only)9	
3.0	App	lication Information	10
	3.1	Introduction	10
		3.1.1 Alternate Timing Reference	10
4.0	Test	Specifications	12
	4.1	Test Setups	
	7.1	4.1.1 Introduction	
		4.1.2 Receiver Jitter Tolerance Testing	
		4.1.3 Receiver Jitter Transfer Testing	
		4.1.4 Interference Margin Testing	
		4.1.5 Gaussian Noise Immunity Testing	
		4.1.6 60 Hz Pulse Modulation Immunity Testing	
		4.1.7 Receiver Timing Recovery Testing	
5.0	Mec	hanical Specifications	17
F :			
Figures			
	1	LXT312A/LXT315A Block Diagram	
	2	LXT312A/LXT315A Pin Assignments and Package Markings	
	3	Typical T1 Dual Repeater/Transceiver Application	
	4	Alternate Timing Reference Circuitry	
	5	Digital Timing Characteristics	
	6	Receiver Jitter Tolerance Template	
	7	Receiver Jitter Transfer Template	
	8	Receiver Jitter Tolerance Test Setup	
	9	Receiver Jitter Transfer Test Setup	
	10	Receiver Noise Interference Margin Test Setup	
	11 12	Receiver Gaussian Noise Immunity Test Setup	
	12	Receiver 60 Hz Pulse Amplitude Modulation Immunity Test Setup	
	14	Receiver Timing Recovery Phase Shift Modulation Test Setup	
	15	LXT312NE / LXT315NE Package Specifications	
	ıJ	LATUTAL L / LATUTUR L RAUNAYE OPEUNUANUN	I C

LXT312A/LXT315A — Low Power T1 PCM Repeaters/Transceivers

Tables

LXT 312A / LXT315A Signal Descriptions	7
· · · · · · · · · · · · · · · · · · ·	
Recommended Operating Conditions	
Electrical Characteristics (Over Recommended Range)	12
Digital Timing Characteristics (Over Recommended Range)	13
	Electrical Characteristics (Over Recommended Range)

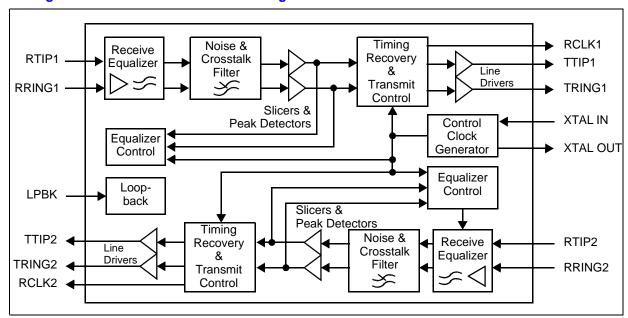


Figure 1. LXT312A/LXT315A Block Diagram

1.0 Pin Assignments and Signal Descriptions

J WC J WC J WC J VCC J RRING1 J RTIP1 I GNDR RRING2 LXT312NE 09482 4 4 4 4 4 N/C **□** 7 39 🗖 N/C 16 GNDR RTIP1 □1 N/C □ 8 38 🗖 N/C RRING1 **□**2 15 🗖 RTIP2 37 🗖 N/C N/C □ 9 VCC ☐3 14 🗁 RRING2 36 \(\text{N/C} \)
35 \(\text{N/C} \)
34 \(\text{N/C} \)
33 \(\text{N/C} \)
32 \(\text{N/C} \) N/C ☐ 10 RCLK1 ☐4 LXT312NE X)
XXXXXXX
XXXXXXXX 13 🗖 LPBK N/C ☐ 11 Part #→LXT312PE XX 12 🗖 XTO N/C ☐ 12 LOT # → XXXXXX TTIP1 ☐6 11 🗀 XTI N/C ☐ 13 **FPO #** → **XXXXXXXX** TRING1 ☐7 10 🗖 TTIP2 N/C □ 14 GNDT □ 8 9 ☐ TRING2 31 | N/C 30 | N/C N/C □ 15 N/C □ 16 29 1 N/C N/C □ 17 18 19 20 20 22 23 23 24 25 25 26 27 28 RCLK2 | TTIP1 | TTIP1 | TRING1 | GNDT | TRING2 | TTIP2 | XTI N/C N/C RCLK1 VCC RRING1 RTIP1 GNDR N/C LXT315NE N/C **□** 7 39 | N/C RTIP1 1 N/C □ 8 38 | N/C RRING1 2 VCC 3 37 E N/C N/C **□** 9 N/C □ 10 36 □ N/C 13 LPBK 35 | N/C *N/C* □ 11 *N/C* **□** 5 12 **X**TO Part #→LXT315PE XX 34 □ N/C *N/C* □ 12 11 XTI 10 N/C 9 N/C TTIP1 ☐6 LOT # → XXXXXX 33 🗖 N/C N/C □ 13 TRING1 □7 32 | N/C 31 | N/C N/C □ 14 FPO #→XXXXXXXX GNDT □ 8 N/C □ 15 30 E N/C N/C □ 16 29 N/C N/C □ 18 19 20 22 22 23 24 25 26 27 28 GNDT-GNDT-N/C-XTO-N/C-N/C-N/C-

Figure 2. LXT312A/LXT315A Pin Assignments and Package Markings

Figure 2. LXT312A/LXT315A Pin Assignments and Package Markings

Package Topside Markings					
Marking	Definition				
Part #	Unique identifier for this product family.				
Rev#	Identifies the particular silicon "stepping" — refer to the specification update for additional stepping information.				
Lot #	Identifies the batch.				
FPO#	Identifies the Finish Process Order.				

Table 1. LXT 312A / LXT315A Signal Descriptions

Pin #		Symbol	I/O	Description	
PDIP	PLCC ²	Зуппоп	1/0	Description	
1	1	RTIP1	I	Repeater Tip and Ring Inputs. Tip and ring receive inputs for Channel 1.	
2	2	RRING1	I	Repeater Tip and King Inputs. Tip and ting receive inputs for Channel 1.	
4	4	RCLK1	0	Recovered Clock. Clock output recovered from Channel 1 receive input.	
6	20	TTIP1	0	Repeater Tip and Ring Outputs. Open-drain output drivers for Channel 1.	
7	21	TRING1	0	Repeater Tip and King Outputs. Open-drain output drivers for Charmer 1.	
11	25	XTI	I	Crystal Oscillator Pins. A 6.176 MHz crystal should be connected across these two	
12	26	XTO	0	pins. For alternative timing references, refer to Application Information.	
3	3	VCC	-	Power Supply. Power supply input for all circuits. +5 V (±0.25 V).	
8	22	GNDT	-	Transmit Ground. Ground return for transmit circuits.	
16	44	GNDR	_	Receive Ground. Ground return for receive circuits.	
9 ¹	23 ¹	TRING2	0	Side 2 Ring and Tip Outputs. On the LXT312A dual repeater/transceiver, these are	
10 ¹	24 ¹	TTIP2	0	open-drain output drivers for Channel 2.	
14 ¹	42 ¹	RRING2	I	Side 2 Ring and Tip Inputs. On the LXT312A repeater/transceiver, these are tip and	
15 ¹	43 ¹	RTIP2	I	ring receive inputs for Channel 2.	
5 ¹	19 ¹	RCLK2	0	Recovered Clock. On the LXT312A dual repeater/transceiver, this is the recovered clock output for Channel 2.	
	_	_		Loopback Control. On the LXT312A, this pin controls Loopback Selection:	
13	41 ¹	LPBK	I	High = Loopback side 1 data to side 2. Low = No Loopback.	
				On LXT315A single repeater/transceiver, this pin must be connected to GND.	

^{1.} On the LXT315NE and LXT315PE single repeater/transceiver, these pins are not connected (N/C). 2. On the LXT312PE and LXT315PE, pins 5 through 18 and 27 through 40 are not connected (N/C).

2.0 Functional Description

2.1 Introduction

PCM signals are attenuated and dispersed in time as they travel down a transmission line. Repeaters/transceivers are required to amplify, reshape, regenerate, and retime the PCM signal, then retransmit it.

The LXT312A and LXT315A each contain all the circuits required to build a complete PCM repeater/transceiver. The operational range of the repeaters/transceivers is 0 to 36 dB of cable loss at 772 kHz (equal to 6300 feet of 22 gauge pulp-insulated cable between repeaters).

2.2 Receive Function

The signal is received through a 1:1 transformer at RTIP and RRING and equalized for up to 36 dB of cable loss. The receive equalizer uses a proprietary on-chip adaptive filter technique which is equivalent to a 3-port ALBO equalizer design. The monolithic structure of the filter and the absence of external components provide excellent ISI and dispersion elimination, and accurate data transfer over temperature.

Receiver noise immunity is optimized by a proprietary crosstalk elimination filter which eliminates the unnecessary high-frequency components of the received signal.

2.2.1 Timing Recovery Function

The equalized signal is full wave rectified and used to generate information for the timing recovery circuit. This circuit uses a mixed analog/digital technique to provide a low-jitter PLL similar to a tuned tank with excellent jitter tracking ability. But unlike a tuned tank, the free running frequency of the PLL clock is accurately controlled by the external reference crystal. No adjustment is required. Refer to Table 2 for crystal specifications.

Recovered clock signals are available on the RCLK pins for applications that require bit stream synchronization.

2.3 Transmit Function

Recovered data is re-synchronized to the recovered clock signal by the timing recovery and transmit control section. The data is then retransmitted to the network via two open-drain, high-voltage transistors.

2.4 Loopback Function (LXT312A Only)

The LXT312A includes a loopback function for network diagnostics. With the LPBK pin Low, the repeater/transceiver operates in the normal mode. When the LPBK pin is pulled High, the data is looped back from side 1 to side 2.

3.0 Application Information

3.1 Introduction

Figure 3 shows a typical T1 dual repeater/transceiver application using an LXT312A repeater/transceiver with standard PCB edge connectors. It includes a jumper-selectable shorting option (dashed lines at connector pins 2 and 7) for the fault location circuitry. Table 2 lists the specifications for the crystal used with the LXT312A or LXT315A repeater.

3.1.1 Alternate Timing Reference

For applications where a crystal is not appropriate, a 1.544 MHz or 6.176 MHz, CMOS-level (High \geq 4.5V, Low \leq 0.5V) oscillator may be connected to XTI. In this situation, XTO must be tied to VCC and GND via a voltage divider as shown in Figure 4.

Table 2. Crystal Specifications

Parameter	Specification				
Frequency	6.176 MHz				
Frequency tolerance ¹	± 50 ppm				
Effective series resistance	40 Ω Maximum				
Crystal cut	AT				
Resonance	Parallel				
Maximum drive level	2.0 mW				
Mode of operation	Fundamental				
1. @ 25 °C, C Load = 10 pF; and from -40 °C to +85 °C (Ref 25 °C reading).					

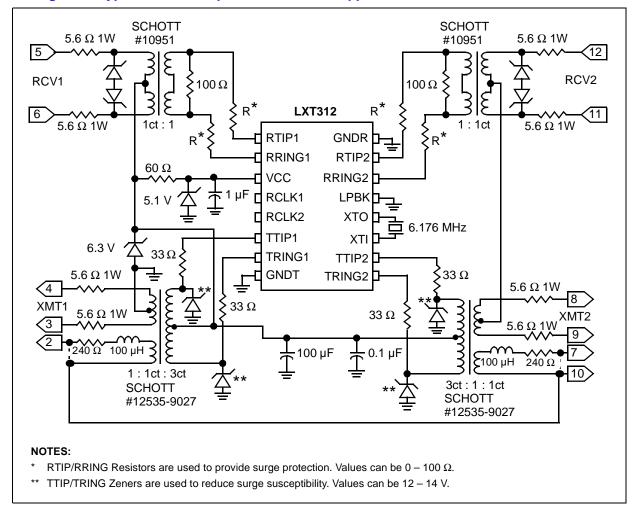
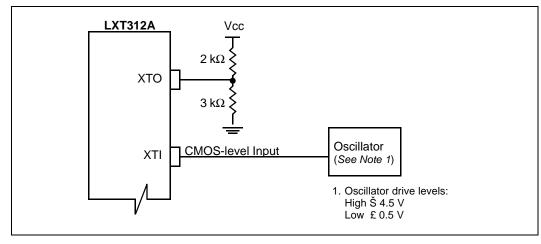



Figure 3. Typical T1 Dual Repeater/Transceiver Application

Figure 4. Alternate Timing Reference Circuitry

4.0 Test Specifications

Note: Minimum and maximum values in Table 3 through Table 6 and Figure 5 through Figure 13 represent the performance specifications of the LXT312A/315A repeaters/transceivers and are guaranteed by test except, as noted, by design.

Table 3. Absolute Maximum Ratings

Parameter	Symbol	Unit
Supply voltage (min to max)	Vcc	-0.3 V to +6 V
Driver voltage	Voн	18 V
Receiver current	Icc	100 mA
Operating temperature (min to max)	Тор	-40 °C to +85 °C
Storage temperature (min to max)	Tst	-65 °C to +150 °C

Caution: Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 4. Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	4.75	5.0	5.25	V
Operating temperature	Тор	-40	_	85	° C

 Table 5.
 Electrical Characteristics (Over Recommended Range)

Parameter	Symbol	Min	Typ^1	Max	Unit	
Interference margin	SNR	-11	_	_	dB	
Receiver dynamic range		_	-36	_	0	dB
Digital autauta Jaw	(IOL = 1.6 mA	Vol	-	-	0.4	V
Digital outputs - low	(IOL = 10 μA)	Vol	_	0.2	_	V
Digital autouta high	(IOH = 0.4 mA	Voн	2.4	-	_	V
Digital outputs - high	(IOH < 10 μA)	Voн	_	4.5	_	V
Digital inputs - high		VIH	2.0	-	_	V
Digital inputs - low		VIL	-	-	0.8	V
Supply current (from VCC supply) ²	All zeros	Icc	-	15	22	mA
Supply current (nom vec supply)	All ones	Icc	-	-	23	mA
Driver leakage current (VDVR = 18 V)	ILL	-	-	150	μΑ	
Driver pulse amplitude (Driver output IO = 2	АР	0.65	-	0.95	V	

^{1.} Typical values are at 25° C and are for design aid only; they are not guaranteed and not subject to production testing.

^{2.} Measured with CLOAD \leq 10 pF, RLOAD > 100 k Ω .

Figure 5. Digital Timing Characteristics

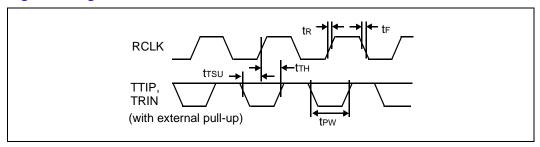


 Table 6.
 Digital Timing Characteristics (Over Recommended Range)

Parameter	Symbol	Min	Typ ¹	Max	Unit
Driver pulse width	t PW	299	324	349	ns
Driver pulse imbalance	-	_	_	15	ns
Rise and fall time (any digital output ²)	t _R /t _F	_	_	18	ns
Setup time - TTIP/TRING to RCLK	t ⊤su	90	_	_	ns
Hold time - TTIP/TRING from RCLK	t _{TH}	90	_	_	ns

^{1.} Typical values are at 25° C and are for design aid only; they are not guaranteed and not subject to production testing.

4.1 Test Setups

4.1.1 Introduction

Both the LXT312A and LXT315A are fully tested (100% AC and DC parameters) using inputs generated by Intel's proprietary transmission line and network simulator. Device testing includes receiver jitter tolerance, jitter transfer and interference margin, and receiver immunity to Gaussian and 60 Hz noise. Specifications and bench test setups are shown in Figure 6 through Figure 13.

4.1.2 Receiver Jitter Tolerance Testing

Receiver jitter tolerance meets the template shown in Figure 6, when operated at line losses from 0 to 36 dB. Figure 8 shows the setup used for jitter tolerance testing.

4.1.3 Receiver Jitter Transfer Testing

Receiver jitter transfer meets the template shown in Figure 7, when operated with line losses from 0 to 36 dB and input jitter amplitude of 0.15 UI peak-to-peak. Jitter gain at a given frequency is defined as the difference between intrinsic jitter and additive jitter at the measurement frequency, divided by the amplitude of the input jitter. Figure 9 shows the setup used for jitter transfer testing.

^{2.} Measured with CLOAD \leq 10 pF, RLOAD > 100 k Ω .

Figure 6. Receiver Jitter Tolerance Template

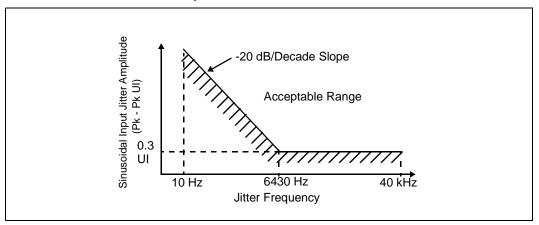


Figure 7. Receiver Jitter Transfer Template

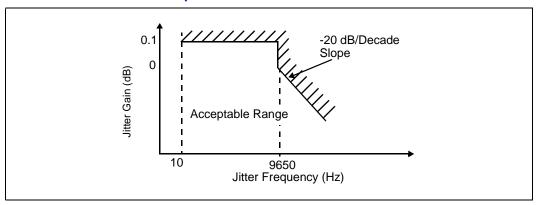


Figure 8. Receiver Jitter Tolerance Test Setup

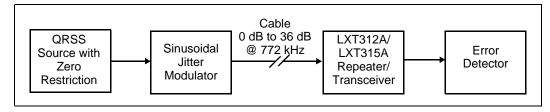
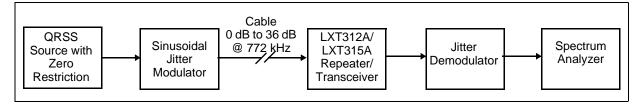



Figure 9. Receiver Jitter Transfer Test Setup

4.1.4 Interference Margin Testing

The LXT312A and LXT315A receiver noise interference margin is specified at a minimum of -11 dB for line losses from 0 dB to 36 dB. The test setup used to measure noise margin is shown in Figure 10.

4.1.5 Gaussian Noise Immunity Testing

Receiver immunity to Gaussian noise is specified at a maximum BER of 10^{-7} for a quasi-random T1 signal at 1.544 MHz (\pm 130 ppm). The receiver must be immune to noise power expressed as Np = -(L + 4.7) dBm, where L corresponds to the line loss and is valid for 0 to 36 dB.

Figure 11 shows the setup used to test Gaussian noise immunity. The noise source is Gaussian to at least 6 sigma and filtered to simulate expected noise in a binder group (per AT&T TA #24/CB113).

4.1.6 60 Hz Pulse Modulation Immunity Testing

Receiver immunity to 60 Hz pulse amplitude modulation is specified using the Gaussian noise source described in the previous paragraph on Gaussian noise immunity. Pulse amplitude modulation is specified between 10% and 30% of the nominal amplitude (see AT&T TA #24/ CB113 for details on the modulation envelope). Figure 12 shows the setup used for testing receiver immunity to 60 Hz pulse amplitude modulation. The following data reflect noise power for 10⁻⁷ BER at each modulation level, where L corresponds to the line loss and is valid for 0 to 36 dB:

Modulation Level	<u>Noise Power</u>
10%	Np = -(L + 5.7) dBm
20%	Np = -(L + 6.7) dBm
30%	Np = -(L + 8.7) dBm

4.1.7 Receiver Timing Recovery Testing

Receiver timing recovery phase shift modulation for repetitive 8-bit patterns is specified at less than 0.07 UI. This is tested using any two out of 35 possible 8-bit patterns and measuring the change in output pulse timing from one pattern to the other (see AT&T TA #24/CB113 for details on the patterns). The switching rate from one pattern to the other is specified at between 300 Hz and 500 Hz. The setup used to test receiver timing recovery phase shift modulation is shown in Figure 13.

Figure 10. Receiver Noise Interference Margin Test Setup

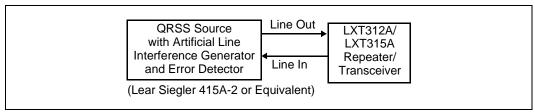


Figure 11. Receiver Gaussian Noise Immunity Test Setup

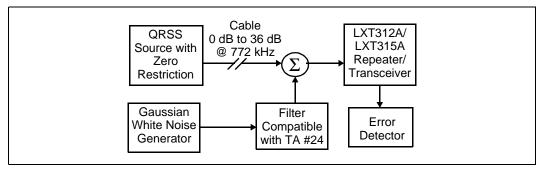
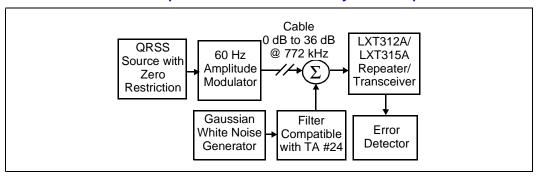
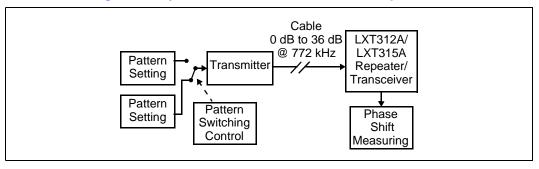
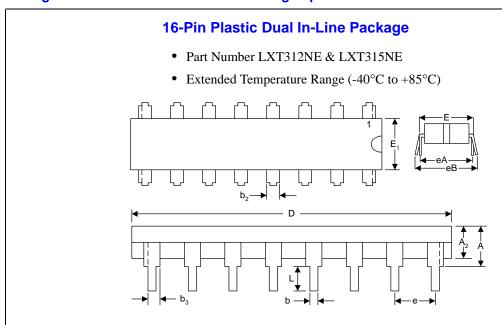


Figure 12. Receiver 60 Hz Pulse Amplitude Modulation Immunity Test Setup


Figure 13. Receiver Timing Recovery Phase Shift Modulation Test Setup

5.0 Mechanical Specifications

Figure 14. LXT312NE / LXT315NE Package Specifications

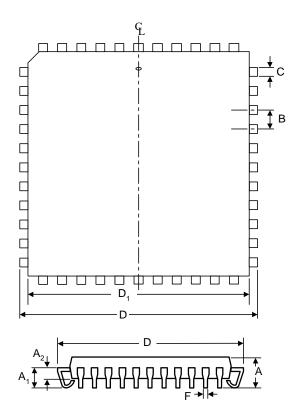

D.	Incl	Inches		neters	
Dim	Min	Max	Min	Max	
А	-	0.210	-	5.334	
A2	0.115	0.195	2.921	4.953	
b	0.014	0.022	0.356	0.559	
b2	0.045	0.070	1.143	1.778	
b3	0.030	0.045	0.762	1.143	
D	0.735	0.775	18.669	19.685	
E	0.300	0.325	7.620	8.255	
E1	0.240	0.280	6.096	7.112	
е	0.100 BSC	(Nominal)	2.540 BSC	(Nominal)	
eA	0.300 BSC	(Nominal)	7.620 BSC (Nominal)		
eB	_	0.430	-	10.922	
L	0.115	0.150	2.921	3.810	
1. BSC: Basic	Spacing between Ce	nters			

Figure 15. LXT312PE / LXT315PE Package Specifications

44-Pin Plastic Leaded Chip Carrier

- Part Number LXT312PE & LXT315PE
- Extended Temperature Range (-40°C to +85°C)

Dim	Inches		Millimeters		
Dim	Min	Max	Min	Max	
Α	0.165	0.180	4.191	4.572	
A1	0.090	0.120	2.286	3.048	
A2	0.062	0.083	1.575	2.108	
В	0.050	_	1.270	_	
С	0.026	0.032	0.660	0.813	
D	0.685	0.695	17.399	17.653	
D1	0.650	0.656	16.510	16.662	
F	0.013	0.021	0.330	0.533	