TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

TA2099N,TA2099F

AM/FM IF + FM Stereo Detector (for Digital Tuning System)

TA2099N and TA2099F are the AM/FM IF + FM Stereo Detector IC, which is designed for DTS Radios.

This is included many functions and this can be used for Digital Tuning System with IF Counter.

Features

- Suitable for combination with Digital Tuning System which has IF Counter.
 - AM/FM IF Count Output for IF Counter
 - Built-in mute Circuit for IF Count Output
 - Built-in mute Circuit for Audio Output
 - FM IF Count Output Sensitivity is adjustable by external resistance
- Built-in FM Narrow Detector Circuit Band Width is adjustable by external resistance
- FM LED ON sensitivity is adjustable by external resistance
- Built-in Resonance Circuit for FM Stereo Detector VCO
- Built-in FM Blender Control Circuit
- Built-in Anti-birdie Circuit
- Built-in AM Local OSC Buffer Output Circuit
- Operating Supply Voltage Range: $V_{CC} = 4.0 \sim 9 V$ (Ta = 25°C)

Weight: SDIP24-P-300-1.78: 1.2 g (typ.) SSOP24-P-300-1.00: 0.31 g (typ.)

Block Diagram

*: The Toshiba evaluation board uses the bar antenna shown below.

ĺ	Use	f	L	Qo		ber of dings	Winding Thickness	Note	
				Ū	1-2	3-4	(mm)		
	MW ANT	796 kHz	220 µH	150~220	59	17	3/0.07 µATC	Mitsumi L-3107	

Terminal Explanation (Terminal voltage shows the typical value at Ta = 25° C, V_{CC} = 5V, SW₃: OFF, SW₉: GND and non-signal test circuit)

Pin No.	Characteristics	Internal Circuit	DC Volt	tage (V)
T III NO.	Characteristics		FM	AM
1	AM RF IN	AM MIX OUT AGC AGC AGC AGC AGC AGC	2.0	2.0
2	FM BW • FM band width adjust terminal	VCC FM DET CIRCUIT	2.0	2.0
3	FM VL SENS • FM LED ON sensitivity adjust terminal	VCC	0.1	0.1
4	AM OSC	Vstb	2.0	2.0

<u>TOSHIBA</u>

Pin No.	Characteristics	Internal Circuit	DC Vol	tage (V)
			FM	AM
5	AM OSC OUT/FM S.SENS • AM OSC Buff Output Terminal • FFM IF Count Output Sensitivity Adjust Terminal	Vcc Vstb Vstb C C R C R C C NTROL C C NTROL C C C C C C C C C C C C C C C C C C C	1.3	1.3
6	V _{CC}	—	5.0	5.0
7	AGC (FM S-METER)	AM DET OUT AM DET OUT C'YOU C'YOU C'YOU FM FM S-METER CIRCUIT	0.2	1.3
8	GND	_	0	0
9	IF OUT/REQ • IF Count Output Terminal • IF Count Output/FM ST DET Mute Circuit Control Terminal SW ₃ : GND \rightarrow ON SW ₃ : Open \rightarrow OFF	Vcc Vstb Coord Coo	_	_
10	TUN LED		_	_

Pin No.	Characteristics	Internal Circuit	DC Vol	tage (V)
1 11 10.			FM	AM
11	ST LED		_	_
12	ROUT		1.2	1.2
13	LOUT		1.2	1.2
14	BLENDER • FM Blender Control Adjust Terminal		0.3	0.3
15	LPF2 • LPF Terminal for Synchronous Detector • VCO Stop Terminal $V_{15} = GND$ \rightarrow VCO Stop (Monaural) $V_{15} = Open$ \rightarrow VCO Run (Stereo)		3.5	1.4
16	LPF1 • LPF Terminal for Phase Detector • Bias Terminal for AM/FM Switch Circuit $V_{16} = GND \rightarrow AM$ $V_{16} = Open \rightarrow FM$	AM SW	3.5	0
17	FM ST DET IN		1.2	1.2

Pin No.	Characteristics	Internal Circuit	DC Vol	tage (V)
			FM	AM
18	AM DET OUT	4.9kΩ C AGC AGC AGC T T T T T T T T T T T T T	0	1.3
19	FM DET OUT	V _{CC} 4.9 kΩ MARROW MARROW MDETECTOR	1.4	2.0
20	QUAD		1.8	2.3
21	AM IF IN	21 w _{stb} v _{CC} c c m m m m m m m m m m m m m	2.0	2.0
22	V _{stb}		2.0	2.0

<u>TOSHIBA</u>

Pin No.	Characteristics	Internal Circuit	DC Volt	tage (V)
FIII NO.	Characteristics		FM	AM
23	AM MIX OUT	Z3 VCC AM OSC AGC AGC AGC AGC AGC AGC AGC AG	5.0	5.0
24	FM IF IN	Zd Vcc Vstb	2.0	2.0

Operations in Detail

1. Application circuit when using a coil demodulator

Coil data

	f (Hz)	C₀ (pF)	Qo	Numbe	er of Wire 2-3	e Turns 1-3	Wire (mmφ)	Remarks	
FM DET	10.7 M	51	45			30	0.08 φ 2 UEW	TOKO Co., Ltd. 600BEAS-10018Z	

2. Center meter adjustment

It can be switch Δ V, pin voltages between 2-pin and 22-pin (V_{stb}) for narrow band detection or both side of R₂ pin voltages, to 0 V to adjust a coil. This adjustment made possible to set the voltage to center voltage and the midpoint of lighting LED band to the frequency (10.7 MHz).

Assembled C2 pin and R2 pin compose HPF.

$$f_c = \frac{1}{2\pi RC}$$

Select R_2 pin in accordance with specifications for narrow band detection and set C_2 pin by following that of resistance. Please take these into account.

3. Function switching

(1) $FM \rightarrow AM$ switching

Pin 16: Connect the LPF1 pin to GND.

(Adjust using external parts so that the voltage does not exceed 0.6 V.)

(2) SEREO \rightarrow MONO switching (Note 1)

Pin 15: Connect the LPF2 pin to GND. (Adjust using external parts so that the voltage does not exceed 0.6 V.)

Note 1: When STEREO/FM is selected, the multiplex VCO frequency changes due to 0.1 μA flow.

- (3) IF OUT \rightarrow ON switching
 - Pin 9: When the voltage on the IF OUT/REQ pin is set to 1.3 V or below (V_{stb} (2 V) Vbe (0.7 V)) and about 500 μ A current flows, switch to ON. Toshiba recommends a load of 2.2 k Ω .

4. External change function

- (1) Narrowband detector: When the FM IF input signal is off-center, 10.7 MHz, by a few kHz, the detector turns TUN-LED OFF.
 - Pin 2: Adjusts bandwidth using the resistor of the FM BW pin. In combination with the C₂ pin, the R₂ pin configures an HPF. The smaller the pin 2 capacitance, the higher the HPF cutoff. Note that when low-frequency sound is input, although tuning is maintained, the detector may turn TUN-LED OFF.
- (2) LED ON sensitivity adjustment
 - Pin 3: Uses the FM VL SENS pin resistor value to change the ON sensitivity of TUN-LED.
- (3) IF counter output sensitivity adjustment (Note 2)
 - Pin 5: Uses the FM S. SENS pin resistor value to change the sensitivity of the IF count output at IF count ON.
 - Note 2: For the LED on sensitivity, (2) and (3) are linked.

At IF count ON (connect resistor for pin 9 to GND), the internal current depending on the pin 5 resistor value changes the IF amp gain, the S meter startup, and the IF input level (sensitivity).

The LED ON sensitivity turns the LED ON by comparing the voltage which depends on the pin 3 resistor value with the S meter voltage. The change in S meter startup (sensitivity) at IF count ON causes the LED ON sensitivity set at IF count OFF to change. Therefore, confirm the LED ON sensitivity according to the seek operation specification.

- (4) Blender control
 - Pin 14: Changes the MPX L and R signal separation according to the input level set by the resistance.

5. Others

- (1) Vstb
 - Pin 22: Set to 2 V internally.
- (2) QUAD
 - Pin 20: Supports both a ceramic discriminator and a detector coil for QUAD. See 1, in Description of Operation.

Note that when a detector coil is used, S/N and the skew ratio deteriorates.

(3) L, R output

Pins 12, 13: L-OUT and R-OUT pins are used for current output. The external resistor is set to output impedance. This is specified when the load is $5.1 \text{ k}\Omega$ and $0.01 \text{ \mu}F$.

- (4) AGC
 - Pin 7: Also used as the FM S meter.

Maximum Ratings (Ta = 25°C)

Characteris	tics	Symbol	Rating	Unit
Supply voltage		V _{CC}	10	V
LED current		I _{LED}	10	mA
LED voltage		V _{LED}	14	V
Power dissipation	TA2099N	P _D (Note 3)	1200	mW
Power dissipation	TA2099F	PD (Note 3)	400	IIIVV
Operating temperature		T _{opr}	-25~75	°C
Storage temperature		T _{stg}	-55~150	°C

Note 3: Derated above 25°C in the proportion of 9.6 mW/°C for TA2099N and of 3.2 mW/°C for TA2099F.

Electrical Characteristics

(unless otherwise specified, Ta = 25°C, V_{CC1} = 5 V, SW₃ = OFF, FM IF: f = 10.7 MHz, Δf = ±22.5 kHz, f_m = 1 kHz, AM: f = 1 MHz, MOD = 30%, f_m = 1 kHz, FM ST DET: f_m = 1 kHz)

	Characteristics	Symbol	Test Circuit	Test Con	dition	Min	Тур.	Max	Unit	
Supp	ly current	I _{CC} (FM)	1	FM Mode, V _{in} = 0		—	17	23	mA	
Supp	iy current	I _{CC} (AM)	1	AM Mode, V _{in} = 0		—	14	20		
	Input limiting voltage	V _{in (lim)}	1	-3dB limiting point		37	41	45	dBµV EMF	
	Recovered output voltage	V _{OD (FM)}	1	V_{in} = 80dB μ V EMF		75	100	125	mVrms	
	Signal to noise ratio	S/N (FM)	1	V_{in} = 80dB μ V EMF		_	71	_	dB	
	Total harmonic distortion	THD (FM)	1	V_{in} = 80dB μ V EMF		—	0.1	—	%	
	AM rejection ratio	AMR	1	V _{in} = 80dBµV EMF		—	55	—	dB	
FM IF					SW ₁ : 0 Ω	—	41	—		
11	LED on sensitivity	V _{L (FM)}	1	I _L = 1 mA	SW ₁ : 1.2 kΩ	41	46	51	dBµV EMF	
					SW ₁ : 3.3 kΩ	_	54	_		
	IF count output voltage	V _{IF (FM)}	1	SW ₃ : ON, V _{in} = 800	IBµV EMF	240	290	_	mV _{p-p}	
	IF count output sensitivity				SW ₂ : 2.2 kΩ	_	58	_		
		IF _{sens} (FM)	1	SW3: ON	SW ₂ : 3.3 kΩ	47	53	59	dBµV EMF	
					SW ₂ : 4.7 kΩ	_	50	_		
	Gain	G _V	1	V _{in} = 23dBµV EMF		28	50	82	mVrms	
	Recovered output voltage	V _{OD (AM)}	1	V _{in} = 60dBµV EMF		70	100	130	mVrms	
	Signal to noise ratio	S/N (AM)	1	V _{in} = 60dBµV EMF		_	45	_	dB	
	Total harmonic distortion	THD (AM)	1	V _{in} = 60dBµV EMF		_	0.5	_	%	
AM	LED on sensitivity	V _{L (AM)}	1	I _L = 1 mA		21	26	31	dBµV EMF	
	Local OSC buffer output		1	f _{OSC} = 1.45 MHz		350	480	_		
	voltage	V _{OSC} (AM)	2	f _{OSC} = 27 MHz		_	480	—	mV _{p-p}	
	IF count output voltage	V _{IF} (AM)	1	SW ₃ : ON, V _{in} = 60d	IBμV EMF	250	370	_	mV _{p-p}	
	IF count output sensitivity	IF _{sens} (AM)	1	SW3: ON		_	26	_	dBµV EMF	

	Characteristic	cs	Symbol	Test Circuit	Test Cond	dition	Min	Тур.	Max	Unit	
	Max composite input voltage		V _{in} (MAX) (STEREO)	1	L + R = 90%, P = 10% THD = 3%, SW ₈ \rightarrow LPF: ON		_	700	_	mVrms	
					L + R = 180 mVrms	f _m = 100 Hz	—	45	—		
	Separation		Sep	1	P = 20 mVrms	f _m = 1 kHz	35	45	—	dB	
					$SW_8 \rightarrow LPF: ON$	f _m = 10 kHz	—	45	_		
	Total harmonic	Mono	THD (MONO)	1	V _{in} = 200 mVrms (M	_	0.05	_			
FM	distortion	Stereo	THD (STEREO)	1	L + R = 180 mVrms, P = 20 mVrms SW ₈ → LPF: ON	_	0.05	_	%		
ST DET	Voltage gain		G _V (ST)	1	V _{in} = 200 mVrms (MONO)		-2	-0.6	1	dB	
	Channel balance	9	C.B.	1	V _{in} = 200 mVrms (MONO)		-1.5	0	1.5	dB	
	Stereo LED	ON	V _L (ON)	1	Pilot input		_	10	16		
	sensitivity	OFF	V _L (OFF)	1			4	8	_	mVrms	
	Stereo LED hyst	eresis	V _H	1	to LED turn-off form	LED turn-on	_	2	_	mVrms	
	Capture range		C.R	1	P = 20 mVrms		—	±4.5	—	%	
	Signal to noise r	atio	S/N (ST)	1	V _{in} = 200 mVrms (M	IONO)	_	80	_	dB	
	VCO frequency		fvco/12	1	Specified when SW2 VCO/12	t = ON, MPX	-300	19 k	+300	Hz	

Test Circuit 1

Coil Data (Test Circuit 1)

Coil No.	f	L	Co	Q _o		Τι	ırn	Wire	Ref.	
Con No.	I	(µH)	(pF)	y _o	1-2	2-3	1-3	4-6	(mmφ)	(Coil No.)
T ₁ AM OSC	796 kHz	120	_	120	13	56	_	_	0.07 UEW	S: 2157-2239-779 T: A7BRS-12552Y M: MJ-3273-3
T ₂ AM IFT	455 kHz		330	100			110	6	0.08 UEW	S: 4140-1289-311 T: 7MES-11368N M: MJ-3337-1

S: SUMIDA ELECTRIC Co., Ltd.

T: TOKO Co., Ltd.

M: MITSUMI ELECTRIC Co., Ltd.

Test Circuit 2

Coil Data (Test Circuit 2)

Coil No.	f	L	Co			Turn			Wire	Ref.
COILINO.	I	(µH)	(pF)		1-2	2-3	1-3	4-6	(mmφ)	(Coil No.)
T AM OSC	7.96 MHz	1.4	_	84	1	6	7		0.08 UEW	T: 7PL-1344Y

T: TOKO Co., Ltd.

T : AM OSC

FM MONO

FM ST (Main)

FM

FΜ

VOD, AMR, S/N, THD - VCC 20 V_{OD} (0 dB = 100 mV_{rms}) 0 (dB) $f_{in} = 10.7 \text{ MHz},$ - 20 f_m = 1 kHz RESPONSE $\Delta f = \pm 22.5 \text{ kHz dev}$ AM MOD = 30% - 40 $V_{in} = 80 \, dB \mu V EMF$ AMR - 60 S/N THD - 80 ___0 17 15 3 5 7 9 11 13 SUPPY VOLTAGE VCC (V)

TOTAL HARMONIC DISTORTION THD (%)

IOIAL HA

FM

(dB)

Sep.

SEPARATION

V_{CC} = 5 V

 $P = 30 \text{ mV}_{rms}$

 $L + R = 270 \text{ mV}_{rms}$

2001-12-19

AM LINE INPUT

AM LINE INPUT

Package Dimensions

SDIP24-P-300-1.78

Unit : mm

Weight: 1.2 g (typ.)

Package Dimensions

SSOP24-P-300-1.00

Unit : mm

Weight: 0.31 g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.