TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

TA2099N,TA2099F

AM/FM IF + FM Stereo Detector (for Digital Tuning System)

TA2099N and TA2099F are the AM/FM IF + FM Stereo Detector IC, which is designed for DTS Radios.
This is included many functions and this can be used for Digital Tuning System with IF Counter.

Features

- Suitable for combination with Digital Tuning System which has IF Counter.

AM/FM IF Count Output for IF Counter
Built-in mute Circuit for IF Count Output
Built-in mute Circuit for Audio Output
FM IF Count Output Sensitivity is adjustable by external resistance

- Built-in FM Narrow Detector Circuit

Band Width is adjustable by external resistance

- FM LED ON sensitivity is adjustable by external resistance
- Built-in Resonance Circuit for FM Stereo Detector VCO
- Built-in FM Blender Control Circuit
- Built-in Anti-birdie Circuit
- Built-in AM Local OSC Buffer Output Circuit
- Operating Supply Voltage Range: $\mathrm{VCC}=4.0 \sim 9 \mathrm{~V}\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Weight:
SDIP24-P-300-1.78: 1.2 g (typ.)
SSOP24-P-300-1.00: 0.31 g (typ.)

Block Diagram

*: The Toshiba evaluation board uses the bar antenna shown below.

Use	f	L	Q_{O}	Number of Windings		Winding Thickness (mm)	Note
	796 kHz	$220 \mu \mathrm{H}$		59	17		

Terminal Explanation (Terminal voltage shows the typical value at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, SW_{3} : OFF, SW9: GND and non-signal test circuit)

Pin No.	Characteristics	Internal Circuit	DC Voltage (V)	
			FM	AM
1	AM RF IN		2.0	2.0
2	FM BW - FM band width adjust terminal		2.0	2.0
3	FM VL SENS - FM LED ON sensitivity adjust terminal		0.1	0.1
4	AM OSC		2.0	2.0

Pin No.	Characteristics	Internal Circuit	DC Voltage (V)	
			FM	AM
5	AM OSC OUT/FM S.SENS - AM OSC Buff Output Terminal - FFM IF Count Output Sensitivity Adjust Terminal		1.3	1.3
6	V_{CC}	-	5.0	5.0
7	AGC (FM S-METER)		0.2	1.3
8	GND	-	0	0
9	IF OUT/REQ - IF Count Output Terminal - IF Count Output/FM ST DET Mute Circuit Control Terminal $\begin{aligned} & \mathrm{SW}_{3}: \mathrm{GND} \rightarrow \mathrm{ON} \\ & \mathrm{SW} \text { 3: Open } \rightarrow \mathrm{OFF} \end{aligned}$		-	-
10	TUN LED		-	-

Pin No.	Characteristics	Internal Circuit	DC Voltage (V)	
			FM	AM
11	ST LED		-	-
12	R OUT		1.2	1.2
13	L OUT		1.2	1.2
14	BLENDER - FM Blender Control Adjust Terminal		0.3	0.3
15	LPF2 - LPF Terminal for Synchronous Detector - VCO Stop Terminal		3.5	1.4
16	LPF1 - LPF Terminal for Phase Detector - Bias Terminal for AM/FM Switch Circuit $\begin{aligned} & \mathrm{V}_{16}=\mathrm{GND} \rightarrow \mathrm{AM} \\ & \mathrm{~V}_{16}=\mathrm{Open} \rightarrow \mathrm{FM} \end{aligned}$		3.5	0
17	FM ST DET IN		1.2	1.2

Pin No.	Characteristics	Internal Circuit	DC Voltage (V)	
			FM	AM
18	AM DET OUT		0	1.3
19	FM DET OUT		1.4	2.0
20	QUAD		1.8	2.3
21	AM IF IN		2.0	2.0
22	$\mathrm{V}_{\text {stb }}$		2.0	2.0

Pin No.	Characteristics	Internal Circuit	DC Voltage (V)	
			FM	AM
23	AM MIX OUT		5.0	5.0
24	FM IF IN		2.0	2.0

Operations in Detail

1. Application circuit when using a coil demodulator

Coil data

	$\begin{gathered} f \\ (\mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{0} \\ (\mathrm{pF}) \end{gathered}$	Q_{0}	Number of Wire Turns			$\begin{aligned} & \text { Wire } \\ & (\mathrm{mm} \mathrm{\varphi}) \end{aligned}$	Remarks
				1-2	2-3	1-3		
FM DET	10.7 M	51	45			30	$\begin{aligned} & 0.08 \varphi \\ & 2 \text { UEW } \end{aligned}$	TOKO Co., Ltd. 600BEAS-10018Z

2. Center meter adjustment

It can be switch $\Delta \mathrm{V}$, pin voltages between 2-pin and 22-pin ($\mathrm{V}_{\text {stb }}$) for narrow band detection or both side of R_{2} pin voltages, to 0 V to adjust a coil. This adjustment made possible to set the voltage to center voltage and the midpoint of lighting LED band to the frequency (10.7 MHz).

Assembled C_{2} pin and R_{2} pin compose HPF.

$$
\mathrm{f}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{RC}}
$$

Select R_{2} pin in accordance with specifications for narrow band detection and set C_{2} pin by following that of resistance. Please take these into account.

3. Function switching

(1) $\mathrm{FM} \rightarrow$ AM switching

Pin 16: Connect the LPF1 pin to GND.
(Adjust using external parts so that the voltage does not exceed 0.6 V.)
(2) SEREO \rightarrow MONO switching (Note 1)

Pin 15: Connect the LPF2 pin to GND.
(Adjust using external parts so that the voltage does not exceed 0.6 V.)
Note 1: When STEREO/FM is selected, the multiplex VCO frequency changes due to $0.1 \mu \mathrm{~A}$ flow.
(3) IF OUT \rightarrow ON switching

Pin 9: When the voltage on the IF OUT/REQ pin is set to 1.3 V or below $\left(\mathrm{V}_{\text {stb }}(2 \mathrm{~V})\right.$ - Vbe $(0.7 \mathrm{~V})$) and about $500 \mu \mathrm{~A}$ current flows, switch to ON . Toshiba recommends a load of $2.2 \mathrm{k} \Omega$.

4. External change function

(1) Narrowband detector: When the FM IF input signal is off-center, 10.7 MHz , by a few kHz , the detector turns TUN-LED OFF.
Pin 2: Adjusts bandwidth using the resistor of the FM BW pin. In combination with the C_{2} pin, the R_{2} pin configures an HPF. The smaller the pin 2 capacitance, the higher the HPF cutoff. Note that when low-frequency sound is input, although tuning is maintained, the detector may turn TUN-LED OFF.
(2) LED ON sensitivity adjustment

Pin 3: Uses the FM VL SENS pin resistor value to change the ON sensitivity of TUN-LED.
(3) IF counter output sensitivity adjustment (Note 2)

Pin 5: Uses the FM S. SENS pin resistor value to change the sensitivity of the IF count output at IF count ON.

Note 2: For the LED on sensitivity, (2) and (3) are linked.
At IF count ON (connect resistor for pin 9 to GND), the internal current depending on the pin 5 resistor value changes the IF amp gain, the S meter startup, and the IF input level (sensitivity).
The LED ON sensitivity turns the LED ON by comparing the voltage which depends on the pin 3 resistor value with the S meter voltage. The change in S meter startup (sensitivity) at IF count ON causes the LED ON sensitivity set at IF count OFF to change. Therefore, confirm the LED ON sensitivity according to the seek operation specification.
(4) Blender control

Pin 14: Changes the MPX L and R signal separation according to the input level set by the resistance.

5. Others

(1) $\mathrm{V}_{\text {stb }}$

Pin 22: Set to 2 V internally.
(2) QUAD

Pin 20: Supports both a ceramic discriminator and a detector coil for QUAD. See 1, in Description of Operation.
Note that when a detector coil is used, S / N and the skew ratio deteriorates.
(3) L, R output

Pins 12, 13: L-OUT and R-OUT pins are used for current output. The external resistor is set to output impedance. This is specified when the load is $5.1 \mathrm{k} \Omega$ and $0.01 \mu \mathrm{~F}$.
(4) AGC

Pin 7: Also used as the FM S meter.

Maximum Ratings ($\mathbf{T a}=25^{\circ} \mathrm{C}$)

Characteristics		Symbol	Rating	Unit
Supply voltage		V_{CC}	10	V
LED current		ILED	10	mA
LED voltage		$\mathrm{V}_{\text {LED }}$	14	V
Power dissipation	TA2099N	P_{D} (Note 3)	1200	mW
	TA2099F		400	
Operating temperature		$\mathrm{T}_{\text {opr }}$	-25~75	${ }^{\circ} \mathrm{C}$
Storage temperature		$\mathrm{T}_{\text {stg }}$	-55~150	${ }^{\circ} \mathrm{C}$

Note 3: Derated above $25^{\circ} \mathrm{C}$ in the proportion of $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for TA2099N and of $3.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for TA2099F.
Electrical Characteristics (unless otherwise specified,
$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=5 \mathrm{~V}, \mathrm{SW}_{3}=\mathrm{OFF}$,

$A M: f=1 \mathrm{MHz}, \mathrm{MOD}=30 \%, \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$,
FM ST DET: $\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$)

Characteristics		Symbol	Test Circuit	Test Condition		Min	Typ.	Max	Unit
Supply current		ICC (FM)	1	FM Mode, $\mathrm{V}_{\text {in }}=0$		-	17	23	mA
		ICC (AM)	1	AM Mode, $\mathrm{V}_{\text {in }}=0$		-	14	20	
$\begin{aligned} & \text { FM } \\ & \text { IF } \end{aligned}$	Input limiting voltage	$V_{\text {in }}(\mathrm{lim})$	1	-3dB limiting point		37	41	45	$\mathrm{dB} \mu \mathrm{V}$ EMF
	Recovered output voltage	V_{OD} (FM)	1	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V} \mathrm{EMF}$		75	100	125	mVrms
	Signal to noise ratio	S/N (FM)	1	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF		-	71	-	dB
	Total harmonic distortion	THD (FM)	1	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF		-	0.1	-	\%
	AM rejection ratio	AMR	1	$\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF		-	55	-	dB
	LED on sensitivity	$\mathrm{V}_{\mathrm{L}}(\mathrm{FM})$	1	$\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}$	$\mathrm{SW}_{1}: 0 \Omega$	-	41	-	$\mathrm{dB} \mu \mathrm{V}$ EMF
					$\mathrm{SW}_{1}: 1.2 \mathrm{k} \Omega$	41	46	51	
					$\mathrm{SW}_{1}: 3.3 \mathrm{k} \Omega$	-	54	-	
	IF count output voltage	$\mathrm{V}_{\text {IF (FM) }}$	1	SW_{3} : ON, $\mathrm{V}_{\text {in }}=80 \mathrm{~dB} \mu \mathrm{~V}$ EMF		240	290	-	$\mathrm{m} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$
	IF count output sensitivity	$\mathrm{IF}_{\text {sens }}(\mathrm{FM})$	1	SW_{3} : ON	$\mathrm{SW}_{2}: 2.2 \mathrm{k} \Omega$	-	58	-	$\mathrm{dB} \mu \mathrm{V}$ EMF
					$\mathrm{SW}_{2}: 3.3 \mathrm{k} \Omega$	47	53	59	
					$\mathrm{SW}_{2}: 4.7 \mathrm{k} \Omega$	-	50	-	
AM	Gain	GV	1	$\mathrm{V}_{\text {in }}=23 \mathrm{~dB} \mu \mathrm{~V}$ EMF		28	50	82	mVrms
	Recovered output voltage	$\mathrm{V}_{\mathrm{OD}}(\mathrm{AM})$	1	$\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF		70	100	130	mVrms
	Signal to noise ratio	S/N (AM)	1	$\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V} \mathrm{EMF}$		-	45	-	dB
	Total harmonic distortion	THD (AM)	1	$\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF		-	0.5	-	\%
	LED on sensitivity	$V_{L}(\mathrm{AM})$	1	$\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}$		21	26	31	$\mathrm{dB} \mu \mathrm{V}$ EMF
	Local OSC buffer output voltage	Vosc (AM)	1	$\mathrm{fOSC}=1.45 \mathrm{MHz}$		350	480	-	$\mathrm{mV} \mathrm{p}_{\text {-p }}$
			2	$\mathrm{f}_{\mathrm{OSC}}=27 \mathrm{MHz}$		-	480	-	
	IF count output voltage	$\mathrm{V}_{\text {IF }}(\mathrm{AM})$	1	SW_{3} : ON, $\mathrm{V}_{\text {in }}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF		250	370	-	$m V_{p-p}$
	IF count output sensitivity	$\mathrm{IF}_{\text {sens }}(\mathrm{AM})$	1	SW_{3} : ON		-	26	-	$\mathrm{dB} \mu \mathrm{V}$ EMF

Characteristics			Symbol	Test Circuit	Test Condition		Min	Typ.	Max	Unit	
$\begin{array}{\|l\|} \hline \mathrm{FM} \\ \mathrm{ST} \\ \mathrm{DET} \end{array}$	Max composite input voltage		$\begin{aligned} & \mathrm{V}_{\text {in }} \text { (MAX) } \\ & \text { (STEREO) } \end{aligned}$	1	$\begin{aligned} & \mathrm{L}+\mathrm{R}=90 \%, \mathrm{P}=10 \% \\ & \text { THD }=3 \%, S W_{8} \rightarrow \text { LPF: ON } \end{aligned}$		-	700	-	mVrms	
	Separation		Sep	1	$\begin{aligned} & L+R=180 \mathrm{mV} \mathrm{rms} \\ & \mathrm{P}=20 \mathrm{mV} \mathrm{~ms} \\ & \mathrm{SW}_{8} \rightarrow \mathrm{LPF}: O N \end{aligned}$	$\mathrm{fm}_{\mathrm{m}}=100 \mathrm{~Hz}$	-	45	-	dB	
			$\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$			35	45	-			
			$\mathrm{f}_{\mathrm{m}}=10 \mathrm{kHz}$			-	45	-			
	Total harmonic distortion	Mono		$\begin{gathered} \text { THD } \\ \text { (MONO) } \end{gathered}$	1	$\mathrm{V}_{\text {in }}=200 \mathrm{mVrms}(\mathrm{MONO})$		-	0.05	-	\%
		Stereo		$\begin{gathered} \text { THD } \\ \text { (STEREO) } \end{gathered}$	1	$\begin{aligned} & \mathrm{L}+\mathrm{R}=180 \mathrm{mV} \mathrm{~ms}, \\ & \mathrm{P}=20 \mathrm{mVrms} \\ & \mathrm{SW}_{8} \rightarrow \mathrm{LPF}: \mathrm{ON} \end{aligned}$		-	0.05	-	
	Voltage gain		GV (ST)	1	$\mathrm{V}_{\text {in }}=200 \mathrm{mVrms}$ (MONO)		-2	-0.6	1	dB	
	Channel balance		C.B.	1	$\mathrm{V}_{\text {in }}=200 \mathrm{mVrms}(\mathrm{MONO})$		-1.5	0	1.5	dB	
	Stereo LED sensitivity	ON	V_{L} (ON)	1	Pilot input		-	10	16	mV rms	
		OFF	V_{L} (OFF)	1			4	8	-		
	Stereo LED hysteresis		V_{H}	1	to LED turn-off form LED turn-on		-	2	-	mVrms	
	Capture range		C.R	1	$\mathrm{P}=20 \mathrm{mVrms}$		-	± 4.5	-	\%	
	Signal to noise ratio		S/N (ST)	1	$\mathrm{V}_{\text {in }}=200 \mathrm{mVrms}(\mathrm{MONO})$		-	80	-	dB	
	VCO frequency		fvco/12	1	Specified when $\mathrm{SW}_{4}=\mathrm{ON}, \mathrm{MPX}$ VCO/12		-300	19 k	+300	Hz	

Test Circuit 1

Coil Data (Test Circuit 1)

Coil No.	f	$\begin{gathered} \mathrm{L} \\ (\mu \mathrm{H}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{o}} \\ (\mathrm{pF}) \end{gathered}$	Q_{0}	Turn				Wire (mme)	Ref. (Coil No.)
					1-2	2-3	1-3	4-6		
T ${ }_{1}$ AM OSC	796 kHz	120	-	120	13	56	-	-	0.07 UEW	S: 2157-2239-779 T: A7BRS-12552Y M: MJ-3273-3
T2 AM IFT	455 kHz	-	330	100	-	-	110	6	0.08 UEW	S: 4140-1289-311 T: 7MES-11368N M: MJ-3337-1

S: SUMIDA ELECTRIC Co., Ltd.
T: TOKO Co., Ltd.
M: MITSUMI ELECTRIC Co., Ltd.

Test Circuit 2

Coil Data (Test Circuit 2)

Coil No.	f	L $(\mu \mathrm{H})$	C (pF)	Q_{0}	Wire $(\mathrm{mm} \varphi)$					Ref. (Coil No.)
	7.96 MHz		-		1	6	$2-3$	$1-3$	$4-6$	7

T: TOKO Co., Ltd.

T : AM OSC
TRIMMER CONDENSER, (4)PIN

FM MONO

FM

FM ST (Main)

FM
VOD, AMR, S/N, THD - VCC

FM

FM

FM

FM

FM
L.R., C.R.

FM

TOTAL HARMONIC DISTORTION THD (\%)

FM

FM

AM LINE INPUT

AM LINE INPUT

Package Dimensions

SDIP24-P-300-1.78

Weight: 1.2 g (typ.)

Package Dimensions

Weight: 0.31 g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

