
ITR DESCRIPTION DATE (rewood) APPROVED REV 0									R	EVISIO	ONS										
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10	LTR						DES	CRIPTI	ON						DATE	(YR-MC	D-DA)		APPR	OVED	
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 Image: Constraint of the const																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 Image: Constraint of the const																					
SHEET 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 10 REV 10																					
REV I <thi< th=""> I<!--</td--><td>REV</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thi<>	REV																				
SHEET 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 REV STATUS OF SHEETS REV STATUS OF SHEETS REV Image: Status OF SHEETS SHEET Image: Status OF SHE STANDARD MICROCIRCUIT DRAWING STANDARD MICROCIRCUIT DRAWING PREVARED BY Charles F. Saffle Image: Status DEFENSE SUPPLY CENTER COLUMBUS, Charles F. Saffle DEFENSE SUPPLY CENTER COLUMBUS, COLUMBUS, OHIO 43216 http://www.dscc.dla.mil THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE DRAWING APPROVAL DATE 03-08-14 MICROCIRCUIT, DIGITAL, 32-BIT SPARC LOW VOLTAGE PROCESSOR, MONOLITHIC SILICON SIZE CAGE CODE 67268 AMSC N/A	SHEET	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52		
REV STATUS OF SHEETS REV I	REV																				
REV STATUS OF SHEETS SHEET 1 2 3 4 5 6 7 8 9 10 11 12 13 14 PMIC N/A PREPARED BY Charles F. Saffle PREPARED BY Charles F. Saffle PREPARED BY Charles F. Saffle DEFENSE SUPPLY CENTER COLUMBUS, COLUMBUS, OHIO 43216 http://www.dscc.dla.mil 14 STANDARD MICROCIRCUIT DRAWING CHECKED BY Charles F. Saffle CHECKED BY Charles F. Saffle MICROCIRCUIT, Thomas M. Hess DISPERTMENTS MICROCIRCUIT, DIGITAL, 32-BIT SPARC LOW VOLTAGE PROCESSOR, MONOLITHIC SILICON MICROCIRCUIT, DIGITAL, 32-BIT SPARC LOW THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE DRAWING APPROVAL DATE 03-08-14 MICROCIRCUIT, DIGITAL, 32-BIT SPARC LOW VOLTAGE PROCESSOR, MONOLITHIC SILICON MICROCIRCUIT, DEFENSE REVISION LEVEL SIZE CAGE CODE 6 5962-03246 AMSC N/A - - SIZE CAGE CODE 6 5962-03246	SHEET	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
PMIC N/A PREPARED BY Charles F. Saffle DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216 http://www.dscc.dla.mil 14 STANDARD MICROCIRCUIT DRAWING CHECKED BY Charles F. Saffle CHECKED BY Charles F. Saffle DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216 http://www.dscc.dla.mil Image: Columbus c		;			REV	/															
PMIC N/A Charles F. Saffle DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216 http://www.dscc.dla.mil STANDARD MICROCIRCUIT DRAWING CHECKED BY Charles F. Saffle http://www.dscc.dla.mil APPROVED BY Thomas M. Hess APPROVED BY Thomas M. Hess MICROCIRCUIT, DIGITAL, 32-BIT SPARC LOW VOLTAGE PROCESSOR, MONOLITHIC SILICON THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE DRAWING APPROVAL DATE 03-08-14 MICROCIRCUIT, DIGITAL, 32-BIT SPARC LOW VOLTAGE PROCESSOR, MONOLITHIC SILICON AMSC N/A - SIZE CAGE CODE A 5962-03246	OF SHEETS				SHE	ET		1	2	3	4	5	6	7	8	9	10	11	12	13	14
Charles F. Saffle DEF ENCLOSITION COLUMBUS, OHIO 43216 http://www.dscc.dla.mil STANDARD MICROCIRCUIT DRAWING CHECKED BY Charles F. Saffle CHECKED BY Charles F. Saffle THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE DRAWING APPROVAL DATE 03-08-14 MICROCIRCUIT, DIGITAL, 32-BIT SPARC LOW VOLTAGE PROCESSOR, MONOLITHIC SILICON AMSC N/A - SIZE CAGE CODE A 5962-03246	PMIC N/A				PREI	PARED	BY														
STANDARD MICROCIRCUIT DRAWINGCHECKED BY Charles F. Safflehttp://www.dscc.dla.milAPPROVED BY Thomas M. HessAPPROVED BY Thomas M. HessMICROCIRCUIT, DIGITAL, 32-BIT SPARC LOW VOLTAGE PROCESSOR, MONOLITHIC SILICONTHIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSEDRAWING APPROVAL DATE 03-08-14MICROCIRCUIT, DIGITAL, 32-BIT SPARC LOW VOLTAGE PROCESSOR, MONOLITHIC SILICONAMSC N/ADRAWING APPROVAL DATE 03-08-14SIZE ACAGE CODE A5962-03246AMSC N/A						C	Charles	F. Saff	le		+	D								03	
MICROCIRCUIT DRAWING APPROVED BY APPROVED BY MICROCIRCUIT, DIGITAL, 32-BIT SPARC LOW THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE DRAWING APPROVAL DATE 03-08-14 MICROCIRCUIT, DIGITAL, 32-BIT SPARC LOW REVISION LEVEL DRAWING APPROVAL DATE 03-08-14 SIZE CAGE CODE A 5962-03246 AMSC N/A - - - - -	STA	STANDARD			CHE			"													
THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSEThomas M. HessMICROCIRCUIT, DIGITAL, 32-BIT SPARC LOW VOLTAGE PROCESSOR, MONOLITHIC SILICONAMSC N/ADRAWING APPROVAL DATE 03-08-14SIZECAGE CODE A 672685962-03246AMSC N/A				(charles	F. Saff	le														
THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE DRAWING APPROVAL DATE 03-08-14 VOLTAGE PROCESSOR, MONOLITHIC SILICON SIZE CAGE CODE A 67268 5962-03246 AMSC N/A - -			APPI										۱ ۲ ۲ ۱	20.1				,			
Inits Dickwing approval Date FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE AMSC N/A												E PR	DICES	SOR.	_, 32-1 , MON	NOLIT	PARC HIC S		/ DN		
AND AGENCIES OF THE DEPARTMENT OF DEFENSE AMSC N/A - SIZE CAGE CODE AMSC N/A - SIZE CAGE CODE A 67268 5962-03246	FOR U	JSE BY	ALL	JLC	DRA	WING /			ATE												
AMSC N/A - A 67268 5962-03246	AND AGE	NCIES (OF THE					J 17			0.75		0.00								
AMSC N/A	DEPARTME	NT OF [DEFEN	SE	KEV	ISION L	EVEL										59	962-	0324	46	
	AN	//SC N/A						-				•	U	1 200							
											SHE	ET	1	OF		52					

DSCC FORM 2233 APR 97 <u>DISTRIBUTION STATEMENT A</u>. Approved for public release; distribution is unlimited.

1. SCOPE

1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN.

1.2.1 <u>RHA designator</u>. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number	Circuit function	<u>Frequency</u>
01	TSC695FL	32-bit SPARC low voltage processor	15 MHz

1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows:

Device class		Device r	equirements documentation
Μ		AN class level B r	to the requirements for MIL-STD-883 compliant, nicrocircuits in accordance with MIL-PRF-38535,
Q or V	Certifi	ication and qualifie	cation to MIL-PRF-38535
1.2.4 Case outline(s).	The case outline(s) are as c	lesignated in MIL-	STD-1835 and as follows:
Outline letter	Descriptive designator	Terminals	Package style
Х	See figure 1	256	Ceramic quad flat package

1.2.5 Lead finish. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-03246
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 2

1.3 Absolute maximum ratings. 1/

	$\begin{array}{l} Supply \mbox{ voltage range } (V_{DD}) \\ Input \mbox{ voltage range } (V_{IN}) \\ Output \mbox{ current } (I_{OUT}) \\ Maximum \mbox{ power dissipation (continuous) } (P_D) \\ Storage \mbox{ temperature range } (T_{STG}) \\ Lead \mbox{ temperature (soldering, 10 seconds) \\ Thermal \mbox{ resistance, junction-to-case } (\theta_{JC}) \\ Junction \mbox{ temperature } (T_J) \end{array}$	-0.5 V dc to V _{DD} +0.5 V dc <u>3</u> / 50 mA <u>4</u> / 1.5 W -65°C to +150°C +265°C <u>5</u> / 3°C/W
1.4	Recommended operating conditions.	
	Operating supply voltage range (V_{DD}) Case operating temperature range (T_C) Storage conditions for packaged devices	-55°C to +125°C
1.5	Radiation features.	
	Maximum total dose (dose rate = 0.1 rads (Si)/s) Single event phenomenon (SEP) effective linear energy threshold (LET) with no upset with no latchup.	error rate 5E-5/device/day (worst case)
2.	APPLICABLE DOCUMENTS	

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883 -	Test Method Standard Microcircuits.
MIL-STD-1835 -	Interface Standard Electronic Component Case Outlines.

HANDBOOKS

DEPARTMENT OF DEFENSE

MIL-HDBK-103 -	List of Standard Microcircuit Drawings.
MIL-HDBK-780 -	Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

- 1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.
- 2/ Device is functional from +3.15 V to +3.45 V with reference to ground.
- $\underline{3}$ / (V_{DD} + 0.5 V) should not exceed +7.0 V.
- $\frac{4}{2}$ This is the maximum current of any single output.
- 5/ Duration 10 seconds maximum at a distance not less than 1.5 mm from the device body, and the same lead shall not be resoldered until 3 minutes have elapsed.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-03246
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 3

2.2 <u>Non-Government publications</u>. The following document(s) form a part of this document to the extent specified herein. Unless otherwise specified, the issues of the documents which are DOD adopted are those listed in the issue of the DODISS cited in the solicitation. Unless otherwise specified, the issues of documents not listed in the DODISS are the issues of the documents cited in the solicitation.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

IEEE Standard 1149.1 - IEEE Standard Test Access Port and Boundary Scan Architecture.

(Applications for copies should be addressed to the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854-4150.)

(Non-Government standards and other publications are normally available from the organizations that prepare or distribute the documents. These documents may also be available in or through libraries or other informational services.)

2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.

3.1.1 <u>Microcircuit die</u>. For the requirements of microcircuit die, see appendix A of this document.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.

3.2.1 <u>Case outline</u>. The case outline shall be in accordance with 1.2.4 herein and figure 1 herein.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.

3.2.3 <u>Block diagram</u>. The block diagram shall be as specified on figure 3.

3.2.4 Boundary scan instruction codes. The boundary scan instruction codes shall be as specified on figure 4.

3.2.5 Timing waveforms. The timing waveforms shall be as specified on figure 5.

3.2.6 <u>Radiation exposure connections</u>. The radiation exposure connections shall be as specified on figure 6.

3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table IA and shall apply over the full case operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in table IA.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A.

3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-03246
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 4

3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change for device class M</u>. For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-PRF-38535, appendix A.

3.9 <u>Verification and review for device class M</u>. For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 132 (see MIL-PRF-38535, appendix A).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-03246
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 5

Test	Symbol	Conditions $1/$ -55°C \leq T _C \leq +125°C	Group A subgroups	Device type	Limits		Unit
		+3.15 V \leq V _{DD} \leq +3.4.5 V unless otherwise specified			Min	Max	
High level input voltage	VIH	$V_{DD} = 3.45 \text{ V} \underline{2} / \ \underline{3} / \ \underline{4} /$	1, 2, 3	All	2.0		V
Low level input voltage	VIL	$V_{DD} = 3.45 \text{ V} \underline{2} / \ \underline{3} / \ \underline{4} /$	1, 2, 3	All		0.8	V
High level output voltage	V _{OH}	$V_{DD} = 3.15 \text{ V}, I_{OH} = -2.0 \text{ mA} \underline{5}/$	1, 2, 3	All	2.4		V
		Minimum and maximum values recorded					
	V _{OHB}	$V_{DD} = 3.15 \text{ V}, I_{OH} = -6.0 \text{ mA} \underline{6}/$	1, 2, 3	All	2.4		
		Minimum and maximum values recorded					
Low level output voltage	V _{OL}	$V_{DD} = 3.15 \text{ V}, I_{OL} = 3.0 \text{ mA} \underline{5}/$	1, 2, 3	All		0.4	V
		Minimum and maximum values recorded					
	V _{OLB}	$V_{DD} = 3.15 \text{ V}, I_{OL} = 9.0 \text{ mA} \underline{6}/$	1, 2, 3	All		0.4	
		Minimum and maximum values recorded					
High level input current	I _{IH}	$V_{DD} = 3.45 \text{ V}, V_{IN} = V_{DD} \underline{7}/$	1, 2, 3	All		10	μA
Low level input current	IIL	$V_{DD} = 3.45 \text{ V}, V_{IN} = 0.0 \text{ V} $ <u>8</u> /	1, 2, 3	All		10	μA
	I _{ILT}	$V_{DD} = 3.45 \text{ V}, V_{IN} = 0.0 \text{ V} $ <u>9</u> /	1, 2, 3	All		350	
Three-state leakage current	I _{OZH}	$V_{DD} = 3.45 \text{ V}, V_{IN} = V_{DD} \underline{10}/$	1, 2, 3	All		10	μA
Three-state leakage current	I _{OZL}	$V_{DD} = 3.45 \text{ V}, V_{IN} = 0.0 \text{ V} $ <u>10</u> /	1, 2, 3	All		10	μA
Supply current (idle) IV _{DD} pins	I _{DDIDLE}	V _{DD} = 3.45 V, f = 15 MHz	1, 2, 3	All		10	mA
Supply current (internal) IV _{DD} pins	I _{DDIN}	V _{DD} = 3.45 V, f = 15 MHz	1, 2, 3	All		100	mA
Input capacitance	CIN	$V_{IN} = 2.5 V$ $T_C = 25^{\circ}C$ $f_{IN} = 1.0 MHz$ See 4.4.1c	4	All		7	pF
Functional test		$ \begin{array}{l} V_{IL} = 0.0 \ V, \ V_{IH} = 3.0 \ V \\ V_{OL} = 1.45 \ V, \ V_{OH} = 1.55 \ V \\ V_{DD} = 3.15 \ V, \ 3.3 \ V, \ and \ 3.45 \ V \\ f = 15 \ MHz \\ See \ 4.4.1b \end{array} $	7, 8	All			
See footnotes at end of table	e.						

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-03246
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 6

	TABLE IA.	Electrical performa	ance characteris	<u>stics</u> - Continu	ed.			
Test	Symbol	Condition -55°C \leq T _C :		Group A subgroups	Device type	Lii	mits	Unit
		+3.15 V \leq V _{DI} unless otherwi				Min	Max	
CLK2 period <u>11</u> /	t ₁	$V_{DD} = 3.15 V$		9, 10, 11	All	33		ns
SYSCLK period <u>11</u> /	t ₂	SYSCLK frequen See figure 5	cy = 15 MHz	9, 10, 11	All	66		ns
CLK2 high and low pulse width <u>11</u> /	t ₃			9, 10, 11	All	16		ns
RA[31:0], RAPAR, RSIZE, RLDSTO output delay <u>12</u> /	t ₄₋₁			9, 10, 11	All		10	ns
LOCK output delay <u>12</u> /	t ₄₋₂			9, 10, 11	All		16	ns
MEMCS[9:0] , ROMCS , EXMCS output delay 11/ 12/	t ₅			9, 10, 11	All		18	ns
DDIR, DDIR output delay	t ₆			9, 10, 11	All		18	ns
MEMWR and IOMWR output delay <u>12</u> / <u>13</u> /	t ₇	-		9, 10, 11	All		36.5	ns
OE (HL) output delay <u>12</u> /	t ₈			9, 10, 11	All		31.5	ns
Data setup time during load <u>12</u> /	t ₉	$V_{DD} = 3.15 \text{ V} $ <u>11</u> / SYSCLK frequency = 15 MHz See figure 5		9, 10, 11	All	16		ns
		$V_{DD} = 3.15 V$ <u>SYSCLK</u> frequen NOPAR = 0 rpa = rec = either See figure 5	-	-		13		
Data hold time during load <u>11</u> / <u>12</u> /	t ₁₀	V _{DD} = 3.15 V SYSCLK frequen	cy = 15 MHz	9, 10, 11	All	7		ns
Data output delay <u>13</u> /	t ₁₁	See figure 5		9, 10, 11	All		44	ns
Data output valid <u>11</u> / <u>12</u> /	t ₁₂			9, 10, 11	All	18		ns
CB output delay <u>11</u> / <u>12</u> /	t ₁₃			9, 10, 11	All		30	ns
ALE output delay <u>11</u> / <u>13</u> /	t ₁₄			9, 10, 11	All		25	ns
BUFFEN (HL) output delay <u>11</u> / <u>12</u> /	t ₁₅			9, 10, 11	All		32.5	ns
MHOLD output delay	t ₁₆			9, 10, 11	All		20	ns
MDS, DRDY output delay	t ₁₇			9, 10, 11	All		20	ns
MEXC output delay <u>11/ 13/</u>	t ₂₀			9, 10, 11	All		20	ns
RASI[3:0], RSIZE[1:0], RASPAR setup time <u>11/ 12</u> /	t ₂₁	•		9, 10, 11	All	15		ns
See footnotes at end of table.					•			
STAND			SIZE A				5962-03	8246
MICROCIRCUI DEFENSE SUPPLY CE COLUMBUS, OHI	INTER COL	UMBUS		REVISION	LEVEL	SF	IEET 7	

	TABLE IA.	Electrical performa	nce characteris	<u>tics</u> - Continu	ed.			
Test	Symbol	Condition -55°C \leq T _C \leq		Group A subgroups	Device type	Lir	nits	Unit
		+3.15 V \leq V _{DD} unless otherwis	≤ +3.4.5 V			Min	Max	
RASI[3:0], RSIZE[1:0], RASPAR hold time <u>11/</u> <u>12</u> /	t ₂₂	$V_{DD} = 3.15 V$ SYSCLK frequence See figure 5	cy = 15 MHz	9, 10, 11	All	0		ns
BOOT PROM address output delay <u>11</u> / <u>12</u> /	t ₂₃			9, 10, 11	All		20	ns
BUSRDY setup time <u>11/</u> <u>12/</u>	t ₂₄			9, 10, 11	All	15		ns
BUSRDY hold time	t ₂₅			9, 10, 11	All	0		ns
IOSEL output delay <u>11/ 12</u> /	t ₂₇			9, 10, 11	All		20	ns
DMAAS setup time <u>11/ 12/</u>	t ₂₈			9, 10, 11	All	15	33	ns
DMAAS hold time 11/ 13/	t ₂₈			9, 10, 11	All	0	33	ns
DMAREQ setup time	t ₃₀			9, 10, 11	All	15		ns
DMAGNT output delay	t ₃₁			9, 10, 11	All		20	ns
RA[31:0], RAPAR, CPAR setup time <u>11</u> / <u>12</u> /	t ₃₂			9, 10, 11	All	15		ns
RA[31:0], RAPAR, CPAR hold time <u>11</u> / <u>12</u> /	t ₃₃			9, 10, 11	All	0		ns
TCK period <u>11</u> /	t ₃₆			9, 10, 11	All	100		ns
TMS setup time <u>11</u> / <u>14</u> /	t ₃₇			9, 10, 11	All	10		ns
TMS hold time <u>11</u> / <u>14</u> /	t ₃₈			9, 10, 11	All	4		ns
TDI setup time <u>11</u> / <u>14</u> /	t ₃₉			9, 10, 11	All	10		ns
TDI hold time <u>11</u> / <u>14</u> /	t ₄₀			9, 10, 11	All	10		ns
TDO output delay <u>11</u> / <u>15</u> /	t ₄₁			9, 10, 11	All		20	ns
INULL output delay <u>11</u> / <u>12</u> /	t ₄₆			9, 10, 11	All		35	ns
RESET,CPUHALT output delay <u>11</u> / <u>12</u> /	t ₄₈			9, 10, 11	All		35	ns
SYSERR , SYSAV output delay <u>11</u> / <u>12</u> /	t ₄₉			9, 10, 11	All		20	ns
IUERR output delay <u>11/ 12/</u>	t ₅₀			9, 10, 11	All		35	ns
EXTINT[4:0] setup time <u>11/</u> <u>13/</u>	t ₅₂			9, 10, 11	All	15		ns
EXTINT[4:0] hold time <u>11/</u> <u>12/</u>	t ₅₃			9, 10, 11	All	0		ns
EXTINTACK output delay <u>11</u> / <u>12</u> /	t ₅₄			9, 10, 11	All		20	ns
See footnotes at end of table.								
STAND MICROCIRCUI			SIZE A			4	5962-03	8246
DEFENSE SUPPLY CE COLUMBUS, OHI	NTER COL	UMBUS	-	REVISION	LEVEL	SH	IEET 8	

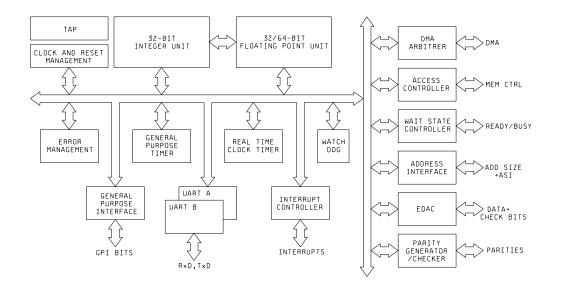
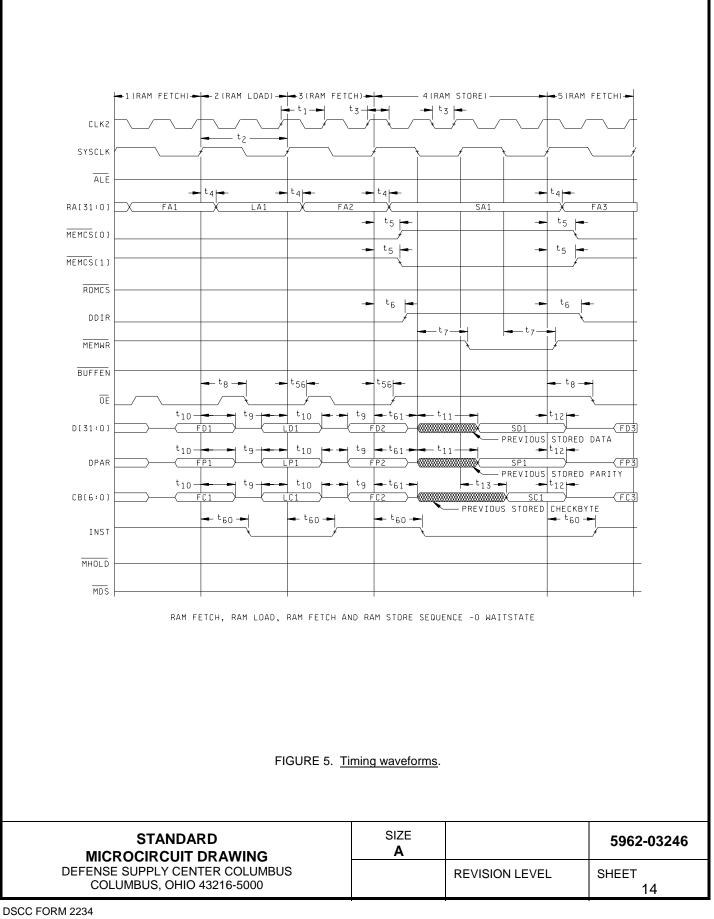
	TABLE IA.	Electrical performa	nce characteristi	<u>cs</u> - Continu	ed.					
Test	Symbol	Conditior -55°C \leq T _C \leq	_	Group A subgroups	Device type	Lin	nits	Unit		
		+3.15 V \leq V _{DD} \leq +3.45 V unless otherwise specified		0		Min	Max			
OE (LH) output delay (no DMA mode) <u>11</u> / <u>12</u> /	t ₅₆	V _{DD} = 3.15 V SYSCLK frequence	cy = 15 MHz	9, 10, 11	All		14	ns		
BUFFEN (LH) output delay	t57	See figure 5		9, 10, 11	All		15	ns		
INST output delay <u>11/ 12/</u>	t ₆₀	-		9, 10, 11	All		35	ns		
Data output delay to low-Z	t ₆₁			9, 10, 11	All	30.5		ns		
 <u>1/</u> RHA devices supplied to this drawing are characterized at all levels M, D, P, L, and R of irradiation. However, this device is only tested at the "R" level. Pre and Post irradiation values are identical unless otherwise specified in table IA. When performing post irradiation electrical measurements for any RHA level, T_A = +25°C. 										
2/ Not recorded – Tested g	o/no-go duri	ng functional test.								
<u>3</u> / Applies to RA[31:0], RAP RD, WE , WRT, PROM8								LOCK,		
WDCLK, CLK2, TMODE[1:0], DEBUG	, TCK, TRST , TM	S, TDI.							
4/ Applies to RxA, RxB, GPI[7:0], EXTINT[4:0], EWDINT, SYSRESET.										
<u>5</u> / Applies to RAPAR, RASI[3:0], RSIZE[1:0], RASPAR, CPAR, D[31:0], CB[6:0], DPAR, RLDSTO, ALE, DXFER, LOCK, RD, WE, WRT, MHOLD, MDS, MEXC, BA[1:0], ROMCS, BUFFEN, DDIR, DDIR, IOSEL[3:0], IOWR, EXMCS, DMAGNT, DRDY, IUERR, CPUHALT, SYSERR, SYSAV, INULL, INST, FLUSH, DIA, RTC, TxA, TxB, GPIINT, EXTINTACK, SYSCLK, RESET, TDO.										
6/ Applies to RA[31:0], MEN	IWR , OE , M	1EMCS[9:0]								
<u>7</u> / Applies to PROM8, ROM EXTINT[4:0], IWDE, EWI										
<u>8</u> / Applies to PROM8 , ROM EXTINT[4:0], IWDE, EWI						₹ , RxA, F	RxB,			
<u>9</u> / Applies to TMS, TDI, TRS	ST									
<u>10</u> / Applies to RA[31:0], RAP RD, WE , WRT, GPI[7:0]	-	0], RSIZE[1:0], RAS	PAR, CPAR, D[3	31:0], CB[6:0],	, DPAR, RI	LDSTO, I	DXFER, L	JOCK,		
<u>11</u> / Tested during AC tests bu	ut not record	ed.								
<u>12</u> / With reference edge of S	YSCLK+.									
<u>13</u> / With reference edge of S	YSCLK									
<u>14</u> / With reference edge of T	CK+.									
<u>15</u> / With reference edge of T	CK		I	1						
STANI MICROCIRCU	IT DRAWI		SIZE A				5962-03	246		
DEFENSE SUPPLY C COLUMBUS, OF				REVISION	LEVEL	SH	eet 9			

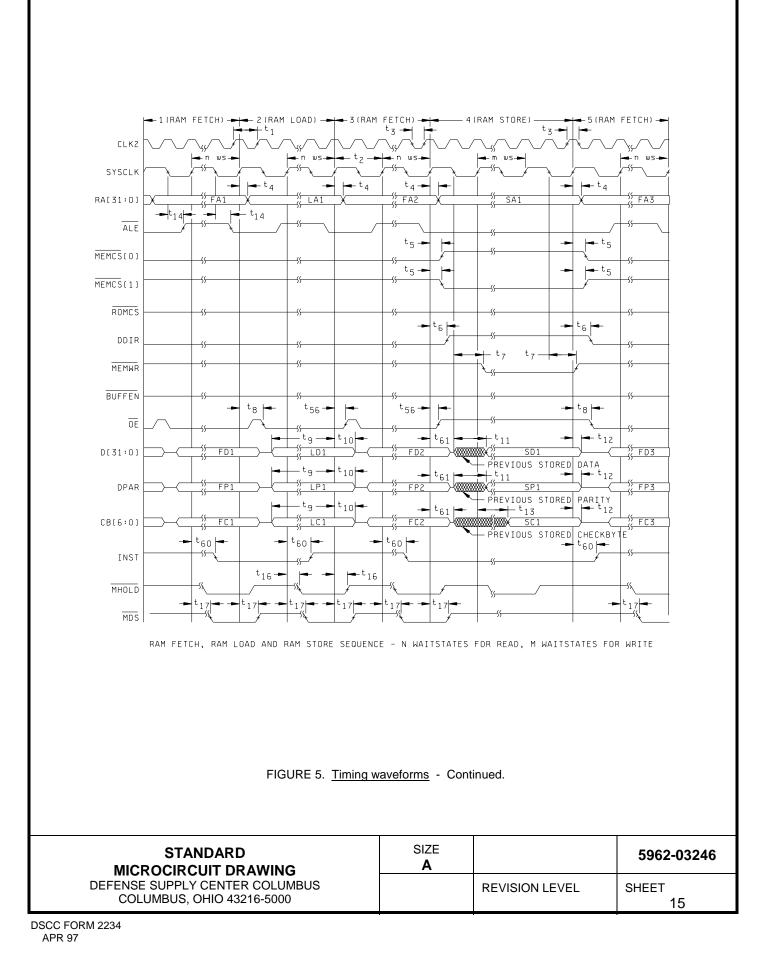
Case outline X

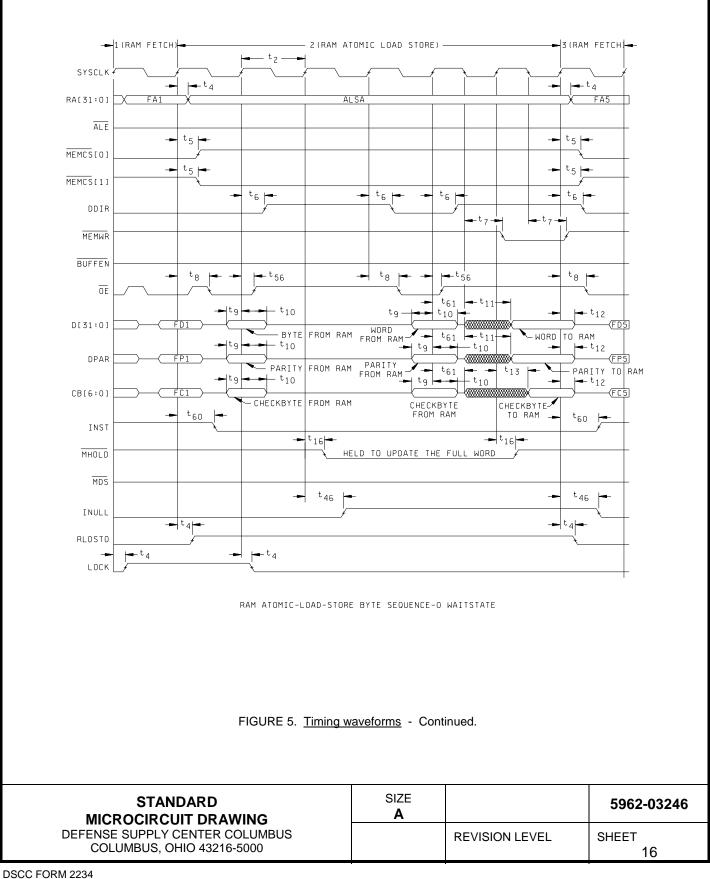
		D			A e e e N2 b INDEX CORNER A2		
	Symbol	Millimete	ers		Inches		
		Min	Max	Min	Max		
	A	2.41	3.18	.095	.125		
	A1	2.06	2.56	.081	.101		
	A2	0.05	0.36	.002	.014		
	b	0.15	0.25	.006	.010		
	с	0.10	0.20	.004	.008		
	D/E	53.23	55.74	2.095	2.195		
	D1/E1	36.83	37.34	1.450	1.470		
	е	0.508 BS	SC		020 BSC		
	L	8.20	9.20	.323	.362		
	N1/N2	64			64		
		FIGURE	1. <u>Case o</u>	<u>utline</u> .	_		
	IDARD			IZE			5962-03246
MICROCIRCU DEFENSE SUPPLY (COLUMBUS, O	CENTER COLI	JMBUS		A	REVISION LE	EVEL	SHEET 10

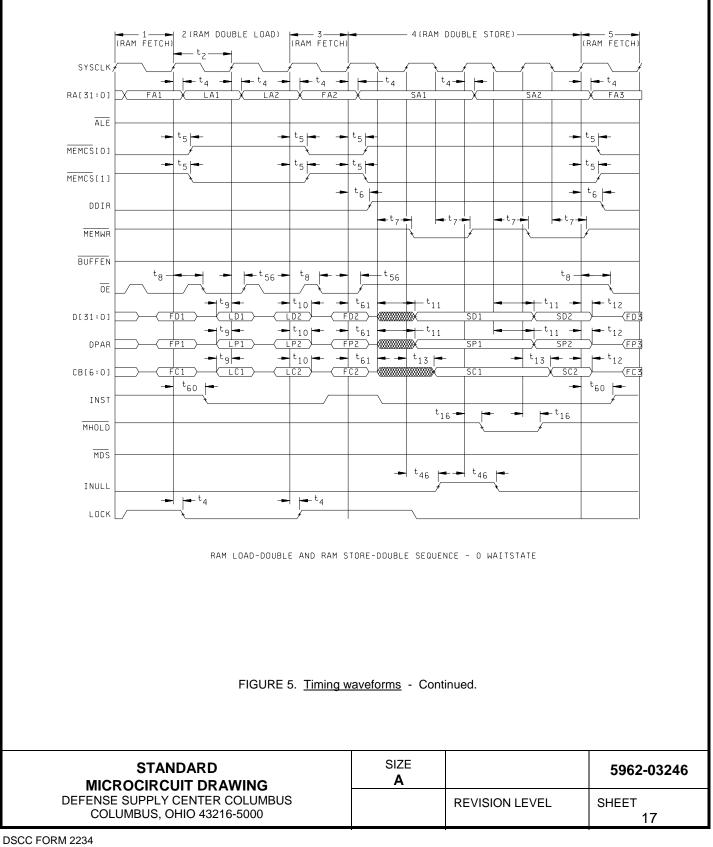
Pin name	Pin number	Pin name	Pin number	Pin name	Pin number	Pin name
GPIINT	33	D[20]	65	D[0]	97	RA[18]
GPI[7]	34	D[19]	66	RSIZE[1]	98	V _{DDO}
V _{DDO}	35	D[18]	67	RSIZE[0]	99	V _{SSO}
V _{SSO}	36	V _{DDO}	68	RASI[3]	100	RA[17]
GPI[6]	37	V _{SSO}	69	V _{DDO}	101	RA[16]
GPI[5]	38	D[17]	70	Vsso	102	RA[15]
GPI[4]	39	D[16]	71	RASI[2]	103	V _{DDO}
GPI[3]	40	V _{CCI}	72	RASI[1]	104	V _{SSO}
V _{DDO}	41	V _{SSI}	73	RASI[0]	105	RA[14]
V _{SSO}	42	D[15]	74	RA[31]	106	V _{DDI}
GPI[2]	43	D[14]	75	RA[30]	107	V _{SSI}
GPI[1]	44	V _{DDO}	76	V _{DDO}	108	RA[13]
GPI[0]	45	V _{SSO}	77	V _{SSO}	109	RA[12]
D[31]	46	D[13]	78	RA[29]	110	V _{DDO}
D[30]	47	D[12]	79	RA[28]	111	V _{SSO}
V _{DDO}	48	D[11]	80	RA[27]	112	RA[11]
V _{SSO}	49	D[10]	81	V _{DDO}	113	RA[10]
D[29]	50	V _{DDO}	82	V _{SSO}	114	RA[9]
D[28]	51	V _{SSO}	83	RA[26]	115	V _{DDO}
V _{DDI}	52	D[9]	84	RA[25]	116	V _{SSO}
V _{SSI}	53	D[8]	85	RA[24]	117	RA[8]
D[27]	54	D[7]	86	V _{DDI}	118	RA[7]
D[26]	55	D[6]	87	V _{SSI}	119	RA[6]
V _{DDO}	56	V _{DDO}	88	V _{DDO}	120	V_{DDO}
V _{SSO}	57	V _{SSO}	89	V _{SSO}	121	V _{SSO}
D[25]	58	D[5]	90	RA[23]	122	RA[5]
D[24]	59	D[4]	91	RA[22]	123	RA[4]
D[23]	60	D[3]	92	RA[21]	124	RA[3]
D[22]	61	D[2]	93	V_{DDO}	125	V_{DDO}
V _{DDO}	62	V _{DDO}	94	V _{SSO}	126	V _{SSO}
V _{SSO}	63	V _{SSO}	95	RA[20]	127	RA[2]
D[21]	64	D[1]	96	RA[19]	128	RA[1]
	GPIINT GPI[7] V _{DDO} V _{SSO} GPI[6] GPI[4] GPI[3] V _{DDO} V _{SSO} GPI[2] GPI[1] GPI[0] D[31] D[30] V _{DD0} V _{SSO} D[29] D[28] V _{DD0} V _{SSO} D[29] D[28] V _{DD0} V _{SSS} D[27] D[27] D[26] V _{DD0} V _{SSS} D[27] D[26] V _{DD0} V _{SSO} D[27] D[26] V _{DD0} V _{SSO} D[27] D[22] V _{DD0} V _{SSO} D[22] D[23] D[22] V _{DD0}	Pin name number GPIINT 33 GPI[7] 34 VDDO 35 VSSO 36 GPI[6] 37 GPI[5] 38 GPI[4] 39 GPI[3] 40 VDDO 41 VSSO 42 GPI[2] 43 GPI[1] 44 GPI[0] 45 D[31] 46 D[30] 47 VDDO 48 VSSO 49 D[29] 50 D[28] 51 VDDI 52 VSSI 53 D[27] 54 D[26] 55 VDDO 56 VSSO 57 D[25] 58 D[24] 59 D[23] 60 D[22] 61 VDDO 62 VSSO 63	Pin name number Pin name GPIINT 33 D[20] GPI[7] 34 D[19] Vbbo 35 D[18] Vsso 36 Vbbo GPI[6] 37 Vsso GPI[6] 37 Vsso GPI[5] 38 D[17] GPI[4] 39 D[16] GPI[3] 40 Vccl Vbbo 41 Vssi Vsso 42 D[15] GPI[2] 43 D[14] GPI[1] 44 Vbbo GPI[0] 45 Vsso D[31] 46 D[13] D[30] 47 D[12] Vbbo 48 D[11] Vsso 49 D[10] D[28] 51 Vsso Vbbi 52 D[9] Vssi 53 D[8] D[27] 54 D[7] D[26] 55 D[6]	Pin name number Pin name number GPIINT 33 D[20] 65 GPI[7] 34 D[19] 66 V _{DDO} 35 D[18] 67 V _{SSO} 36 V _{DDO} 68 GPI[6] 37 V _{SSO} 69 GPI[6] 38 D[17] 70 GPI[4] 39 D[16] 71 GPI[3] 40 V _{CCI} 72 V _{DDO} 41 V _{SSI} 73 V _{SSO} 42 D[15] 74 GPI[2] 43 D[14] 75 GPI[1] 44 V _{DDO} 76 GPI[0] 45 V _{SSO} 77 D[31] 46 D[13] 78 D[30] 47 D[12] 79 V _{DDO} 48 D[11] 80 V _{SSO} 49 D[10] 81 D[29] 50 V _{DDO} 82	Pin name number Pin name number Pin name GPIINT 33 D[20] 65 D[0] GPI[7] 34 D[19] 66 RSIZE[1] VDDD 35 D[18] 67 RSIZE[0] VSSO 36 VDDO 68 RASI[3] GPI[6] 37 VSSO 69 VDDO GPI[4] 39 D[16] 71 RASI[2] GPI[3] 40 VCC1 72 RASI[1] VDDO 41 VSSI 73 RASI[0] VSSO 42 D[15] 74 RA[31] GPI[1] 44 VDDO 76 VDDO GPI[0] 45 VSSO 77 VSSO D[31] 46 D[13] 78 RA[29] D[30] 47 D[12] 79 RA[28] VDDO 48 D[11] 80 RA[27] VSSO 49 D[10] 81	Pin name number Pin name number Pin name number GPIINT 33 D[20] 65 D[0] 97 GPI[7] 34 D[19] 66 RSIZE[1] 98 Vbb0 35 D[18] 67 RSIZE[0] 99 Vsso 36 Vbb0 68 RASI[3] 100 GPI[6] 37 Vsso 69 Vbb0 101 GPI[6] 37 Vsso 69 Vbb0 102 GPI[4] 39 D[16] 71 RASI[2] 103 GPI[3] 40 Vcci 72 RASI[1] 104 Vbb0 41 Vssi 73 RASI[0] 105 Vsso 42 D[15] 74 RA[31] 106 GPI[1] 44 Vbb0 76 Vbb0 108 GPI[0] 45 Vsso 77 Vsso 109 D[31] 46 D[13]

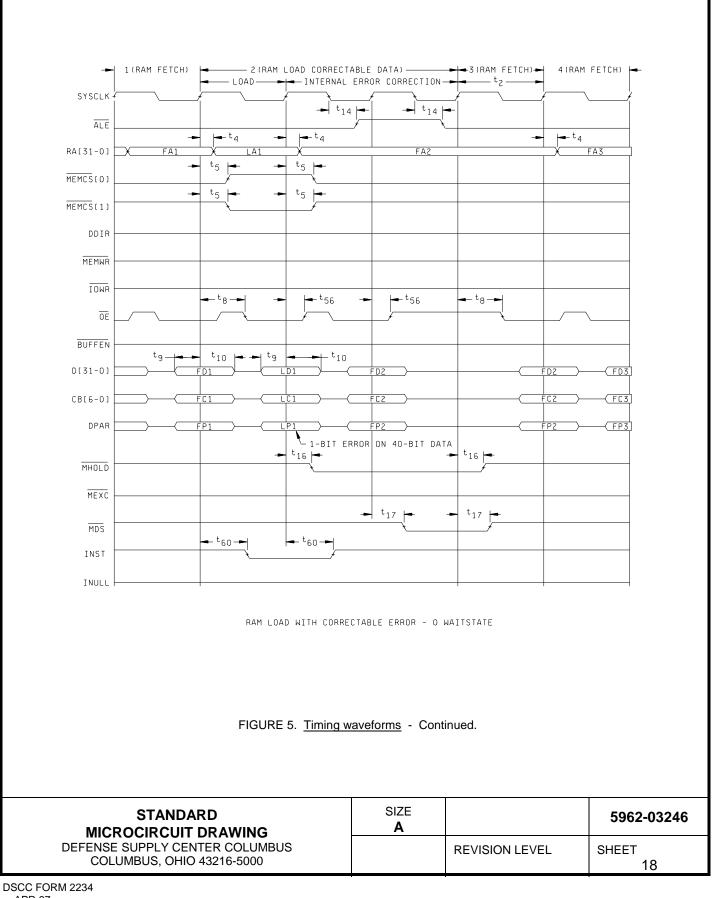
			Ca	se X				
Pin number	Pin name	Pin number	Pin name	Pin number	Pin nam	e Pin numb	er	Pin name
129	RA[0]	161	SYSERR	193	DXFER	225	Ī	MEMCS[3]
130	V _{DDO}	162	SYSAV	194	MEXC	226		V _{DDO}
131	V _{SSO}	163	EXTINT[4]	195	V _{DDO}	227		V _{SSO}
132	RAPAR	164	EXTINT[3]	196	V _{SSO}	228	Ī	MEMCS[2]
133	RASPAR	165	EXTINT[2]	197	RESET	229	Ī	MEMCS[1]
134	DPAR	166	EXTINT[1]	198	SYSRESI	T 230	Ň	MEMCS[0]
135	V _{DDO}	167	EXTINT[0]	199	BA[1]	231		V _{DDI}
136	V _{SSO}	168	V _{DDI}	200	BA[0]	232		V _{SSI}
137	SYSCLK	169	V _{SSI}	201	CB[6]	233		ŌĒ
138	TDO	170	EXTINTACK	202	CB[5]	234		V _{DDO}
139	TRST	171	IUERR	203	V_{DDO}	235		V _{SSO}
140	TMS	172	V _{DDO}	204	V _{SSO}	236		MEMWR
141	TDI	173	V _{SSO}	205	CB[4]	237		BUFFEN
142	ТСК	174	CPAR	206	CB[3]	238		DDIR
143	CLK2	175	TXA	207	CB[2]	239		V _{DDO}
144	DRDY	176	RXA	208	CB[1]	240		V _{SSO}
145	DMAAS	177	RXB	209	V_{DDO}	241		DDIR
146	V _{DDO}	178	ТХВ	210	V_{SSO}	242		MHOLD
147	V _{SSO}	179	IOWR	211	CB[0]	243		MDS
148	DMAGNT	180	IOSEL[3]	212	ALE	244		WDCLK
149	EXMCS	181	V _{DDO}	213	V _{DDI}	245		IWDE
150	V _{DDI}	182	V _{SSO}	214	V _{SSI}	246		EWDINT
151	V _{SSI}	183	IOSEL[2]	215	PROM	247	-	TMODE[1]
152	DMAREQ	184	IOSEL[1]	216	ROMCS	248	-	TMODE[0]
153	BUSERR	185	IOSEL[0]	217	MEMCS[9] 249		DEBUG
154	BUSRDY	186	WRT	218	V_{DDO}	250		INULL
155	ROMWRT	187	WE	219	V_{SSO}	251		DIA
156	NOPAR	188	V _{DDO}	220	MEMCS[8] 252		V _{DDO}
157	SYSHALT	189	V _{SSO}	221	MEMCS[7] 253		V _{SSO}
158	CPUHALT	190	RD	222	MEMCS[6] 254		FLUSH
159	V _{DDO}	191	RLDSTO	223	MEMCS[5] 255		INST
160	V _{SSO}	192	LOCK	224	MEMCS[4] 256		RTC
		FIGU	RE 2. <u>Terminal c</u>	onnections	- Continue	d.		
МІС	STANDA ROCIRCUIT		G	SIZE A				5962-03
DEFENS	E SUPPLY CEN LUMBUS, OHIC	ITER COLU	MBUS		REV	ISION LEVE		SHEET 12

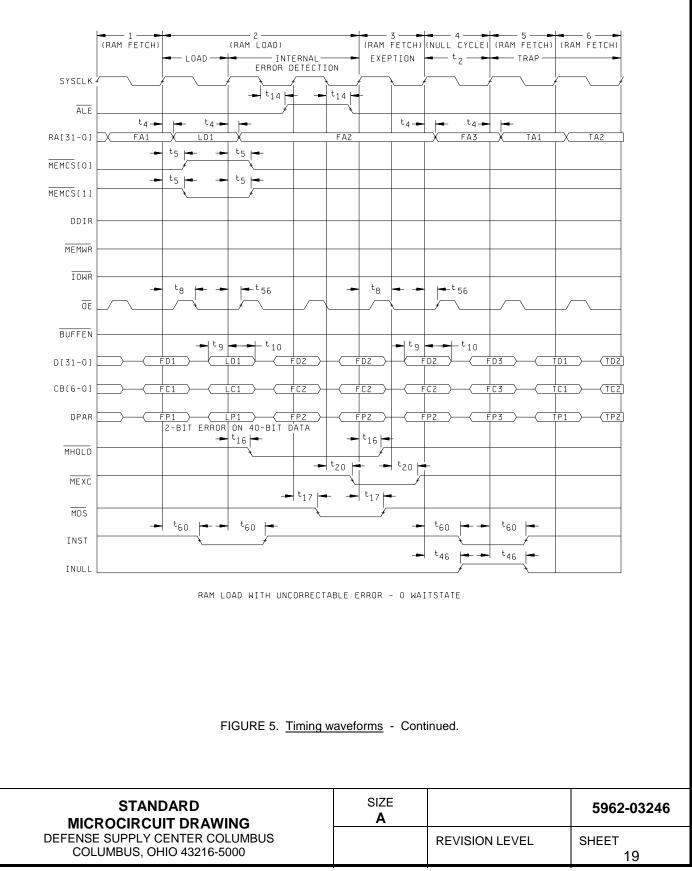



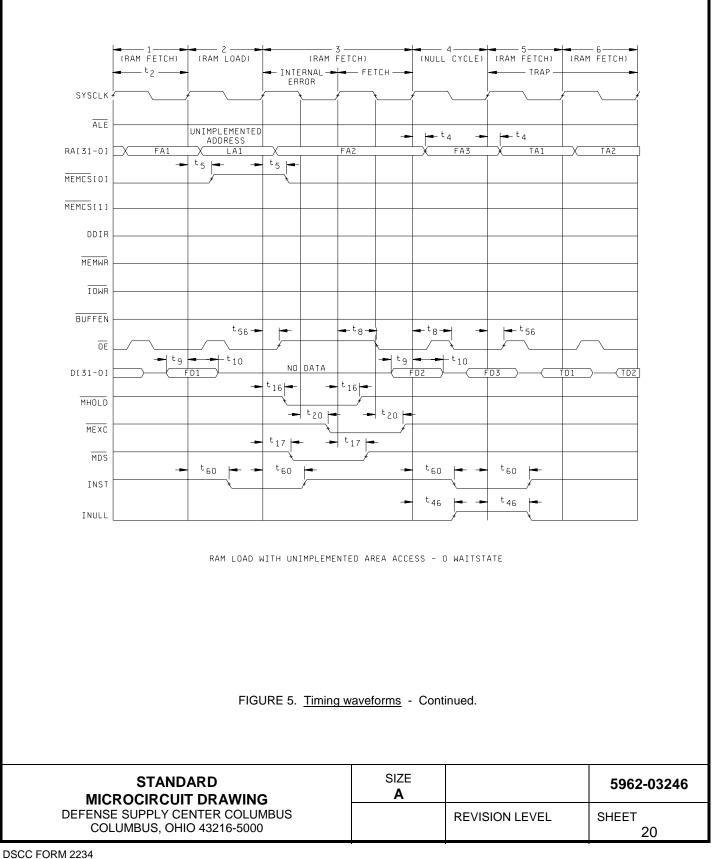

FIGURE 3. Block diagram.

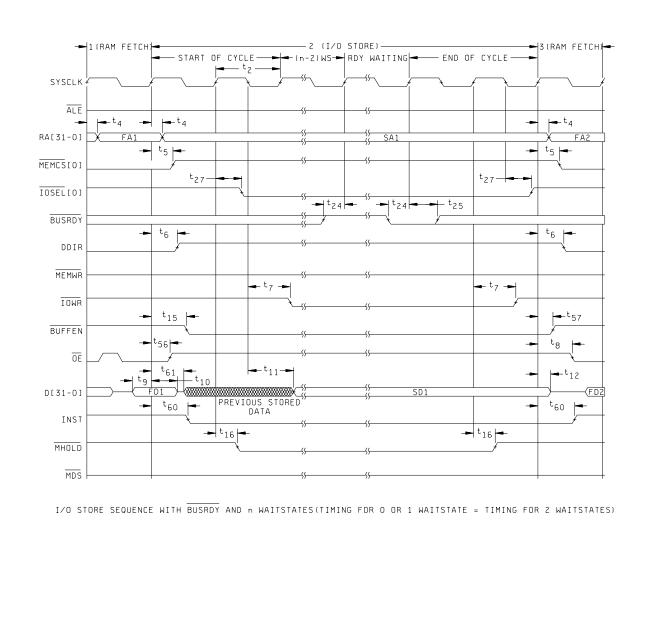

Device type 01						
Instruction name	Instruction code					
BYPASS	11.1111					
EXTEST	00.0000					
SAMPLE/PRELOAD	00.0001					
INTEST	00.0011					
ID code	10.0000					
Reserved for emulation	01.1000					
Reserved for emulation	01.1001					
Reserved for emulation	01.1010					
Reserved for emulation	01.1100					
Reserved for emulation	01.1101					
Reserved for emulation	01.1110					

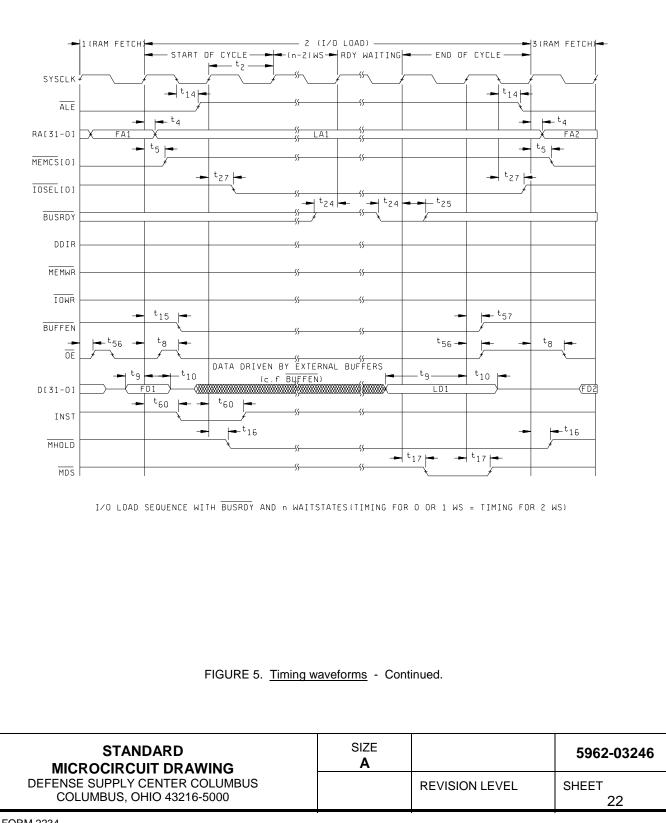

FIGURE 4. Boundary scan instruction codes.

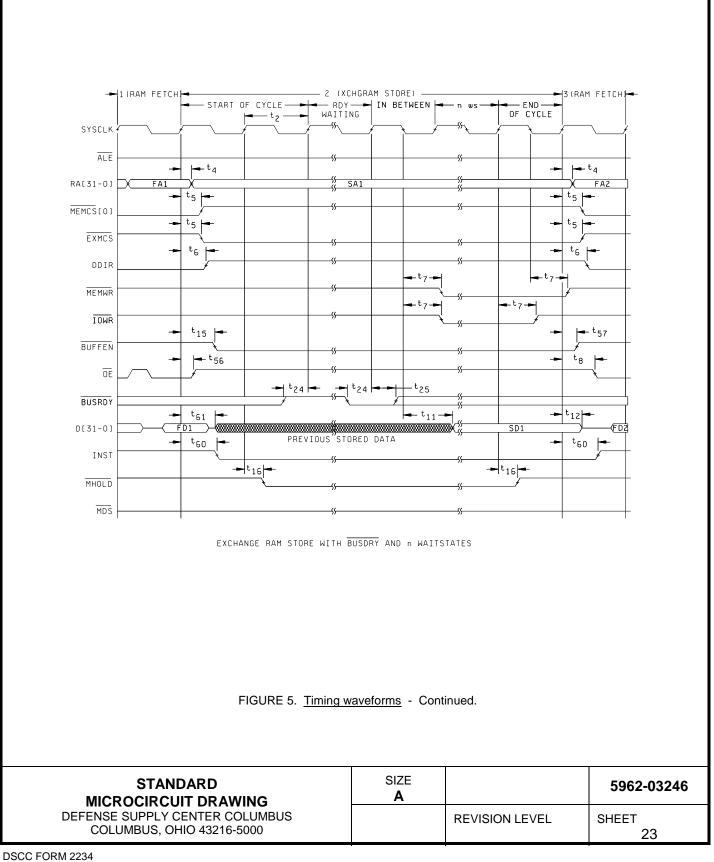

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-03246
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 13

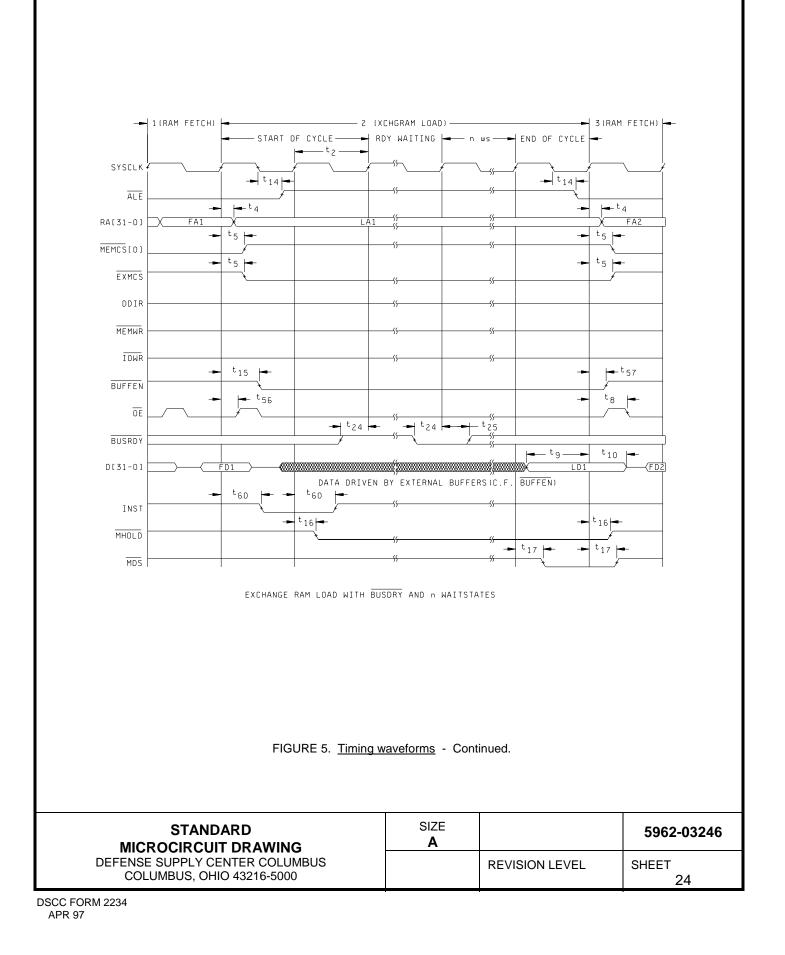


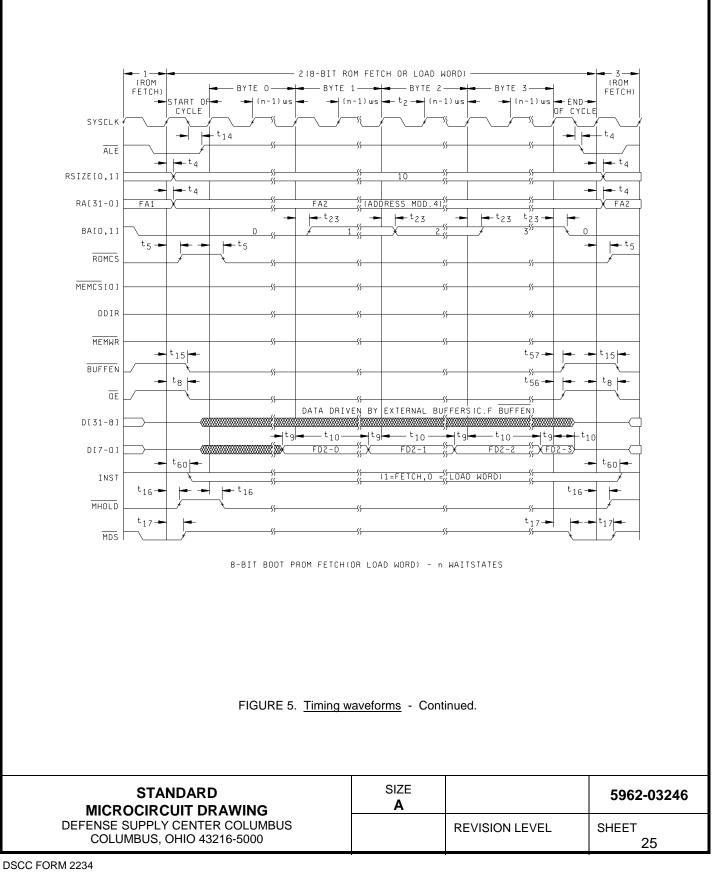


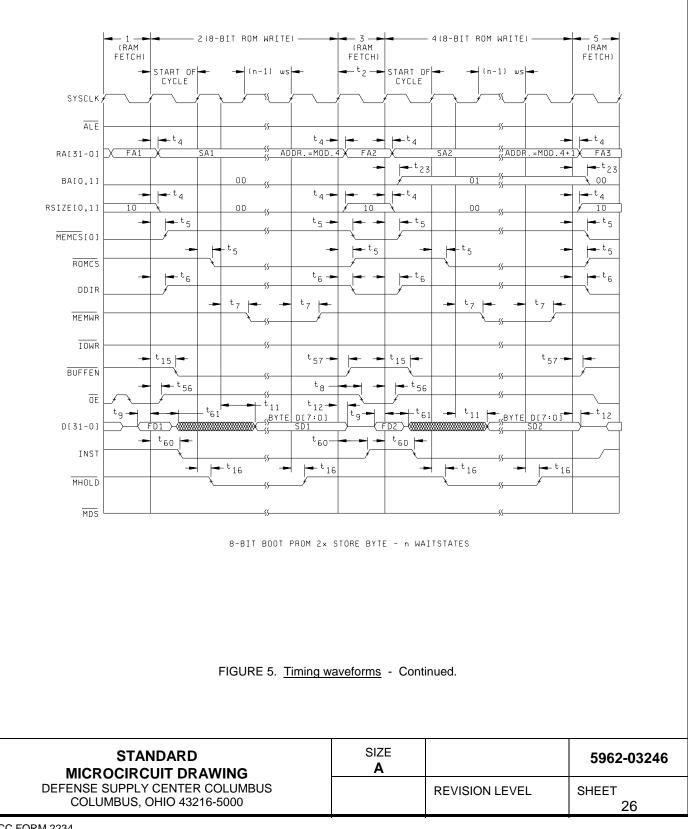


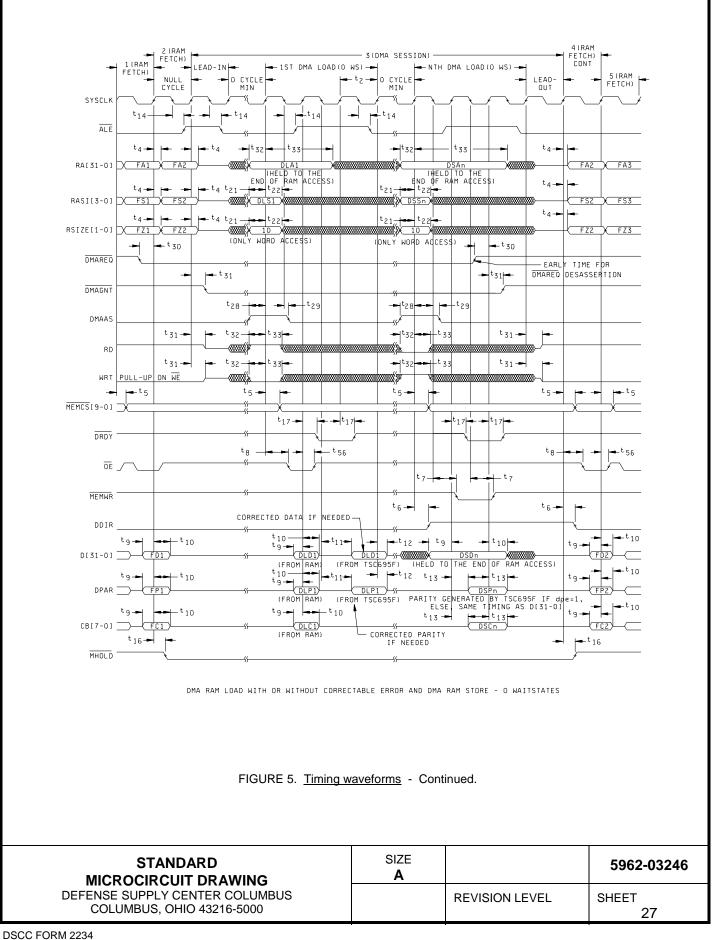


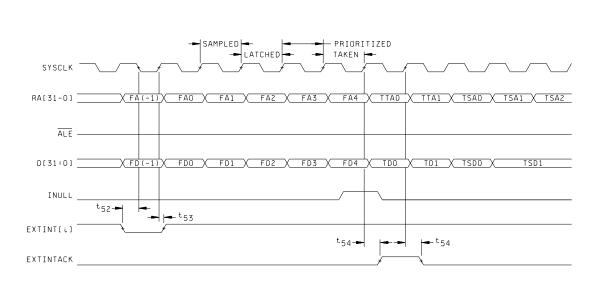


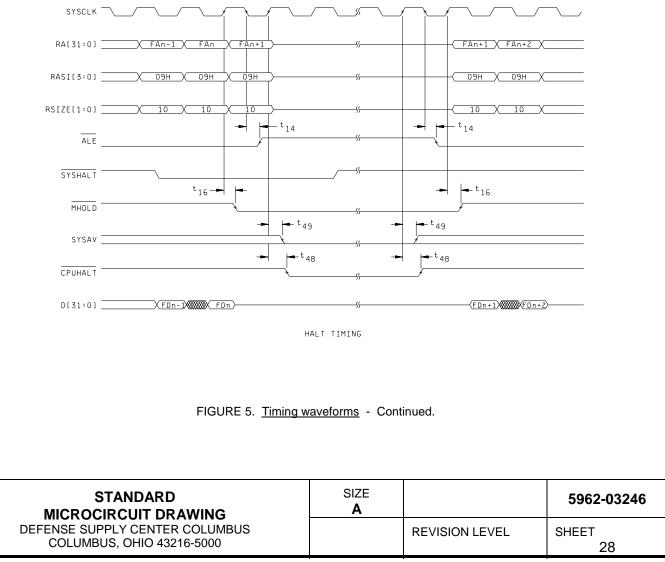


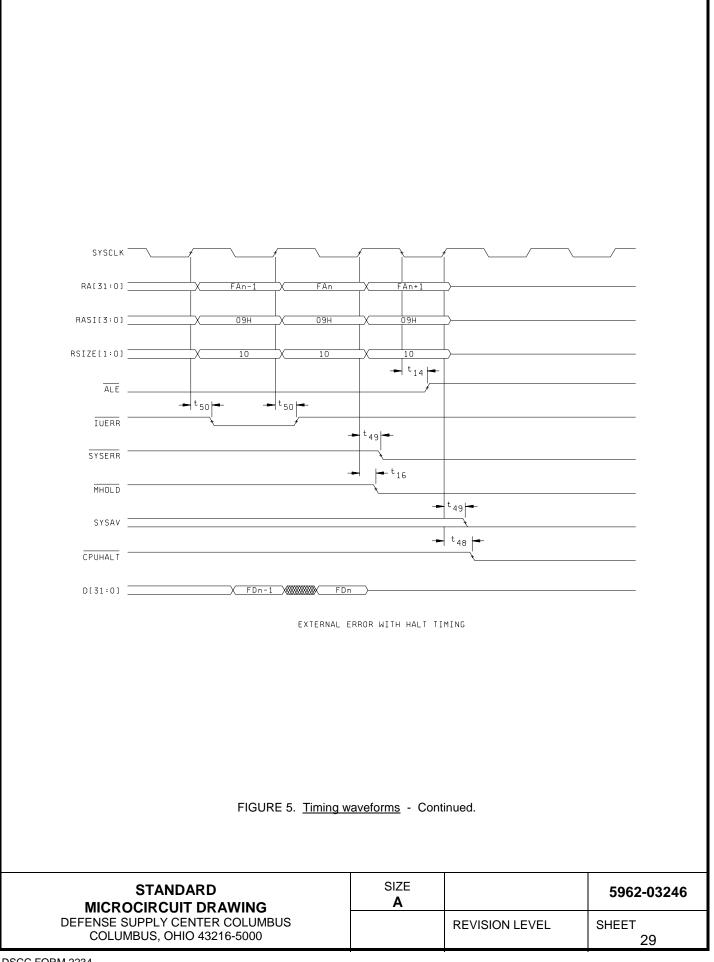

FIGURE 5. Timing waveforms - Continued.

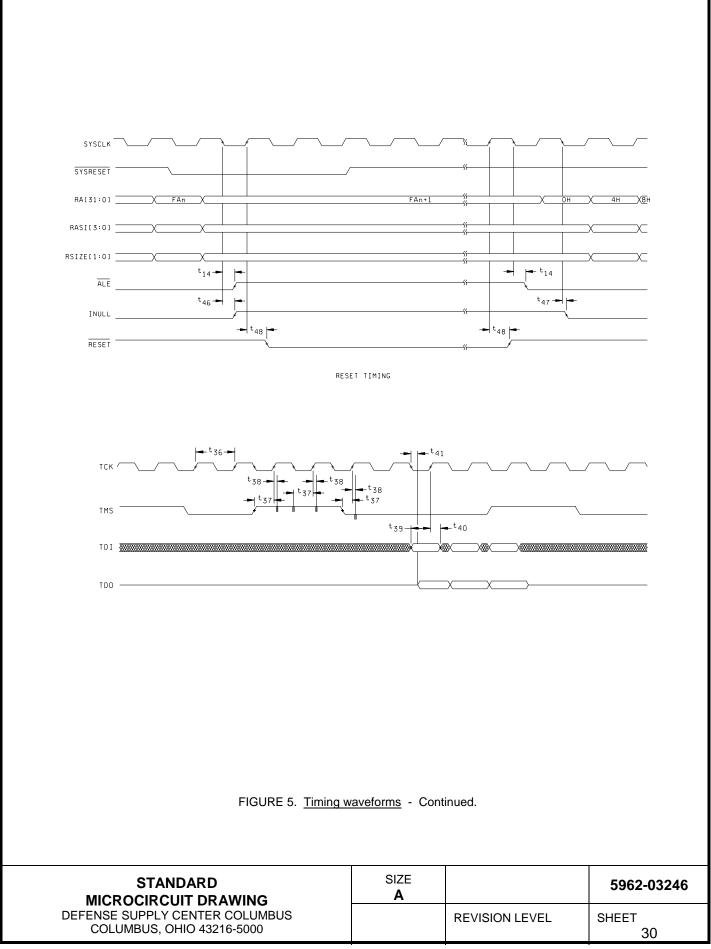

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-03246
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 21











EDGE TRIGGERED INTERRUPT TIMING

Case outline	$V_{DD} = 3.3 \pm 0.15 V$	Ground	Other
X	1 - 3, 5 - 9, 11 - 16, 20, 23, 24, 28, 30, 33, 34, 36, 40, 44, 50, 53, 56, 58, 62, 66 - 69, 71 - 76, 78 - 81, 83 - 86, 88, 90 - 93, 95 - 98, 100 - 103, 105, 106, 108 - 110, 112 - 115, 117 - 120, 122 - 125, 127 - 130, 132 - 135, 137, 138, 140 - 142, 144, 146, 148 - 150, 152 - 155, 157 - 159, 161 - 168, 170 - 172, 174 - 181, 183 - 188, 190 - 195, 197, 199, 200, 203, 206, 208, 209, 212, 213, 215 - 218, 220 - 226, 228 - 231, 233, 234, 236 - 239, 241 - 243, 250 - 252, 254 - 256	4, 10, 17 - 19, 21, 22, 25 - 27, 29, 31, 32, 35, 37 - 39, 41 - 43, 45 - 49, 51, 52, 54, 55, 57, 59 - 61, 63 - 65, 70, 77, 82, 87, 89, 94, 99, 104, 107, 111, 116, 121, 126, 131, 136, 139, 145, 147, 151, 156, 160, 169, 173, 182, 189, 196, 198, 201, 202, 204, 205, 207, 210, 211, 214, 219, 227, 232, 235, 240, 244 - 249, 253	143

NOTES:

- 1. Pin 138 (TDO) is in the high-impedance (High Z) state.
- 2. Pin 143 (CLK2) is activated at low frequency (below 100 Hz).
- The product is set in reset mode.
 The following pins have serial resistors with the specified value attached:
 - 1 k Ω : 2, 5 8, 11 15, 18, 19, 22, 23, 26 29, 32 35, 38, 39, 42, 43, 46 49, 52 55, 58 - 61, 64, 65, 134, 139 - 143, 145, 152 - 157, 163 - 167, 176, 177, 198, 201, 202, 205 - 208, 211, 215, and 244 - 249.
 - 5.6 k Ω : 1, 66 68, 71 75, 78 80, 83 85, 90 92, 95 97, 100 102, 105, 108, 109, 112 - 114, 117 - 119, 122 - 124, 127 - 129, 132, 133, 137, 138, 144, 148, 149, $158,\,161,\,162,\,170,\,171,\,174,\,175,\,178-180,\,183-187,\,190-194,\,197,\,199,$ 200, 212, 216, 217, 220 - 225, 228 - 230, 233, 236 - 238, 241 - 243, 250, 251, and 254 - 256.

For all other pins, no serial resistor is attached.

- 5. The following output pins have output buffer capacitors with the specified value attached: 400 pF: 74, 75, 78 - 80, 83 - 85, 90 - 92, 95 - 97, 100 - 102, 105, 108, 109,
 - 112 114, 117 119, 122 124, 127 129, 233, and 236.
 - For all other output pins, output buffers are 150 pF.
- The following I/O pins are Input at reset: 2, 5 8, 11 13, 134, 201, 202, 205 208, and 211. 6.
- 7. V_{DDO}/V_{SSO} = Output buffers.
- 8. V_{DDI}/V_{SSI} = Internal logic.

FIGURE 6. Radiation exposure connections.

Device	TA =	V _{DD} =	3.15 V	Bias for
type	Temperature ±10°C <u>3</u> /	Effective LET no upsets [MeV/(mg/cm ²)]	Maximum device cross section (LET = 80) (cm ²)	latch-up test $V_{DD} = 3.45 V$ no latch-up LET <u>3</u> /
All	+25°C	8	2E-5	>80

TABLE IB. SEP test limits. 1/ 2/

1/ Devices that contain cross coupled resistance must be tested at the maximum rated T_A. For SEP test condition, see 4.4.4 herein.

2/ Technology characterization and model verification supplemented by in-line data may be used in lieu of end-of-line. Test plan must be approved by TRB and qualifying activity.

<u>3</u>/ Worst case temperature $T_A = +125^{\circ}C$.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-03246
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 31

4. QUALITY ASSURANCE PROVISIONS

4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.

- 4.2.1 Additional criteria for device class M.
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table IIA herein.

4.2.2 Additional criteria for device classes Q and V.

- a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
- b. Interim and final electrical test parameters shall be as specified in table IIA herein.
- c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

- 4.4.1 Group A inspection.
 - a. Tests shall be as specified in table IIA herein.
 - b. For device class M, subgroups 7 and 8 tests shall verify the instruction set. The instruction set forms a part of the vendor's test tape and shall be maintained and available for review from the approved sources of supply. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device.
 - c. Subgroup 4 (C_{IN} measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance. A minimum sample of 3 devices with zero rejects shall be required.
- 4.4.2 <u>Group C inspection</u>. The group C inspection end-point electrical parameters shall be as specified in table IIA herein.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		5962-03246
		REVISION LEVEL	SHEET 32

4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:

- a. Test condition D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- b. $T_A = +125^{\circ}C$, minimum.
- c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.

4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table IIA herein.

4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein).

- a. End-point electrical parameters shall be as specified in table IIA herein.
- b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table IA at $T_A = +25^{\circ}C \pm 5^{\circ}C$, after exposure, to the subgroups specified in table IIA herein.
- c. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied.

4.4.4.1 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883, test method 1019 (condition B) and as specified herein.

4.4.4.1.1 <u>Accelerated aging test</u>. Accelerated aging tests shall be performed on all devices requiring a RHA level greater than 5k rads (Si). The post-anneal end-point electrical parameter limits shall be as specified in table IA herein and shall be the pre-irradiation end-point electrical parameter limit at $25^{\circ}C \pm 5^{\circ}C$. Testing shall be performed at initial qualification and after any design or process changes which may affect the RHA response of the device.

4.4.4.2 <u>Dose rate induced latchup testing</u>. Dose rate induced latchup testing shall be performed in accordance with test method 1020 of MIL-STD-883 and as specified herein (see paragraph 1.5). Tests shall be performed on devices, the Standard Evaluation Circuit (SEC), or approved test structures at technology qualification and after any design or process changes which may effect the RHA capability of the process.

4.4.4.3 <u>Dose rate upset testing</u>. Dose rate upset testing shall be performed in accordance with MIL-STD-883, test method 1021 and herein (see paragraph 1.5).

- a. Transient dose rate upset testing shall be performed at initial qualification and after any design or process changes which may effect the RHA performance of the devices. Test 10 devices with 0 defects unless otherwise specified.
- b. Transient dose rate upset testing for class Q and V devices shall be performed as specified by a TRB approved radiation hardness assurance plan and MIL-PRF-38535.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		5962-03246
		REVISION LEVEL	SHEET 33

Test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)	Subgroups (in accordance with MIL-PRF-38535, table III)	
	Device class M	Device class Q	Device class V
Interim electrical parameters (see 4.2)			1, 7, 9
Final electrical parameters (see 4.2)	1, 2, 3, 7, 8, 9, 10, 11 <u>1</u> /	1, 2, 3, 7, 8, 9, 10, 11 <u>1</u> /	1, 2, 3, 7, 8, 9, 10, 11 <u>2/ 3</u> /
Group A test requirements (see 4.4)	1, 2, 3, 4, 7, 8, 9, 10, 11	1, 2, 3, 4, 7, 8, 9, 10, 11	1, 2, 3, 4, 7, 8, 9, 10, 11
Group C end-point electrical parameters (see 4.4)	2, 8A, 10	2, 8A, 10	2, 8A, 10 <u>3</u> /
Group D end-point electrical parameters (see 4.4)	1, 7, 9	1, 7, 9	1, 7, 9
Group E end-point electrical parameters (see 4.4)	1, 7, 9	1, 7, 9	1, 7, 9

TABLE IIA. Electrical test requirements.

<u>1</u>/ PDA applies to subgroup 1.
 <u>2</u>/ PDA applies to subgroups 1 and 7.
 <u>3</u>/ Delta limits are as specified in table IIB herein and shall be required where specified in table I.

Parameter <u>1</u> /	Limit	Unit
V _{OH}	±0.1	V
V _{OL}	±0.1	V
Ін	±0.1	μA
IIL	±0.1	μA
I _{OZH}	±0.1	μA
l _{ozl}	±0.1	μA

TABLE IIB. Delta limits.

1/ The parameters shall be recorded before and after the required burn-in and life test to determine the delta limits.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		5962-03246
		REVISION LEVEL	SHEET 34

4.4.4.4 <u>Single event phenomena (SEP)</u>. SEP testing shall be required on class V devices (see paragraph 1.5). SEP testing shall be performed on the SEC or alternate SEP test vehicle as approved by the qualifying activity at initial qualification and after any design or process changes which may effect the upset or latchup characteristics. The recommended test conditions for SEP are as follows:

- a. The ion beam angle of incidence shall be between normal to the die surface and 60° to the normal, inclusive (i.e. $0^\circ \le$ angle $\le 60^\circ$). No shadowing of the ion beam due to fixturing or package related effects is allowed.
- b. The fluence shall be ≥ 100 errors or $\geq 10^6$ ions/cm².
- c. The flux shall be between 10² and 10⁵ ions/cm²/s. The cross-section shall be verified to be flux independent by measuring the cross-section at two flux rates which differ by at least an order of magnitude.
- d. The particle range shall be ≥ 20 microns in silicon.
- e. The upset test temperature shall be +25°C and the latchup test temperature is maximum rated operating temperature $\pm 10^{\circ}$ C.
- f. Bias conditions shall be defined by the manufacturer for latchup measurements.
- g. Test four devices with zero failures.
- h. For SEP test limits, see table IB herein.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.1.2 <u>Substitutability</u>. Device class Q devices will replace device class M devices.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.

6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA , Columbus, Ohio 43216-5000, or telephone (614) 692-0547.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and table III herein.

6.6 Sources of supply.

6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		5962-03246
		REVISION LEVEL	SHEET 35

6.6.2 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

6.7 <u>Additional information</u>. A copy of the following additional data shall be maintained and available from the device manufacturer:

- a. RHA upset levels.
- b. Test conditions (SEP).
- c. Number of upsets (SEP).
- d. Number of transients (SEP).
- e. Occurrence of latchup (SEP).

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		5962-03246
		REVISION LEVEL	SHEET 36

Pin name	Type <u>1</u> /		Descrip	ition	
	1	IU and FF	PU Signals		
RA[31:0]	1/0	Registered address bus. The add processor, the IU address bus is check against the memory access registers. To save board space, the This means that internal D-type fl IU address bus at each rising edg address bus is always driven by the	used to perform as protection sche the address bus lip-flop's are impl ge of SYSCLK er	decoding, to generate select eme. It is also used to addre- is sent out registered for ex lemented inside the device to nabled by ALE signal. This	ct signals and to ress the system ternal resources. to memorize the s registered
In case of DMA session, the address bus for the device is an input bus. The drives itself the registered address bus for the available parts of the processor session and for the external resources (SRAM's, ROM's, I/O's).					
		Organization and addressing of d lower addresses contain the high generate a memory-address-not-	ner-order bytes.	Attempting to access misalig	
RAPAR	I/O	Registered address bus parity. T save board space, this signal is s			
		In case of DMA session, this sign This input requires the same timir		∩ by the DMA unit if DMA pa	arity is enabled.
RASI[3:0]	I/O	4-bit registered address space identifier. These four bits constitute the Address Space Identifier (ASI), which identifies the memory address space to which the instruction or data access is being directed. The ASI bits are provided to detect supervisor or user mode, instruction or data access. Inside the processor, these identifiers are used to control accesses to on-chip peripherals. To save board space, these outputs are sent out registered and has the same timing as RA[31:0].			
		In case of DMA session, these significant the same timing as RA[31:0].	gnals must be dr	iven by the DMA unit. Thes	e inputs require
RSIZE[1:0]	I/O	2-bit registered bus transaction si being transferred during an instru sent out registered and has the si	uction or a data fe	etch. To save board space,	
RASPAR	I/O	Registered ASI and SIZE parity. RSIZE[1:0] signals. To save boat timing as RA[31:0].			
		In case of DMA session, this sign This input requires the same timir		n by the DMA unit if DMA pa	arity is enabled.
CPAR	I/O	Control bus parity. This output is and $\overline{\text{WE}}$ signals. This signal is s is used.			
	In case of DMA session, this signal must be driven by the DMA unit if DMA parity is enabled				aritv is enabled.

REVISION LEVEL

SHEET

37

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 DSCC FORM 2234 APR 97

Pin name	Type <u>1</u> /		Descript	tion	
	<u> </u>	IU and FPU Sigr	nals – Continued	d	
D[31:0]	I/O	32-bit data bus. These signals for between the device and external system registers accesses, it is o store instructions and the store c	orm a 32-bit bidire I memory. The dat only driven during cycle of atomic-loa	ectional data bus that serves ta bus is not driven by the c the execution of integer and ad-store instructions on exte	device during d floating-point ernal memory.
		Store data is valid during the sec data cycle of a store double acce			
		Alignment for load and store instr aligned on 8-byte boundaries, wo boundaries. If a doubleword, wo improperly aligned address, a me operands are always expected to most significant bit of the most si	ords on 4-byte bou ord, or halfword loa emory address no o reside in a 32-bit	undaries, and halfwords on ad or store instruction gener ot aligned trap will occur. In t wide memory. D[31] corre	2-byte rates an structions and esponds to the
CB[6:0]	I/O	7-bit check-bit bus. CB[6:0] is the EDAC checkword over the 33-bit data bus consisting of D[31:0] and the parity bit (DPAR). When the device performs a write operation to the main memory, it will assert the EDAC checkword on the CB[6:0]. During read access from the main memory, CB[6:0] are input signals and will be used for checking and correction of the data word and the parity bit. During read access to areas which do not generate a parity bit, the device will latch the data from the accessed address and drive the correct parity bit on the DPAR pin.			
DPAR	I/O	Data bus parity. This pin is used 32-bit data bus during write cycle In case of DMA session, this sign	es. DPAR = not (D	D[31] xor D[30] xor xor D	0[1] xor D[0])
RLDSTO	I/O	Registered atomic load-store. The and is asserted by the IU during a atomic load-store instructions.	Registered atomic load-store. This signal is used to identify an atomic load-store to the system and is asserted by the IU during all the data cycles (the load cycle and both store cycles) of atomic load-store instructions. To save board space, LDSTO is sent out registered.		
		In case of DMA session, this sign		-	
ALE	0	Address latch enable. This output be latched. This latch operation	ut is asserted whe is assumed by the	n the internal address bus te internal latch.	from the IU is to
		In case of DMA session, this sign of an external flip-flop used to late			input (SYSCLK)
DXFER	I/O	Data transfer. DXFER is used to instruction fetches and the addre during the address cycles of all b and all three cycles of store doub must be latched externally before	esses of data fetch ous data transfer c ble and atomic loa	nes. DXFER is asserted by cycles, including both cycles	the processor s of store single
		A DMA unit must supply this sign	al during a DMA s	session.	
LOCK	I/O	Bus lock. LOCK is asserted by th (address and data) for multiple cy Atomic Load-Store). The bus will	cycle transactions ((Load Double, Store Single	and Double,
		asserted. Note that MHOLD, wh asserted in the processor clock c is sent out unregistered and mus	hen it reflects the i cycle which follows	internal signal "Bus Hold", s s a cycle in which LOCK is a	should not be
		A DMA unit must supply this sign	al during a DMA s	session.	
See footnote at e	and of table	·	-		_
	STA	NDARD	SIZE	[5962-0324
	CROCIRC	CUIT DRAWING	Α	ļ!	
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		'	REVISION LEVEL	SHEET 38	

38

COLUMBUS, OHIO 43216-5000

 or during memory exception. The IU and FPU internal outputs return to and stay at the value they had on the rising edge of SYSCLK in the cycle in which "Memory Hold" is asserted. "Memory Hold" is tested on the falling edge (midpoint of cycle) of SYSCLK. The memory wait state controller of the device inserts, in this way, wait states during external accesses. "Floating-Point Hold" "Floating-Point Hold" is asserted by the FPU if a situation arises in which the FPU cannot continue execution. The FPU checks all dependencies in the decode stage of the instruction and asserts a "Floating-Point Hold" (if necessary) in the next cycle. If the IU receives a "Floating-Point Hold", it freezes the instruction pipeline in the same cycle. Once the conditions causing the "Floating-Point Hold" are resolved, the FPU deasserts its command, releasing the instruction pipeline. A "Floating-Point Hold" is asserted fit. the FPU encounters an STFSR instruction with one or more FPops pending in the queue, either a resource or operand dependency exists between the FPo being decoded and any FPops already being executed, the floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" is a specialized hold used to synchronize FPU compare instructions with floating-point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instruction. "Bus Hold" "Bus Hold" "Bus Hold" is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at	RD I/O Read access. RD is sent out during the address portion of an access to specify whether the current memory access is a read (RD = '1') or a write (RD = '0') operation. RD is set tow only during the address cycles and set low during the toto store address cycles. RD may be used, in conjunction with SIZE[1:0], AS[1:0], and LDSTO, to determine the type and to check the read/write access rights of bus transactions in the Extended General area. It is sent out unregistered and must be latched externally before it is used. MHOLD O Memory bus hold. The signal is asserted when a "Memory Hold" (MHOLD), or a "Floating Poin Hold" (FGCU) or a Bus Hold (BHOLD) is internally generated. Note that MHOLD Tous the driven HIGH while RESET is LOW. • "Memory Hold" "Memory Hold" " "Memory Hold" is used to freeze the pipeline to both the IU and FPU accessing a slow memory or during memory exception. The IU and FPU internal outputs return to and stay at the value they had on the rising degde of SYSCLK in the revice in which the FPU cannot continue execution. The FPU checks all dependencies in which the FPU cannot continue execution. The FPU checks all dependencies in the decode stage of the instruction and asserts a "Floating-Point Hold" is asserted by the FPU if a situation arises in which the FPU cannot continue execution. The FPU checks all dependencies in the decode stage of the instruction and asserts a "Floating-Point Hold" is asserted with one or more FPops pending in the queue, either a resource or operand dependencies in the easance tycle. Once the condition causing the "Floating-Point Hold" is asserted with one or more FPops pending in the queue, either a resource or operand dependencies in the asame cycle. Once the condition causing the "Floating-Point Ho		Гуре <u>1</u> /		Descript	ion	
current memory access is a read (RD = '1') or a write (RD = '0') operation. RD is set tow only during the address cycles or tore instructions. For atomic toad-store instructions, RD is set tow only be used, in conjunction with St2[1:0], AS[7:0], and LDSTO, to determine the type and to check the read/write access rights of bus transactions in the Extended General area. It is sent out unregistered and must be latched externally before it is used. MHOLD O Memory bus hold. The signal is asserted when a "Memory Hold" (MHOLD), or a "Floating Point Hold" (FGCU) or a Bus Hold (BHOLD) is internally generated. MHOLD O Memory bus hold. The signal is asserted when a "Memory Hold" (MHOLD), or a "Floating Point Hold" (FGCU) or a Bus Hold (BHOLD) is internally generated. Note that MHOLD Tube SYSCLK in the cycle in which "Memory Hold" was asserted. "Memory Hold" "Memory Hold" is used to freeze the pipeline to both the IU and FPU accessing a slow memory or during memory exception. The IU and FPU internal outputs return to and stay at the value they had on the rising edge of SYSCLK in the cycle in which the FPU cannot continue execution. The FPU checks all dependencies in the decode stage of the instruction and asserts a "Floating-Point Hold" is asserted by the FPU if a situation arises in which the FPU cannot continue execution. The FPU checks all dependencies in the exect whe could instruction and asserts a "Floating-Point Hold" if necessers the instruction pipeline in the decode stage of the instruction and asserts a "Floating-Point Hold" is resolved, the FPU deasserts its command, releasing the instruction pipeline. The floating-Point Hold" is resolved, the FPU deasserts its command, releasing the instruction with floating point Condition Codes Valid"	current memory access is a read (RD = '1') or a write (RD = '0') operation. RD is set low only during the address cycle and set low during the two store address cycles. RD may be used, in conjunction with SI2E110], SI(T:O), and LDSTO, to determine the type and to check the read/write access rights of bus transactions in the Extended General area. It is sent out unregistered and must be latched externally before it is used. MHOLD O Memory bus hold. The signal is asserted when a "Memory Hold" (MHOLD), or a "Floating Poin Hold" (FHOLD) or a "Floating Point Condition Codes Valid" (FCCV) or a Bus Hold (BHOLD) is internally generated. Note that MHOLD Memory Hold" "Memory Hold" ''Memory Hold" ''Memory Hold" ''Memory Hold" ''Eloating-Point Hold" ''Reat controller of the device insersi, in this way, wait states during external access. ''Floating-Point Hold" ''Floating-Point Hold" are resolved, the FPU deasserts to command, releasing the instruction paleine. ''Floating-Point Hold", it freezes the instruction mean expete. Come the condition causing the "Floating-Point Hold" are resolved, the FPU deasserts its command, releasing the instruction paleine. ''Floating-Point Condition Codes Valid" ''Floating-Point Condition Codes Valid"	I		IU and FPU Sign	als – Continue	d	
MHOLD O Memory bus hold. The signal is asserted when a "Memory Hold" (MHOLD), or a "Floating Point Hold" (FHOLD) or a "Floating Point Condition Codes Valid" (FCCV) or a Bus Hold (BHOLD) is internally generated. Note that MHOLD must be driven HIGH while RESET is LOW. • "Memory Hold" "Memory Hold" is used to freeze the pipeline to both the IU and FPU accessing a slow memory or during memory exception. The IU and FPU internal outputs return to and stay at the value they had on the fising edge of SYSCLK in the cycle in which "Memory Hold" was asserted. "Memory Hold" is tested on the falling edge (midpoint of cycle) of SYSCLK. The memory wait state controller of the device inserts, in this way, wait states during external accesses. • "Floating-Point Hold" "Floating-Point Hold" "Floating-Point Hold" "Is asserted by the FPU if a situation arises in which the FPU cannot continue execution. The FPU checks all dependencies in the lU receives a "Floating-Point Hold", it freezes the instruction pipeline in the same cycle. Once the conditions and asserts a "Floating-Point Hold" is asserted if: • the FPU encounters an STFSR instruction with one or more FPops pending in the queue, • either a resource or operand dependency exists between the FPop being decoded and any FFops already being executed, • the filtiding-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" • The ating-Point Condition Codes Valid" "Floatating-Point Condition Codes' bits freezes the IU pipe	MHOLD O Memory bus hold. The signal is asserted when a "Memory Hold" (MHOLD), or a "Floating Point Hold" (FHOLD) or a "Floating Point Condition Codes Valid" (FCCV) or a Bus Hold (BHOLD) is internally generated. Note that MHOLD must be driven HIGH while RESET is LOW. • "Memory Hold" "Memory Hold" "Memory Hold" "Memory Hold" "Memory Hold" is used to freeze the pipeline to both the IU and FPU accessing a slow memory or during memory exception. The IU and FPU internal outputs return to and stay at the value they had on the rising edge of SYSCLK in the cycle in which "Memory Hold" was asserted. "Memory Hold" is tested on the failing edge (midpoint of cycle) of SYSCLK. The memory wait state controller of the device inserts, in this way, wait states during external accesses. • "Floating-Point Hold" "Floating-Point Hold" "Floating-Point Hold" If floating-Point Hold" "Isoting-Point Hold" is asserted fit: • the FPU encounters an STFSR instruction pipeline in the same cycle. Once the condition causing the Thotating-Point tornd instructions. It is asserted fit: • the floating-Point Condition Codes Valid" *Floating-Point Condition Codes Valid" *Floatin	RD I	I/O	current memory access is a read during the address cycles of store high during the load address cycl be used, in conjunction with SIZE check the read/write access right	(RD = "1") or a w e instructions. Fo le and set low dur [1:0], ASI[7:0], ar s of bus transacti	rite (RD = "0") operation. R r atomic load-store instructi ing the two store address c nd LDSTO, to determine the ons in the Extended Genera	D is set low only ons, RD is set ycles. RD may type and to
 HotcD Hodf (FHOLD) or a "Floating Point Condition Codes Valid" (FCCV) or a Bus Hold (BHOLD) is internally generated. Note that MHOLD must be driven HIGH while RESET is LOW. "Memory Hold" "Memory Hold" "Memory Hold" is used to freeze the pipeline to both the IU and FPU accessing a slow memory or during memory exception. The IU and FPU internal outputs return to and stay at the value they had on the rising edge of SYSCLK in the cycle in which "Memory Hold" was asserted. "Memory Hold" is tested on the falling edge (midpoint of cycle) of SYSCLK. The memory wait state controller of the device inserts, in this way, wait states during external accesses. "Floating-Point Hold" The resolved, the FPU deasserts its command, releasing the instruction pipeline. the FPU encounters an STFSR instruction with one or more FPops pending in the queue, either a resource or operand dependency exists between the FPop being decoded and any FPops already being executed, the floating-Point Condition Codes Valid" "Floating-Point Condition Codes 'bits freezes the IU pipeline, preventing any further compares from enters the floating-point q	 Hold" (FHOLD) or a "Floating Point Condition Codes Valid" (FCCV) or a Bus Hold (BHOLD) is internally generated. Note that MHOLD must be driven HIGH while RESET is LOW. "Memory Hold" "Memory Hold" "Memory Hold" is used to freeze the pipeline to both the IU and FPU accessing a slow memory or during memory exception. The IU and FPU internal outputs return to and stay at the value they had on the rising edge of SYSCLK in the cycle in which "Memory Hold" was asserted. "Memory Hold" is tested on the falling edge (midpoint of cycle) of SYSCLK. The memory wait state controller of the device inserts, in this way, wait states during external accesses. "Floating-Point Hold" "Floating-Point Hold" "Floating-Point Hold" is asserted by the FPU if a situation arises in which the FPU cannot continue execution. The FPU checks all dependencies in the decode stage of the instruction and asserts a "Floating-Point Hold" (if necessary) in the next cycle. If the IU receives a "Floating-Point Hold", it freezes the instruction pipeline in the decode stage of the instruction pipeline. The FPU deasserts its command, releasing the instruction pipeline. The FPU deasserts its command, releasing the instruction pipeline. A "Floating-Point Hold" is a specialized hold used to synchronize FPU compare instruction with floating-point branch instructions. It is asserted (the normal condition) whenever the "Floating-Point Condition Codes Valid" "Floating-Point Co			A DMA unit must supply this sign	al during a DMA s	session.	
 "Memory Hold" "Memory Hold" is used to freeze the pipeline to both the IU and FPU accessing a slow memory or during memory exception. The IU and FPU internal outputs return to and stay at the value they had on the rising edge of SYSCLK in the cycle in which "Memory Hold was asserted. "Memory Hold" was asserted of the device inserts, in this way, wait states during external accesses. "Floating-Point Hold" "Floating-Point Hold" is asserted by the FPU if a situation arises in which the FPU cannot continue execution. The FPU checks all dependencies in the decode stage of the instruction and asserts a "Floating-Point Hold" (if necessary) in the next cycle. If the IU receives a "Floating-Point Hold", it freezes the instruction pipeline in the same cycle. Once the conditions causing the "Floating-Point Hold" is asserted if: the FPU encounters an STFSR instruction with one or more FPops pending in the queue, either a resource or operand dependency exists between the FPop being decoded and any FPops already being executed, the floating-Point Condition Codes Valid" "Floating-Point Condition Codes" bits (FCCII(10)) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, entees an exception is detected. Decasserting the "Floating-Point Condition Codes" bits freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes bits freezes the IU pipeline, preventing any further	 "Memory Hold" "Memory Hold" is used to freeze the pipeline to both the IU and FPU accessing a slow memory or during memory exception. The IU and FPU internal outputs return to and stay at the value they had on the rising edge of SYSCLK in the cycle in which "Memory Hold" as asserted. "Memory Hold" is tested on the falling edge (midpoint of cycle) of SYSCLK. The memory wait state controller of the device inserts, in this way, wait states during external accesses. "Floating-Point Hold" "Floating-Point Hold" if necessary) in the next cycle. If the IU receives a "Floating-Point Hold" in freezes the instruction pipeline in the decode stage of the instruction and asserts a "Floating-Point Hold" if necessary) in the next cycle. Once the conditions causing the "Floating-Point Hold" resoluted, the FPU deasserts its command, releasing the instruction pipeline. A "Floating-Point Hold" is asserted if: the FPU encounters an STFSR instruction with one or more FPops pending in the queue, either a resource or operand dependency exists between the FPop being decoded and any FPops already being executed, the floating-Point Condition Codes Valid" "Floating-Point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue is full. "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition. Codes bits freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instr	MHOLD	0	Hold" (FHOLD) or a "Floating Poi			
 "Memory Hold" is used to freeze the pipeline to both the IU and FPU accessing a slow memory or during memory exception. The IU and FPU internal outputs return to and stay at the value they had on the rising edge of SYSCLK in the cycle in which "Memory Hold" was asserted. "Memory Hold" is tested on the falling edge (midpoint of cycle) of SYSCLK. The memory wait state controller of the device inserts, in this way, wait states during external accesses. "Floating-Point Hold" "Floating-Point Hold" is asserted by the FPU if a situation arises in which the FPU cannot continue execution. The FPU checks all dependencies in the decode stage of the instruction and asserts a "Floating-Point Hold" (if necessary) in the next cycle. If the IU receives a "Floating-Point Hold", it freezes the instruction pipeline in the same cycle. Once the conditions causing the "Floating-Point Hold" are resolved, the FPU deasserts its command, releasing the instruction pipeline. A "Floating-Point Hold" is asserted if: the FPU encounters an STFSR instruction with one or more FPops pending in the queue, either a resource or operand dependency exists between the FPop being decoded and any FPops already being executed, the floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" is a specialized hold used to synchronize FPU compare instructions with floating-point tranch instructions. It is asserted (the normal condition) whenever the "Floating-Point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition-codes are valid, thus ensuru	 "Memory Hold" is used to freeze the pipeline to both the IU and FPU accessing a slow memory or during memory exception. The IU and FPU internal outputs return to and stay at the value they had on the rising edge of SYSCLK in the cycle in which "Memory Hold" was asserted. "Memory Hold" is tested on the failing edge (midpoint of cycle) of SYSCLK. The memory wait state controller of the device inserts, in this way, wait states during external accesses. "Floating-Point Hold" is asserted by the FPU if a situation arises in which the FPU cannot continue execution. The FPU checks all dependencies in the decode stage of the instruction and asserts a "Floating-Point Hold" (if necessary) in the next cycle. If the IU receives a "Floating-Point Hold" is treezes the instruction pipeline in the same cycle. Once the conditions causing the "Floating-Point Hold" are resolved, the FPU deasserts its command, releasing the instruction pipeline. A "Floating-Point Hold" is a serted if: the FPU encounters an STFSR instruction with one or more FPops pending in the queue, either a resource or operand dependency exists between the FPop being decoded and any FPops already being executed, the floating-Point Condition Codes Valid" "Floating-Point Condition Codes' bits (FCC[1:0]) are valid. The FPU deasserts these bits (="0") as soon as a floating-point compare instruction enters the floating-point queue, inters and explain and the condition codes is a specialized hold used to synchronize FPU compare instruction enters the floating-point Condition Codes' bits (FCC[1:0]) are valid. The FPU deasserts these bits (="0") as soon as a floating-point compare instruction enters the floating-point queue, intheas an exception is detected. Leasserting the "Floating-Point				n HIGH while RE	SET is LOW.	
 or during memory exception. The IU and FPU internal outputs return to and stay at the value they had on the rising edge of SYSCLK in the cycle in which "Memory Hold" use asserted. "Memory Hold" is tested on the falling edge (midpoint of cycle) of SYSCLK. The memory wait state controller of the device inserts, in this way, wait states during external accesses. "Floating-Point Hold" "Floating-Point Hold" is asserted by the FPU if a situation arises in which the FPU cannot continue execution. The FPU checks all dependencies in the decode stage of the instruction and asserts a "Floating-Point Hold" (if necessary) in the next cycle. If the IU receives a "Floating-Point Hold", it freezes the instruction pipeline in the same cycle. Once the conditions causing the "Floating-Point Hold" are resolved, the FPU deasserts its command, releasing the instruction pipeline. A "Floating-Point Hold" is asserted if: the FPU encounters an STFSR instruction with one or more FPops pending in the queue, either a resource or operand dependency exists between the FPo being decoded and any FPops already being executed, the floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes' bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instruction. "Bus Hold" "Bus Hold" "Bus Hold" 	 or during memory exception. The IU and FPU internal outputs return to and stay at the value they had on the rising edge of SYSCLK in the cycle in which "Memory Hold" was asserted. "Memory Hold" is tested on the falling edge (midpoint of cycle) of SYSCLK. The memory wait state controller of the device inserts, in this way, wait states during external accesses. • "Floating-Point Hold" is asserted by the FPU if a situation arises in which the FPU cannot continue execution. The FPU checks all dependencies in the decode stage of the instruction and asserts a "Floating-Point Hold" (if necessary) in the next cycle. If the IU receives a "Floating-Point Hold", if treezes the instruction pipeline in the same cycle. Once the condition causing the "Floating-Point Hold" in the same cycle. Once the condition causing the "Floating-Point Hold" in a sestert of if: the FPU encounters an STFSR instruction with one or more FPops pending in the queue, either a resource or operand dependency exists between the FPop being decoded and any FPops already being executed, the floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" is asserted (the normal condition) whenever the "Floating-Point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queues are exception is detected. Deasserts ing the 'Floating-Point Condition Codes" bits freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instruction. Bus Hold" is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so afte			 "Memory Hold" 			
 "Floating-Point Hold" is asserted by the FPU if a situation arises in which the FPU cannot continue execution. The FPU checks all dependencies in the decode stage of the instruction and asserts a "Floating-Point Hold" (if necessary) in the next cycle. If the IU receives a "Floating-Point Hold", it freezes the instruction pipeline in the same cycle. Once the conditions causing the "Floating-Point Hold" are resolved, the FPU deasserts its command, releasing the instruction pipeline. A "Floating-Point Hold" is asserted if: the FPU encounters an STFSR instruction with one or more FPops pending in the queue, either a resource or operand dependency exists between the FPop being decoded and any FPops already being executed, the floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" is a specialized hold used to synchronize FPU compare instructions with floating-point branch instructions. It is asserted (the normal condition) whenever the "Floating-Point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instruction. "Bus Hold" "Bus Hold" is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as it was before "Bus Hold" was asserted. This hold signal is tested on the fallin	 "Floating-Point Hold" is asserted by the FPU if a situation arises in which the FPU cannot continue execution. The FPU checks all dependencies in the decode stage of the instruction and asserts a "Floating-Point Hold" (if necessary) in the next cycle. If the U receives a "Floating-Point Hold", it freezes the instruction pipeline in the same cycle. Once the conditions causing the "Floating-Point Hold" are resolved, the FPU deasserts its command, releasing the instruction pipeline. A "Floating-Point Hold" is asserted if: the FPU encounters an STFSR instruction with one or more FPops pending in the queue, either a resource or operand dependency exists between the FPop being decoded and any FPops already being executed, the floating-Point Condition Codes Valid" "Floating-Point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point during the "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instruction. "Bus Hold" is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as i	they had on the rising edge of SYSCLK in the cycle in which "Memory Hold" was asserted. "Memory Hold" is tested on the falling edge (midpoint of cycle) of SYSCLK. The memory wait					
 continue execution. The FPU checks all dependencies in the decode stage of the instruction and asserts a "Floating-Point Hold" (if necessary) in the next cycle. If the IU receives a "Floating-PointHold", if treezes the instruction pipeline in the same cycle. Once the conditions causing the "Floating-Point Hold" are resolved, the FPU deasserts its command, releasing the instruction pipeline. A "Floating-Point Hold" is asserted if: the FPU encounters an STFSR instruction with one or more FPops pending in the queue, either a resource or operand dependency exists between the FPop being decoded and any FPops already being executed, the floating-Point queue is full. "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" whenever the "Floating-Point condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instruction. "Bus Hold" "Bus Hold" "Bus Hold" is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as it was before "Bus Hold" was asserted. This hold signal is tested on the falling edge (midpoint of cycle) of SYSCLK. 	 continue execution. The FPU checks all dependencies in the decode stage of the instruction and asserts a "Floating-Point Hold" (if necessary) in the next cycle. If the IU receives a "Floating-Point Hold", it freezes the instruction pipeline in the same cycle. Once the conditions causing the "Floating-Point Hold" is asserted if: the FPU encounters an STFSR instruction with one or more FPops pending in the queue, either a resource or operand dependency exists between the FPop being decoded and any FPops already being executed, the floating-Point Condition Codes Valid" "Floating-Point Condition Codes" bits a specialized hold used to synchronize FPU compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instruction. "Bus Hold" is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so after dea		"Floating-Point Hold"				
 the FPU encounters an STFSR instruction with one or more FPops pending in the queue, either a resource or operand dependency exists between the FPop being decoded and any FPops already being executed, the floating-point queue is full. "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" is a specialized hold used to synchronize FPU compare instructions with floating-point tranch instructions. It is asserted (the normal condition) whenever the "Floating-Point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instruction. "Bus Hold" "Bus Hold" Is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as it was before "Bus Hold" was asserted. This hold signal is tested on the falling edge (midpoint of cycle) of SYSCLK. 	 the FPU encounters an STFSR instruction with one or more FPops pending in the queue, either a resource or operand dependency exists between the FPop being decoded and any FPops already being executed, the floating-point queue is full. "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" is a specialized hold used to synchronize FPU compare instructions with floating-point branch instructions. It is asserted (the normal condition) whenever the "Floating-Point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits (freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instruction. "Bus Hold" "Bus Hold" "Bus Hold" is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as it was before "Bus Hold" was asserted. This hol signal is tested on the falling edge (midpoint of cycle) of SYSCLK. 		continue execution. The FPU checks all dependencies in the decode stage of the instruction and asserts a "Floating-Point Hold" (if necessary) in the next cycle. If the IU receives a "Floating-Point Hold", it freezes the instruction pipeline in the same cycle. Once the conditions causing the "Floating-Point Hold" are resolved, the FPU deasserts its command, releasing the				
 FPops already being executed, the floating-point queue is full. "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" is a specialized hold used to synchronize FPU compared instructions with floating-point branch instructions. It is asserted (the normal condition) whenever the "Floating-Point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instruction. "Bus Hold" "Bus Hold" is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as it was before "Bus Hold" was asserted. This hold signal is tested on the falling edge (midpoint of cycle) of SYSCLK. 	 FPops already being executed, the floating-point queue is full. "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" is a specialized hold used to synchronize FPU compare instructions with floating-point branch instructions. It is asserted (the normal condition) whenever the "Floating-Point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instruction. "Bus Hold" "Bus Hold" is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as it was before "Bus Hold" was asserted. This hol signal is tested on the falling edge (midpoint of cycle) of SYSCLK. 						g in the queue,
 the floating-point queue is full. "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" is a specialized hold used to synchronize FPU compared instructions with floating-point branch instructions. It is asserted (the normal condition) whenever the "Floating-Point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instruction. "Bus Hold" "Bus Hold" is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as it was before "Bus Hold" was asserted. This hold signal is tested on the falling edge (midpoint of cycle) of SYSCLK. 	 the floating-point queue is full. "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" is a specialized hold used to synchronize FPU compared instructions with floating-point branch instructions. It is asserted (the normal condition) whenever the "Floating-Point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instruction. "Bus Hold" "Bus Hold" is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as it was before "Bus Hold" was asserted. This hol signal is tested on the falling edge (midpoint of cycle) of SYSCLK. 			- either a resource or operand c	lependency exists	between the FPop being d	ecoded and any
 "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" is a specialized hold used to synchronize FPU compared instructions with floating-point branch instructions. It is asserted (the normal condition) whenever the "Floating-Point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instruction. "Bus Hold" "Bus Hold" "Bus Hold" is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as it was before "Bus Hold" was asserted. This hold signal is tested on the falling edge (midpoint of cycle) of SYSCLK. 	 "Floating-Point Condition Codes Valid" "Floating-Point Condition Codes Valid" is a specialized hold used to synchronize FPU compare instructions with floating-point branch instructions. It is asserted (the normal condition) whenever the "Floating-Point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instruction. "Bus Hold" "Bus Hold" is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as it was before "Bus Hold" was asserted. This hol signal is tested on the falling edge (midpoint of cycle) of SYSCLK. 			FPops already being executed	I,		
 "Floating-Point Condition Codes Valid" is a specialized hold used to synchronize FPU compared instructions with floating-point branch instructions. It is asserted (the normal condition) whenever the "Floating-Point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instruction. "Bus Hold" "Bus Hold" "Bus Hold" is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as it was before "Bus Hold" was asserted. This hold signal is tested on the falling edge (midpoint of cycle) of SYSCLK. 	 "Floating-Point Condition Codes Valid" is a specialized hold used to synchronize FPU compare instructions with floating-point branch instructions. It is asserted (the normal condition) whenever the "Floating-Point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instruction. "Bus Hold" "Bus Hold" "Bus Hold" is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as it was before "Bus Hold" was asserted. This hol signal is tested on the falling edge (midpoint of cycle) of SYSCLK. 			- the floating-point queue is full.			
 instructions with floating-point branch instructions. It is asserted (the normal condition) whenever the "Floating-Point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instruction. "Bus Hold" "Bus Hold" is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as it was before "Bus Hold" was asserted. This hold signal is tested on the falling edge (midpoint of cycle) of SYSCLK. 	 instructions with floating-point branch instructions. It is asserted (the normal condition) whenever the "Floating-Point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare instruction. "Bus Hold" "Bus Hold" "Bus Hold" is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as it was before "Bus Hold" was asserted. This hol signal is tested on the falling edge (midpoint of cycle) of SYSCLK. 			 "Floating-Point Condition Code 	es Valid"		
"Bus Hold" is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as it was before "Bus Hold" was asserted. This hold signal is tested on the falling edge (midpoint of cycle) of SYSCLK.	"Bus Hold" is asserted during DMA accesses. Assertion of this hold signal will freeze the processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as it was before "Bus Hold" was asserted. This hol signal is tested on the falling edge (midpoint of cycle) of SYSCLK.	whenever the "Floating-Point Condition Codes" bits (FCC[1:0]) are valid. The FPU deasserts these bits (= "0") as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected. Deasserting the "Floating-Point Condition Codes" bits freezes the IU pipeline, preventing any further compares from entering the pipeline. The "Floating-Point Condition Codes" bits are reasserted when the compare is completed and the condition codes are valid, thus ensuring that the condition codes match the proper compare					
processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as it was before "Bus Hold" was asserted. This hold signal is tested on the falling edge (midpoint of cycle) of SYSCLK.	processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as it was before "Bus Hold" was asserted. This hol signal is tested on the falling edge (midpoint of cycle) of SYSCLK.	• "Bus Hold"					
See footnote at end of table.	917E	processor pipeline, so after deassertion of "Bus Hold", external logic must guarantee that the data at all inputs to the device is the same as it was before "Bus Hold" was asserted. This hold					
	SIZE	ee footnote at end of	of table.				

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-03246
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 39

Pin name Type 1/ IU and FPU Signals – Continued WE I/O Write enable. WE is asserted by the IU during the cycle in which the store data is or bus. For a store single instruction, this is during the second store address cycle, the and third store address cycles of store double instructions and the third load-store at cycle of atomic load-store instructions. To avoid writing to memory during memory of WE must be externally qualified by the MHOLD, when this holding reflects the inte "Memory Hold". It is sent out unregistered and must be latched externally before it is A DMA unit must supply this signal during a DMA session, asserted low for write and deasserted high for read accesses. WRT I/O Advanced write. WRT is an early write signal, asserted by the processor during the address cycle of integer single or double store instructions, the first store address cy floating-point single or double store instructions, and the second load-store address atomic load-store instructions. WRT is sent out unregistered and must be latched e before it is used. A DMA unit must supply this signal during a DMA session, deasserted low for read a asserted high for write accesses. MDS O Memory data strobe. MDS is asserted by the memory access controller of the devi enable the clock to the IU's instruction register (during an instruction fetch) or to the register (during a data fetch) while the pipeline is frozen with an MHOLD. In a syster	the second e address ry exceptions, nternal signal it is used. and			
WE I/O Write enable. WE is asserted by the IU during the cycle in which the store data is of bus. For a store single instruction, this is during the second store address cycle, the and third store address cycles of store double instructions and the third load-store a cycle of atomic load-store instructions. To avoid writing to memory during memory of WE must be externally qualified by the MHOLD , when this holding reflects the inter "Memory Hold". It is sent out unregistered and must be latched externally before it is A DMA unit must supply this signal during a DMA session, asserted low for write and deasserted high for read accesses. WRT I/O Advanced write. WRT is an early write signal, asserted by the processor during the address cycle of integer single or double store instructions, the first store address cyfloating-point single or double store instructions, and the second load-store address atomic load-store instructions. WRT is sent out unregistered and must be latched external early for it is used. MDS O Memory data strobe. MDS is asserted by the memory access controller of the device enable the clock to the IU's instruction register (during an instruction fetch) or to the	the second e address ry exceptions, nternal signal it is used. and			
WE With the enable. WE is asserted by the of during the cycle in which the score data is of bus. For a store single instruction, this is during the second store address cycle, the and third store address cycles of store double instructions and the third load-store arcycle of atomic load-store instructions. To avoid writing to memory during memory of WE must be externally qualified by the MHOLD , when this holding reflects the inter "Memory Hold". It is sent out unregistered and must be latched externally before it is A DMA unit must supply this signal during a DMA session, asserted low for write and deasserted high for read accesses. WRT I/O Advanced write. WRT is an early write signal, asserted by the processor during the address cycle of integer single or double store instructions, the first store address cycle of ioad-store instructions. WRT is sent out unregistered and must be latched external before it is used. MDS O Memory data strobe. MDS is asserted by the memory access controller of the device name and thigh for write accesses.	the second e address ry exceptions, nternal signal it is used. and			
WRT I/O Advanced write. WRT is an early write signal, asserted by the processor during the address cycle of integer single or double store instructions, the first store address cyfloating-point single or double store instructions, and the second load-store address atomic load-store instructions. WRT is sent out unregistered and must be latched endefore it is used. A DMA unit must supply this signal during a DMA session, deasserted low for read a asserted high for write accesses. MDS O MEMORY data strobe. MDS is asserted by the memory access controller of the device enable the clock to the IU's instruction register (during an instruction fetch) or to the				
address cycle of integer single or double store instructions, the first store address cy floating-point single or double store instructions, and the second load-store address atomic load-store instructions. WRT is sent out unregistered and must be latched e before it is used. A DMA unit must supply this signal during a DMA session, deasserted low for read a asserted high for write accesses. MDS O Memory data strobe. MDS is asserted by the memory access controller of the device enable the clock to the IU's instruction register (during an instruction fetch) or to the	he first store			
MDS O Memory data strobe. MDS is asserted by the memory access controller of the device enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable the clock to the IU's instruction register (during an instruction fetch) or to the enable	s cycle of ess cycle of d externally			
enable the clock to the IU's instruction register (during an instruction fetch) or to the	id and			
Image: Solution (during a duta reterit) while the pipeline is indeen with an winder of the dust structure is indeen with an winder of the bus slow memories, MDS tells the processor when the read data is available on the bus also used to strobe in the MEXC memory exception signal. MDS is only asserted to pipeline is frozen with MHOLD. Image: MEXC O Memory exception. Assertion of this signal by the memory access controller of the contribution initiates a memory exception and indicates to the IU that the memory system was unsupply a valid instruction or data. If MEXC is asserted during an instruction fetch contribution of the section of the initiates and instruction access exception trap (tt=1). If asserted during a data cycle	he load result ystem with bus. MDS is ed when the ne device s unable to n cycle, it			
generates a data access exception trap (tt=9). It denotes a parity error, uncorrectable error, access violation, bus time-out or system bus error is detected. MEXC is used as a qualifier for the MDS signal, and is asserted when both MHOL MDS are already asserted. If MDS is applied without MEXC, the device accepts t of the data bus as valid. If MEXC accompanies MDS, an exception is generated a bus content is ignored. MEXC is latched in the IU on the rising edge of SYSCLK and is used in the followin MEXC is deasserted in the same clock cycle in which MHOLD is deasserted. If this signal is asserted during a DMA transfer, the DMA must withdraw its DMA req end the DMA cycle.	OLD and ts the contents d and the data wing cycle.			
See footnote at end of table.				
STANDARD SIZE A 59	5962-03246			
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 REVISION LEVEL SHE				

Pin name	Type <u>1</u> /		Descript	tion	
	<u> </u>	Memory and Syste	em Interface Sig	nals	
PROM8	I	Select 8-bit wide PROM. This inp device. The eight data lines from processor will perform an 8-bit to conversion is not visible on data b PROM when PROM8 is asserted when PROM8 is deasserted.	the PROM is to b 32-bit conversion bus). There is no	be connected to the D[7:0] s in when the IU reads from the DEDAC or parity checking or	signals. The e PROM (the m accesses to the
BA[1:0]	0	Latched address used for 8-bit wi PROM is connected to the device		These outputs are used whe	en 8-bit wide
		During a fetch or 32-bit load acce order to get the four bytes needed			four times in
ROMCS	0	PROM chip select. This output is extended PROM areas. It can be			
ROMWRT	I	Register (MCNFR). This logic allo	ROM write enable. Assertion of this signal will enable the pwr bit of the Memory Configuration Register (MCNFR). This logic allows the on-board programming (write operations) of the boot PROM when EEPROM or FLASH devices are used.		
MEMCS[9:0]	0	Memory chip select. $\overline{\text{MEMCS}[9:0]}$ is asserted during an access to the main memory. $\overline{\text{MEMCS}[9:8]}$ are redundant signals, used to substitute any of the nominal memory banks when memory connected to any of $\overline{\text{MEMCS}[7:0]}$ malfunctions.			
MEMWR	0	Memory write. MEMWR is asser PROM area, RAM area and exten memory devices.			
ŌE	0	Memory output enable. OE is as is intended to be used to control r			
BUFFEN	0	Data buffer enable. BUFFEN is a (RAM area does not needs data b check and parity bit buffers in the area, extended RAM area, I/O are areas share the same buffers.	buffers). It is inter boot PROM area	nded to be used as buffer en a, extended PROM area, exc	enable for data, change memory
DDIR	0	Data buffer direction. DDIR is use BUFFEN. It is valid during all me operations.	-	-	-
DDIR	0	Data buffer direction. DDIR is us BUFFEN. It is valid during all me load operations.		-	-
IOSEL[3:0]	0	I/O chip select. These four select areas.	t signals are used	to enable one of four poss	ible I/O address
IOWR	0	I/O and exchange memory write s area, extended I/O area and the e			ations to the I/O
See footnote at er	nd of table	÷.			
		NDARD	SIZE	,	5962-03246
-			A	<u> </u>	

REVISION LEVEL

SHEET

41

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000

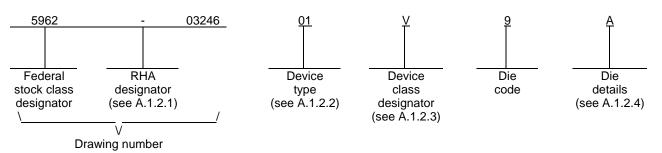
Pin name	Type 1/		Descrip	tion	
	<u> </u>	Memory and System Inte	erface Signals -	Continued	
EXMCS	0	Exchange memory chip select.	EXMCS is asserted	ed when the exchange mer	mory is accessed.
BUSRDY	I	the extended areas, which requir preprogrammed number of waits	SRDY is to be generated by a unit in the I/O area, exchange memory area or in eas, which requires extended time when accessed in addition to the number of wait states. (Note however that wait states can not be for units in the extended general area, only for extended I/O, boot PROM and		
	1	Error, DMA, Halt,	and Check Sign	als	
BUSERR	Ι	Bus error. BUSERR is to be get exchange memory area or in the during an access.			
DMAREQ	I		e issued by a unit requesting the access to the processor bus clude a DMA session timeout function preventing the DMA unit ng DMA request for a long time.		
DMAGNT	0	sent after that the device has ass	MA grant. DMAGNT is generated by the device as a response to a DMAREQ. DMAGNT is ent after that the device has asserted a "Bus Hold". A memory cycle started by the processor s not interrupted by a DMA access before it is finished.		
		The DMA unit has access to all system registers and all integrated peripherals of the device. I has also access to the memory controlled by the memory access controller of the device.			
DMAAS	I	DMA address strobe. During DMA transfers (when the external DMA is bus master) this input is used to inform the device that the address from the DMA is valid and that the access cycle sha start. DMAAS can be asserted multiple times during DMA grant.			naster) this input is access cycle shall
DRDY	0	master) this output is used to info	ata ready during DMA access. During DMA read transfers (when the external DMA is bus aster) this output is used to inform the DMA unit that the data are valid. During DMA write ansfers this signal indicates that data have been written into memory.		
IUERR	0	happens if a synchronous trap or enters the error mode state, the the trap causing the error mode i	IU error. This signal is asserted when the (master) IU enters the "error mode" state. This happens if a synchronous trap occurs while traps are disabled (the %PSR's et bit = 0). Before enters the error mode state, the device saves the %PC and %nPC and sets the trap type (tt) for the trap causing the error mode into the %TBR. It then asserts the error signal and halts. The only way to restart a processor which is in the error mode state is to trigger a reset by asserting the RESET signal.		
CPUHALT	0	Processor (IU & FPU) halt and from mode. It can be used to halt other the "freeze" mode generated by the second se	er units in the syst		
SYSERR	0	System error. This signal is asse Status Register (ERRRSR). It st originate from either the IU (IU er hardware error). SYSERR and	ays asserted until rror ar IU hardwar	the ERRRSR is cleared. 1 e error) or the system regis	The error can sters (system
ee footnote at e	nd of table	ı.			
			SIZE A		5962-03246
MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000			REVISION LEVEL	SHEET	

42

Pin name	Туре <u>1</u> /		Descript	ion		
		Error, DMA, Halt, and Ch	neck Signals - C	Continued		
SYSHALT	I	System halt. Assertion of this pir internal CLK2 are running but all stopped.				
		DMA accesses are allowed during	g halt mode.			
		When SYSHALT is deasserted,	the previous mod	e is entered.		
SYSAV	0	System availability. This signal is sysav bit in the ERRRSR is set a sysav bit is cleared by reset and i	nd the CPUHALT	and SYSERR signals are		
NOPAR	I	No parity. Assertion of this signa device internal buses. The parity affected by this signal, but note the static signal and shall not change	generation on the	e data bus (towards and IO	units) is not	
	static signal and shall not change when running. When this signal is asserted (no parity), it disables the epa and rpa bits of the Memory Configuration Register (MCNFR) and the pa3, pa2, pa1, and pa0 bits of the I/O Configu Register.					
INULL	0	access is being nullified. It is ass nullified is active. INULL is used	nteger unit nullify cycle. The processor asserts INULL to indicate that the current memory ccess is being nullified. It is asserted at the beginning of the cycle in which the address be ullified is active. INULL is used to disable memory exception generation for the current			
		memory access. This means that MDS and MEXC is not be asserted for a memory access in which INULL = 1.				
		INULL is asserted under the following conditions:				
		- during the second data cycle of the	of any store instru	ction (including Atomic Loa	ad-Store) to nullify	
		second occurrence of the stor	e address,			
		- on all traps, to nullify the third nullifies the error-producing address,	instruction fetch a	fter the trapped instruction	. For reset, it	
		- on a load in which the hardwa	re interlock is acti	vated,		
		- on JMPL and RETT instruction	ıs.			
INST	0	Instruction fetch. The INST signal fetched. It is used by the FPU to FPU instruction buffer. The FPU fetched instructions. When INST instruction that was in D1 moves	latch the instructi have two instructi is asserted, a net	on currently on the internal on buffers (D1 and D2) to a	data bus into an save the last two	
FLUSH	0	FPU instruction flush. This signal is asserted by the IU whenever it takes a trap. FLUSH is used by the FPU to flush the instructions in its instruction buffers. These instructions, as well as the instructions annulled in the IU pipeline, are restarted after the trap handler is finished. If the trap was not caused by a floating-point exception, instructions already in the floating-point queue may continue their execution. If the trap was caused by a floating-point exception, the Fpqueue must be emptied before the FPU can resume execution.				
DIA	0	Delay instruction annulled. This s delayed control transfer). This sig			is annulled (c.f.	
see footnote at e	end of table					
RA1/			SIZE A		5962-03246	
MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000			REVISION LEVEL	SHEET 43		

TABLE III. Terminal descriptions - Continued.					
Pin name	Туре <u>1</u> /		Descript	tion	
	•	Interrupt, Clock, UART, GPI,	Timer, TAP, and	l Test Signals	
RTC	0	Real time clock counter output. This signal is generated when the delay time has elapsed in the "Real Time Clock Timer". This output is asserted high for one SYSCLK period.			
RxA/RxB	I	Receive data UART "A" and "B". the serial data input for channel E		data input for channel A of	the UART. RxB is
TxA/TxB	0	Transmit data UART "A" and "B". is the serial data output for chanr			of the UART. TxB
GPI[7:0]	I/O	General purpose interface. Each	pin of the GPI is	programmable as input or o	output
GPIINT	0	General purpose interface interru input pin configured as input. GF output is asserted high for two S	PIINT is the result		
EXTINT[4:0]	I	External interrupt. The five extern sensitive, and active high (rising)			evel or edge
EXTINTACK	0	External interrupt acknowledge. unit which requires such a signal inputs it is associated. It is issue	. It is programma	ble to which of the five exte	rnal interrupt
IWDE	I	Internal watch dog enable. This static signal commands the multiplexer placed in front of the watch dog timeout interrupt of the "Interrupt Pending Register". To use the internal watch dog, IWDE must set to high. This input set to low enables the input EWDINT for an external watch dog and disables entirely the internal watch dog (not running). The value of IWDE is copied into the "System Control Register" bit 15.			
EWDINT	NT I External watch dog input interrupt. This input enabled by IWDE receives an external watch dog timeout. Another usage of this input can be an NMI. This input must asserted high for a minimum of two SYSCLK periods.				
WDCLK I Watch dog clock. WDCLK is the WD clock input but this clock can also be used as a cloc input for the UART interface. The clock frequency of WDCLK must be less than the clock frequency of SYSCLK, i.e. f _{WDCLK} < f _{SYSCLK} .					
CLK2	Ι	Double frequency clock. CLK2 is must be twice the clock frequenc external timings of the device car	y f _{SYSCLK} used to a	drive the IU and the FPU.	
SYSCLK	0	System clock. SYSCLK is a nom CLK2 and is used for clocking the timing of the device is referenced	e IU and the FPU		
RESET	0	Output reset. RESET will be as occurs when either SYSRESET programming command. The min authorize the implementation of P	serted when the c is asserted or the nimum pulse widt	e device initiates a reset due h of $\overline{\text{RESET}}$ is 1024 SYSC	e to an error or a
SYSRESET I System input reset. Assertion of this pin will reset the device. Following this assertion, F is generated for a minimum of 1024 SYSCLK periods. SYSRESET minimum of 4 SYSCLK periods. SYSRESET					
See footnote at e	nd of table				
міс	STANDARD MICROCIRCUIT DRAWING		SIZE A		5962-03246
DEFENS	E SUPPLY	CENTER COLUMBUS OHIO 43216-5000		REVISION LEVEL	SHEET 44

		TABLE III. Terminal descriptions - Continued.
Pin name	Type <u>1</u> /	Description
	Int	errupt, Clock, UART, GPI, Timer, TAP, and Test Signals – Continued
TMODE[1:0]	I	Factory test mode. This test mode is only dedicated for factory test mode. The user functional mode is: TMODE[1:0] = "00".
DEBUG	I	Software debug mode. DEBUG directly enables the setting of halt bits of the "Timer Control Register" to freeze integrated peripherals.
		- DEBUG + phlt freeze the internal watch dog and the 2 internal timers,
		- DEBUG + phlt + ahlt freeze the channel A of the internal UART,
		- DEBUG + phlt + bhlt freeze the channel B of the internal UART.
		For final application, this pin must be grounded. This allows to keep software included debug facilities.
ТСК	I	Test (JTAG) clock. Test clock for scan registers.
TRST	I	Test (JTAG) reset. Asynchronous reset for the TAP controller. For final application, this pin must be grounded.
TMS	I	Test (JTAG) mode select. Selects test mode of the TAP controller.
TDI	I	Test (JTAG) data input. Test scan register data input.
TDO	0	Test (JTAG) data output. Test scan register data output.
		Power Signals
V _{DDO} /V _{DDI}		Power. V_{DDO} pins supply the output and bidirectional pins of the device.
		V_{DDI} pins supply the input and the main internal circuitry of the device.
V _{SSO} /V _{SSI}		Ground. V _{SSO} pins provide ground return for the output and bidirectional pins of the device.
		$V_{\mbox{\scriptsize SSI}}$ pins provide ground return for the input and the main internal circuitry of the device.


$\underline{1}$ / I = Input; O = Ouput.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-03246
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 45

A.1 SCOPE

A.1.1 <u>Scope</u>. This appendix establishes minimum requirements for microcircuit die to be supplied under the Qualified Manufacturers List (QML) Program. QML microcircuit die meeting the requirements of MIL-PRF-38535 and the manufacturers approved QM plan for use in monolithic microcircuits, multi-chip modules (MCMs), hybrids, electronic modules, or devices using chip and wire designs in accordance with MIL-PRF-38534 are specified herein. Two product assurance classes consisting of military high reliability (device class Q) and space application (device Class V) are reflected in the Part or Identification Number (PIN). When available a choice of Radiation Hardiness Assurance (RHA) levels are reflected in the PIN.

A.1.2 <u>PIN</u>. The PIN is as shown in the following example:

A.1.2.1 <u>RHA designator</u>. Device classes Q and V RHA identified die shall meet the MIL-PRF-38535 specified RHA levels. A dash (-) indicates a non-RHA die.

A.1.2.2 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows:

Device type	Generic number	Circuit function	Frequency
01	TSC695FL	32-bit SPARC low voltage processor	15 MHz

A.1.2.3 Device class designator.

Device class	Device requirements documentation
Q or V	Certification and qualification to the die requirements of MIL-PRF-38535

A.1.2.4 <u>Die Details</u>. The die details designation shall be a unique letter which designates the die's physical dimensions, bonding pad location(s) and related electrical function(s), interface materials, and other assembly related information, for each product and variant supplied to this appendix.

A.1.2.4.1 Die physical dimensions.

Figure A-1

A.1.2.4.2 Die bonding pad locations and electrical functions.

Figure A-1

A.1.2.4.3 Interface materials.

Figure A-1

A.1.2.4.4 Assembly related information.

Figure A-1

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-03246
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 46

A.1.3 Absolute maximum ratings. See paragraph 1.3 herein for details.

A.1.4 <u>Recommended operating conditions</u>. See paragraph 1.4 herein for details.

A.2 APPLICABLE DOCUMENTS.

A.2.1 <u>Government specifications, standards, and handbooks</u>. Unless otherwise specified, the following specification, standard, and handbook of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883 - Test Method Standard Microcircuits.

HANDBOOK

DEPARTMENT OF DEFENSE

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

(Copies of the specification, standard, and handbook required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity).

A.2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

A.3 REQUIREMENTS

A.3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit or function as described herein.

A.3.2 <u>Design, construction and physical dimensions</u>. The design, construction and physical dimensions shall be as specified in MIL-PRF-38535 and the manufacturer's QM plan, for device classes Q and V and herein.

A.3.2.1 <u>Die physical dimensions</u>. The die physical dimensions shall be as specified in A.1.2.4.1 and on figure A-1.

A.3.2.2 <u>Die bonding pad locations and electrical functions</u>. The die bonding pad locations and electrical functions shall be as specified in A.1.2.4.2 and on figure A-1.

A.3.2.3 Interface materials. The interface materials for the die shall be as specified in A.1.2.4.3 and on figure A-1.

A.3.2.4 Assembly related information. The assembly related information shall be as specified in A.1.2.4.4 and figure A-1.

A.3.2.5 <u>Radiation exposure connections</u>. The radiation exposure connections shall be as defined in paragraph 3.2.6 herein.

A.3.3 <u>Electrical performance characteristics and post-irradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and post-irradiation parameter limits are as specified in table IA of the body of this document.

A.3.4 <u>Electrical test requirements</u>. The wafer probe test requirements shall include functional and parametric testing sufficient to make the packaged die capable of meeting the electrical performance requirements in table IA.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-03246
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 47

A.3.5 <u>Marking</u>. As a minimum, each unique lot of die, loaded in single or multiple stack of carriers, for shipment to a customer, shall be identified with the wafer lot number, the certification mark, the manufacturer's identification and the PIN listed in A.1.2 herein. The certification mark shall be a "QML" or "Q" as required by MIL-PRF-38535.

A.3.6 <u>Certification of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see A.6.4 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this appendix shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and the requirements herein.

A.3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 shall be provided with each lot of microcircuit die delivered to this drawing.

A.4 QUALITY ASSURANCE PROVISIONS

A.4.1 <u>Sampling and inspection</u>. For device classes Q and V, die sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modifications in the QM plan shall not effect the form, fit or function as described herein.

A.4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and as defined in the manufacturer's QM plan. As a minimum it shall consist of:

- a) Wafer lot acceptance for Class V product using the criteria defined in MIL-STD-883 test method 5007.
- b) 100% wafer probe (see paragraph A.3.4 herein).
- c) 100% internal visual inspection to the applicable class Q or V criteria defined in MIL-STD-883 test method 2010 or the alternate procedures allowed in MIL-STD-883 test method 5004.

A.4.3 Conformance inspection.

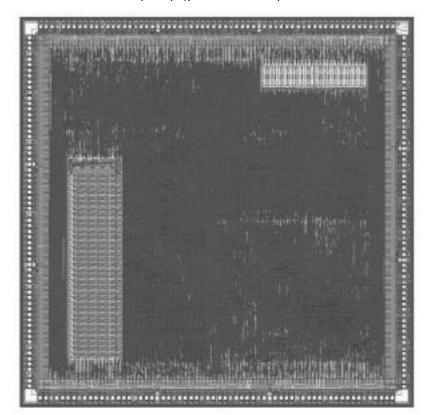
A.4.3.1 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be identified as radiation assured (see A.3.5 herein). RHA levels for device classes Q and V shall be as specified in MIL-PRF-38535. End point electrical testing of packaged die shall be as specified in table II herein. Group E tests and conditions are as specified in paragraphs 4.4.4 herein.

A.5 DIE CARRIER

A.5.1 <u>Die carrier requirements</u>. The requirements for the die carrier shall be accordance with the manufacturer's QM plan or as specified in the purchase order by the acquiring activity. The die carrier shall provide adequate physical, mechanical and electrostatic protection.

A.6 NOTES

A.6.1 <u>Intended use</u>. Microcircuit die conforming to this drawing are intended for use in microcircuits built in accordance with MIL-PRF-38535 or MIL-PRF-38534 for government microcircuit applications (original equipment), design applications and logistics purposes.


A.6.2 <u>Comments</u>. Comments on this appendix should be directed to DSCC-VA, Columbus, Ohio, 43216-5000 or telephone (614)-692-0547.

A.6.3 <u>Abbreviations, symbols and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.

A.6.4 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed within QML-38535 have submitted a certificate of compliance (see A.3.6 herein) to DSCC-VA and have agreed to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-03246
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 48

Due to the complexity of the device, a graphical representation of the pad locations is not available. This figure shall be maintained and available from the device manufacturer.

See subsequent pages for a table of pad locations.

Die bonding pad locations and electrical functions - Mask number 5186

Die physical dimensions. Die size: Die thickness:

Interface materials. Top metallization: Backside metallization:

<u>Glassivation</u>. Type: Thickness:

Substrate:

11,010 x 11,170 microns (with scribe line) 475 microns

Al Cu Si (bare)

Oxinitride 21 kÅ

Single crystal silicon

Assembly related information. Substrate potential: Special assembly instructions:

Not connected None

FIGURE A-1. Die bonding pad locations and electrical functions.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-03246
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 49

	Die bonding pad locations.										
Pad	X Center	Y Center	Pad	X Center	Y Center	Pad	X Center	Y Center	Pad	X Center	Y Center
1	4807.1	5101.8	33	-75.8	5101.8	65	-5101.8	4807.1	97	-5101.8	-75.8
2	4655.1	5101.8	34	-227.8	5101.8	66	-5101.8	4655.1	98	-5101.8	-227.8
3	4503.1	5101.8	35	-379.8	5101.8	67	-5101.8	4503.1	99	-5101.8	-379.8
4	4351.1	5101.8	36	-531.8	5101.8	68	-5101.8	4351.1	100	-5101.8	-531.8
5	4199.1	5101.8	37	-683.8	5101.8	69	-5101.8	4199.1	101	-5101.8	-683.8
6	4047.1	5101.8	38	-835.8	5101.8	70	-5101.8	4047.1	102	-5101.8	-835.8
7	3895.1	5101.8	39	-987.8	5101.8	71	-5101.8	3895.1	103	-5101.8	-987.8
8	3743.1	5101.8	40	-1139.8	5101.8	72	-5101.8	3743.1	104	-5101.8	-1139.8
9	3591.1	5101.8	41	-1291.8	5101.8	73	-5101.8	3591.1	105	-5101.8	-1291.8
10	3439.1	5101.8	42	-1443.8	5101.8	74	-5101.8	3439.1	106	-5101.8	-1443.8
11	3287.1	5101.8	43	-1595.8	5101.8	75	-5101.8	3287.1	107	-5101.8	-1595.8
12	3135.1	5101.8	44	-1747.8	5101.8	76	-5101.8	3135.1	108	-5101.8	-1747.8
13	2983.1	5101.8	45	-1899.8	5101.8	77	-5101.8	2983.1	109	-5101.8	-1899.8
14	2831.1	5101.8	46	-2051.8	5101.8	78	-5101.8	2831.1	110	-5101.8	-2051.8
15	2679.1	5101.8	47	-2203.8	5101.8	79	-5101.8	2679.1	111	-5101.8	-2203.8
16	2527.1	5101.8	48	-2355.8	5101.8	80	-5101.8	2527.1	112	-5101.8	-2355.8
17	2375.1	5101.8	49	-2507.8	5101.8	81	-5101.8	2375.1	113	-5101.8	-2507.8
18	2223.1	5101.8	50	-2659.8	5101.8	82	-5101.8	2223.1	114	-5101.8	-2659.8
19	2071.1	5101.8	51	-2811.8	5101.8	83	-5101.8	2071.1	115	-5101.8	-2811.8
20	1919.1	5101.8	52	-2963.8	5101.8	84	-5101.8	1919.1	116	-5101.8	-2963.8
21	1767.1	5101.8	53	-3115.8	5101.8	85	-5101.8	1767.1	117	-5101.8	-3115.8
22	1615.1	5101.8	54	-3267.8	5101.8	96	-5101.8	1615.1	118	-5101.8	-3267.8
23	1463.1	5101.8	55	-3419.8	5101.8	87	-5101.8	1463.1	119	-5101.8	-3419.8
24	1311.1	5101.8	56	-3571.8	5101.8	88	-5101.8	1311.1	120	-5101.8	-3571.8
25	1159.1	5101.8	57	-3723.8	5101.8	89	-5101.8	1159.1	121	-5101.8	-3723.8
26	1007.1	5101.8	58	-3875.8	5101.8	90	-5101.8	1007.1	122	-5101.8	-3875.8
27	855.1	5101.8	59	-4027.8	5101.8	91	-5101.8	855.1	123	-5101.8	-4027.8
28	703.1	5101.8	60	-4179.8	5101.8	92	-5101.8	703.1	124	-5101.8	-4179.8
29	551.1	5101.8	61	-4331.8	5101.8	93	-5101.8	551.1	125	-5101.8	-4331.8
30	399.1	5101.8	62	-4483.8	5101.8	94	-5101.8	399.1	126	-5101.8	-4483.8
31	247.1	5101.8	63	-4635.8	5101.8	95	-5101.8	247.1	127	-5101.8	-4635.8
32	95.1	5101.8	64	-4787.8	5101.8	96	-5101.8	95.1	128	-5101.8	-4787.8

See notes at end of figure.

FIGURE A-1. Die bonding pad locations and electrical functions - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-03246
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 50

	Die bonding pad locations - Continued.										
Pad	X Center	Y Center	Pad	X Center	Y Center	Pad	X Center	Y Center	Pad	X Center	Y Center
129	-4807.1	-5101.8	161	75.8	-5101.8	193	5101.8	-4807.1	225	5101.8	75.8
130	-4655.1	-5101.8	162	227.8	-5101.8	194	5101.8	-4655.1	226	5101.8	227.8
131	-4503.1	-5101.8	163	379.8	-5101.8	195	5101.8	-4503.1	227	5101.8	379.8
132	-4351.1	-5101.8	164	531.8	-5101.8	196	5101.8	-4351.1	228	5101.8	531.8
133	-4199.1	-5101.8	165	683.8	-5101.8	197	5101.8	-4199.1	229	5101.8	683.8
134	-4047.1	-5101.8	166	835.8	-5101.8	198	5101.8	-4047.1	230	5101.8	835.8
135	-3895.1	-5101.8	167	987.8	-5101.8	199	5101.8	-3895.1	231	5101.8	987.8
136	-3743.1	-5101.8	168	1139.8	-5101.8	200	5101.8	-3743.1	232	5101.8	1139.8
137	-3591.1	-5101.8	169	1291.8	-5101.8	201	5101.8	-3591.1	233	5101.8	1291.8
138	-3439.1	-5101.8	170	1443.8	-5101.8	202	5101.8	-3439.1	234	5101.8	1443.8
139	-3287.1	-5101.8	171	1595.8	-5101.8	203	5101.8	-3287.1	235	5101.8	1595.8
140	-3135.1	-5101.8	172	1747.8	-5101.8	204	5101.8	-3135.1	236	5101.8	1747.8
141	-2983.1	-5101.8	173	1899.8	-5101.8	205	5101.8	-2983.1	237	5101.8	1899.8
142	-2831.1	-5101.8	174	2051.8	-5101.8	206	5101.8	-2831.1	238	5101.8	2051.8
143	-2679.1	-5101.8	175	2203.8	-5101.8	207	5101.8	-2679.1	239	5101.8	2203.8
144	-2527.1	-5101.8	176	2355.8	-5101.8	208	5101.8	-2527.1	240	5101.8	2355.8
145	-2375.1	-5101.8	177	2507.8	-5101.8	209	5101.8	-2375.1	241	5101.8	2507.8
146	-2223.1	-5101.8	178	2659.8	-5101.8	210	5101.8	-2223.1	242	5101.8	2659.8
147	-2071.1	-5101.8	179	2811.8	-5101.8	211	5101.8	-2071.1	243	5101.8	2811.8
148	-1919.1	-5101.8	180	2963.8	-5101.8	212	5101.8	-1919.1	244	5101.8	2963.8
149	-1767.1	-5101.8	181	3115.8	-5101.8	213	5101.8	-1767.1	245	5101.8	3115.8
150	-1615.1	-5101.8	182	3267.8	-5101.8	214	5101.8	-1615.1	246	5101.8	3267.8
151	-1463.1	-5101.8	183	3419.8	-5101.8	215	5101.8	-1463.1	247	5101.8	3419.8
152	-1311.1	-5101.8	184	3571.8	-5101.8	216	5101.8	-1311.1	248	5101.8	3571.8
153	-1159.1	-5101.8	185	3723.8	-5101.8	217	5101.8	-1159.1	249	5101.8	3723.8
154	-1007.1	-5101.8	186	3875.8	-5101.8	218	5101.8	-1007.1	250	5101.8	3875.8
155	-855.1	-5101.8	187	4027.8	-5101.8	219	5101.8	-855.1	251	5101.8	4027.8
156	-703.1	-5101.8	188	4179.8	-5101.8	220	5101.8	-703.1	252	5101.8	4179.8
157	-551.1	-5101.8	189	4331.8	-5101.8	221	5101.8	-551.1	253	5101.8	4331.8
158	-399.1	-5101.8	190	4483.8	-5101.8	222	5101.8	-399.1	254	5101.8	4483.8
159	-247.1	-5101.8	191	4635.8	-5101.8	223	5101.8	-247.1	255	5101.8	4635.8
160	-95.1	-5101.8	192	4787.8	-5101.8	224	5101.8	-95.1	256	5101.8	4787.8

Die bonding pad locations - Continued

See notes at end of figure.

FIGURE A-1. Die bonding pad locations and electrical functions - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-03246
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 51

Die bonding pad locations - Continued.

Notes:

- 1.
- 2.
- The die center is the coordinate origin (0,0). Coordinates are in microns. Numbering of pad is not the numbering of the package pin. 3.
- It differs as follows:

Package pin 1 = Die pad 256 Package pin 2 = Die pad 255 Package pin 3 = Die pad 254
•
•
•
Package pin 256 = Die pad 1

FIGURE A-1. Die bonding pad locations and electrical functions - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-03246
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 52

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 03-08-14

Approved sources of supply for SMD 5962-03246 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962-0324601QXC	F7400	TSC695FL-15MAMQ
5962-0324601VXC	F7400	TSC695FL-15SASV
5962R0324601VXC	F7400	TSC695FL-15SASR
5962-0324601Q9A	F7400	TSC695FL-15MBMQ
5962-0324601V9A	F7400	TCS695FL-15SBSV

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number Vendor name and address

F7400

Atmel Nantes SA BP70602 44306 NANTES CEDEX 3, France

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.