ASSP

Dual Serial Input
 PLL Frequency Synthesizer

MB15F02SL

DESCRIPTION

The Fujitsu MB15F02SL is a serial input Phase Locked Loop (PLL) frequency synthesizer with a 1200 MHz and a 500 MHz prescalers. The 1200 MHz and 500 MHz prescalers have a dual modulus division ratio of 128/129 or $64 / 65$, and a $8 / 9$ or a $16 / 17$ enabling pulse swallowing operation.
The supply voltage range is between 2.4 V and 3.6 V . The MB15F02SL uses the latest BiCMOS process. As a result, the supply current is typically 3 mA at 2.7 V . A refined charge pump supplies a well-balanced output current of 1.5 mA or 6 mA . The charge pump current is selectable by serial data.
MB15F02SL is ideally suited for wireless mobile communications, such as GSM and PDC.

■ FEATURES

- High frequency operation: RF synthesizer: 1200 MHz max IF synthesizer: 500 MHz max
- Low power supply voltage: $\mathrm{Vcc}=2.4$ to 3.6 V
- Ultra Low power supply current: $\mathrm{Icc}=3.0 \mathrm{~mA}$ typ. ($\mathrm{Vcc}=2.7 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$, in IF, RF locking state)

$$
\mathrm{Icc}=3.5 \mathrm{~mA} \text { typ. }\left(\mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C} \text {, in IF, RF locking state }\right)
$$

- Direct power saving function: Power supply current in power saving mode

Typ. $0.1 \mu \mathrm{~A}\left(\mathrm{Vcc}=3.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}\right)$, $\mathrm{Max} .10 \mu \mathrm{~A}\left(\mathrm{~V}_{c c}=3.0 \mathrm{~V}\right)$

- Dual modulus prescaler: 1200 MHz prescaler ($64 / 65,128 / 129$)/500 MHz prescaler ($8 / 9$ or 16/17)
- Serial input 14-bit programmable reference divider: $\mathrm{R}=3$ to 16,383
- Serial input programmable divider consisting of:
- Binary 7-bit swallow counter: 0 to 127
- Binary 11-bit programmable counter: 3 to 2,047
- Software selectable charge pump current
- On-chip phase control for phase comparator
- Operating temperature: $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$
- Pin compatible with MB15F02, MB15F02L

PACKAGES

16-pin plastic SSOP
(FPT-16P-M05)
(LCC-16P-M04)

MB15F02SL

PIN ASSIGNMENTS

PIN DESCRIPTIONS

Pin no.		Pin name	I/O	Descriptions
SSOP-16	BCC-16			
1	16	GNDif	-	Ground for RF-PLL section.
2	1	OSCin	I	The programmable reference divider input. TCXO should be connected with a AC coupling capacitor.
3	2	GNDIF	-	Ground for the IF-PLL section.
4	3	finiF	1	Prescaler input pin for the IF-PLL. Connection to an external VCO should be via AC coupling.
5	4	V ccil	-	Power supply voltage input pin for the IF-PLL section.
6	5	LD/fout	0	Lock detect signal output (LD)/phase comparator monitoring output (fout). The output signal is selected by LDS bit in a serial data. LDS bit = " H "; outputs fout signal LDS bit = "L" ; outputs LD signal
7	6	PSIF	1	Power saving mode control for the IF-PLL section. This pin must be set at "L" during Power-ON. (Open is prohibited.) PSIF = "H" ; Normal mode PS
8	7	Doif	O	Charge pump output for the IF-PLL section. Phase characteristics of the phase detector can be selected via programming of the FC-bit.
9	8	Dorf	0	Charge pump output for the RF-PLL section. Phase characteristics of the phase detector can be selected via programming of the FC-bit.
10	9	PSRF	1	Power saving mode control for the RF-PLL section. This pin must be set at "L" during Power-ON. (Open is prohibited.) PSRF = "H" ; Normal mode PS $\mathrm{PF}=$ " L "; 'Power saving mode
11	10	XfinRF	1	Prescaler complementary input for the RF-PLL section. This pin should be grounded via a capacitor.
12	11	V CCRF	-	Power supply voltage input pin for the RF-PLL section, the shift register and the oscillator input buffer. When power is OFF, latched data of RF-PLL is lost.
13	12	$\mathrm{fingF}_{\text {R }}$	1	Prescaler input pin for the RF-PLL. Connection to an external VCO should be via AC coupling.
14	13	LE	1	Load enable signal inpunt (with a schmitt trigger input buffer.) When the LE bit is set " H ", data in the shift register is transferred to the corresponding latch according to the control bit in the serial data.
15	14	Data	1	Serial data input (with a schmitt trigger input buffer.) Data is transferred to the corresponding latch (IF-ref counter, IF-prog. counter, RF-ref. counter, RF-prog. counter) according to the control bit in the serial data.
16	15	Clock	1	Clock input for the 23-bit shift register (with a schmitt trigger input buffer.) One bit of data is shifted into the shift register on a rising edge of the clock.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating		Unit	Remark
		Min.	Max.		
Power supply voltage	V_{cc}	-0.5	+4.0	V	
Input voltage	V_{l}	-0.5	$\mathrm{~V}_{\mathrm{cc}}+0.5$	V	
Output voltage	$\mathrm{V} \circ$	GND	V cc	V	
Storage temperature	Tstg	-55	+125	${ }^{\circ} \mathrm{C}$	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Remark
		Min.	Typ.	Max.		
Power supply voltage	V_{cc}	2.4	3.0	3.6	V	
Input voltage	V C	GND	-	V_{cc}	V	
Operating temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB15F02SL

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{Vcc}=2.4 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{Ta}=-40$ to $\left.+85^{\circ} \mathrm{C}\right)$								
Parameter		Symbol	Condition	Value			Unit	
		Min.		Typ.	Max.			
Power supply current*1			Iccif ${ }^{+1}$	$\begin{aligned} & \begin{array}{l} \operatorname{finim~}=500 \mathrm{MHz}, \mathrm{~V}_{\text {CCIF }}=2.7 \mathrm{~V} \\ (\mathrm{VCCIF}=3.0 \mathrm{~V}) \end{array} \end{aligned}$	-	$\begin{aligned} & \hline 1.2 \\ & (1.5) \end{aligned}$	-	mA
		ICCRF* ${ }^{\text {P }}$	$\begin{aligned} & \text { fin } \begin{array}{l} \text { F }=1200 \mathrm{MHz}, \mathrm{~V}_{\text {CCRF }}=2.7 \mathrm{~V} \\ (\mathrm{~V} \text { CCRF }=3.0 \mathrm{~V}) \end{array} \end{aligned}$	-	$\begin{gathered} 1.8 \\ (2.0) \end{gathered}$	-	mA	
Power saving current		Ipsif	PS IF $=$ PS $\mathrm{RF}=$ "L"	-	$0.1{ }^{* 2}$	10	$\mu \mathrm{A}$	
		IPSRF	PS IF $=$ PSRF $=$ "L"	-	$0.1^{* 2}$	10	$\mu \mathrm{A}$	
Operating frequency	finif ${ }^{\text {/3 }}$	finiF $^{\text {F }}$	IF PLL	50	-	500	MHz	
	$\mathrm{fin}_{\text {R }}{ }^{\text {³}}$	$\mathrm{fin}_{\text {RF }}$	RF PLL	100	-	1200	MHz	
	OSCIn	fosc	-	3	-	40	MHz	
Input sensitivity	finif ${ }^{\text {P8 }}$	Pfinif	IF PLL, 50Ω system	-15	-	+2	dBm	
	$\mathrm{finfF}^{\text {f }}$	Pfinkf	RF PLL, 50Ω system	-15	-	+2	dBm	
	OSCIn	Vosc	-	0.5		Vcc	Vp-p	
"H" level input voltage	Data, Clock, LE	VIH	Schmitt trigger input	$\begin{gathered} \mathrm{Vcc} \times 0.7 \\ +0.4 \end{gathered}$	-	-	V	
"L" level input voltage		VIL	Schmitt trigger input	-	-	$\begin{gathered} \mathrm{Vcc} \times 0.3 \\ -0.4 \end{gathered}$		
"H" level input voltage	PSIF, $\mathrm{PS}_{\text {RF }}$	V_{H}	-	V $\mathrm{cc} \times 0.7$	-	-	V	
"L" level input voltage		VIL	-	-	-	$\mathrm{V} \mathrm{cc} \times 0.3$		
"H" level input current		$11 H^{4}$	-	-1.0	-	+1.0	$\mu \mathrm{A}$	
"L" level input current		$11{ }^{*} 4$	-	-1.0	-	+1.0		
"H" level input current	OSCIN	І ${ }_{\text {H }}$	-	0	-	+100	$\mu \mathrm{A}$	
"L" level input current		$11{ }^{*} 4$	-	-100	-	0		
"H" level output voltage	LD/fout	Vон	$\mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}, \mathrm{loH}^{\prime}=-1 \mathrm{~mA}$	Vcc-0.4	-	-	V	
"L" level output voltage		VoL	$\mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}, \mathrm{loL}=1 \mathrm{~mA}$	-	-	0.4		
"H" level output voltage	Doif Dorf	Vоон	V CC $=3.0 \mathrm{~V}, \mathrm{IDOH}=-0.5 \mathrm{~mA}$	V cc -0.4	-	-	V	
"L" level output voltage		Vool	V cc $=3.0 \mathrm{~V}$, $\mathrm{looL}=0.5 \mathrm{~mA}$	-	-	0.4		
High impedance cutoff current	Doı Dorf	loff	$\begin{aligned} & \mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}, \\ & \mathrm{VofF}=0.5 \mathrm{~V} \text { to } \mathrm{Vcc}-0.5 \mathrm{~V} \end{aligned}$	-	-	2.5	nA	
"H" level output current	LD/fout	$1 \mathrm{IOH}^{4}$	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	-	-1.0	mA	
"L" level output current		lot ${ }^{4}$	$\mathrm{Vcc}=3.0 \mathrm{~V}$	1.0	-	-		

(Continued)

MB15F02SL

(Continued)
($\mathrm{Vcc}=2.4$ to $3.6 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter		Symbol	Condition		Value			Unit	
		Min.			Typ.	Max.			
"H" level output current	Doif Dorf		Іоor ${ }^{4}$	$\begin{aligned} & \mathrm{Vcc}=3.0 \mathrm{~V}, \\ & \mathrm{VooH}=\mathrm{VCc} / 2, \\ & \mathrm{Ta}=+25^{\circ} \mathrm{C} \end{aligned}$	CS bit = " H "	-	-6.0	-	mA
		CS bit $=$ "L"			-	-1.5	-		
"L" level output current		Iool	$\begin{aligned} & V \mathrm{Vcc}=3.0 \mathrm{~V}, \\ & \mathrm{VooL}=V_{c \mathrm{cc}} / 2, \\ & \mathrm{Ta}=+25^{\circ} \mathrm{C} \end{aligned}$	CS bit = "H"	-	6.0	-		
				CS bit = "L"	-	1.5	-		
Charge pump current rate	loo//looh	Іоомт ${ }^{\text {5 }}$	$\mathrm{V}_{\mathrm{DO}}=\mathrm{V}_{\mathrm{cc}} / 2$		-	3	-	\%	
	vs V_{o}	Iovov ${ }^{\text {¢ }} 6$	$0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{oc}} \leq \mathrm{Vcc}-0.5 \mathrm{~V}$		-	10	-	\%	
	vs Ta	Idota ${ }^{4}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq+85^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{DO}}=\mathrm{V} \mathrm{Vc} / 2 \end{aligned}$		-	10	-	\%	

*1: Conditions; fosc $=12 \mathrm{MHz}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$, in locking state.
*2: $\mathrm{V}_{\text {CCIF }}=\mathrm{V}_{\text {ccrff }}=3.0 \mathrm{~V}$, fosc $=12.8 \mathrm{MHz}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$, in power saving mode.
*3: AC coupling. 1000pF capacitor is connected under the condition of min. operating frequency.
*4: The symbol " - " (minus) means direction of current flow.
${ }^{*} 5: \quad V \mathrm{cc}=3.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}\left(| | l_{3}|-||4||) /\left[\left(\left|I_{3}\right|+||4|| / 2\right] \times 100(\%)\right.\right.$
${ }^{*} 6: \quad \mathrm{V}$ cc $=3.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}\left[\left(| |_{2}\left|-\left|\left.\right|_{1}\right|\right) / 2\right] /\left[\left(\left|\left.\right|_{\mid}\right|+\left|\left|\left.\right|_{2}\right|\right) / 2\right] \times 100(\%)\right.\right.$ (Applied to each Iool, Iooh)
${ }^{*} 7: \quad \mathrm{Vcc}=3.0 \mathrm{~V}, \quad\left[\mid \operatorname{IDO}\left(+85^{\circ} \mathrm{C}\right)-\operatorname{loo}\left(-40^{\circ} \mathrm{C}\right) / 2\right] /\left[\mid \mathrm{IDO}\left(+85^{\circ} \mathrm{C}\right)+\operatorname{IDo}\left(-40^{\circ} \mathrm{C}\right) / 2\right] \times 100(\%)($ Applied to each IDoL, IDoH)
*8: Prescaler divided ratio Charge pump current finif \quad Vfinif(min) 16/17

8/9
1.5 mA mode
6.0 mA mode
$50 \mathrm{MHz} \leqq$ fin $\leqq 500 \mathrm{MHz}$
$-15 \mathrm{dBm}$ $50 \mathrm{MHz} \leqq$ fin $\leqq 300 \mathrm{MHz} \quad-15 \mathrm{dBm}$ $300 \mathrm{MHz}<$ fin $\leqq 500 \mathrm{MHz} \quad-10 \mathrm{dBm}$
1.5 mA mode $\quad 50 \mathrm{MHz} \leqq \mathrm{fin} \leqq 300 \mathrm{MHz}^{*} \quad-15 \mathrm{dBm}$
$300 \mathrm{MHz}<$ fin $\leqq 500 \mathrm{MHz} \quad-15 \mathrm{dBm}$
6.0 mA mode $\quad 50 \mathrm{MHz} \leqq$ fin $\leqq 300 \mathrm{MHz}^{*} \quad-15 \mathrm{dBm}$
$300 \mathrm{MHz}<$ fin $\leqq 500 \mathrm{MHz} \quad-10 \mathrm{dBm}$
$*: ~ V \mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V at 500 MHz,
$\mathrm{Vcc}=2.4 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at fin $<500 \mathrm{MHz}$

MB15F02SL

FUNCTIONAL DESCRIPTION

The divide ratio can be calculated using the following equation:
fvoo $=\{(M \times N)+A\} \times$ fosc $\div R \quad(A<N)$
fvco: Output frequency of external voltage controlled oscillator (VCO)
M : Preset divide ratio of dual modulus prescaler (8 or 16 for IF-PLL, 64 or 128 for RF-PLL)
N : Preset divide ratio of binary 11-bit programmable counter (3 to 2,047)
A : Preset divide ratio of binary 7 -bit swallow counter $(0 \leq A \leq 127)$
fosc: Reference oscillation frequency
R : Preset divide ratio of binary 14-bit programmable reference counter (3 to 16,383)

Serial Data Input

Serial data is entered using three pins, Data pin, Clock pin, and LE pin. Programmable dividers of IF/RF-PLL sections, programmable reference dividers of IF/RF-PLL sections are controlled individually.
Serial data of binary data is entered through Data pin.
On rising edge of Clock, one bit of serial data is transferred into the shift register. When the LE signal is taken high, the data stored in the shift register is transferred to one of latch of them depending upon the control bit data setting.

Table 1. Control Bit

Control bit		Destination of serial data
CN1	CN2	
L	L	The programmable reference counter for the IF-PLL
H	L	The programmable reference counter for the RF-PLL
L	H	The programmable counter and the swallow counter for the IF-PLL
H	H	The programmable counter and the swallow counter for the RF-PLL

Shift Register Configuration

Programmable Reference Counter

LSB Data Flow \longrightarrow MSB																						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
C N 1	C N 2	T	T	$\begin{gathered} \mathrm{R} \\ 1 \end{gathered}$	$\begin{aligned} & R \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 4 \end{aligned}$	$\begin{aligned} & R \\ & 5 \end{aligned}$	$\begin{gathered} R \\ 6 \end{gathered}$	$\begin{aligned} & R \\ & 7 \end{aligned}$	$\begin{gathered} R \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{R} \\ & 9 \end{aligned}$	$\begin{gathered} R \\ 10 \end{gathered}$	$\begin{gathered} \mathrm{R} \\ 11 \end{gathered}$	$\begin{gathered} \mathrm{R} \\ 12 \end{gathered}$	$\begin{gathered} \mathrm{R} \\ 13 \end{gathered}$	$\begin{gathered} \mathrm{R} \\ 14 \end{gathered}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~S} \end{aligned}$	X	X	X	X

[^0]
MB15F02SL

Table 2. Binary 14-bit Programmable Reference Counter Data Setting

Divide ratio (\mathbf{R})	R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1
3	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
\cdot														
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio less than 3 is prohibited.
Table 3. Test Purpose Bit Setting

T1	T2	LD/fout pin state
L	L	Outputs friF.
H	L	Outputs frrF.
L	H	Outputs fpiF.
H	H	Outputs fprF.

MB15F02SL

Table 4. Binary 11-bit Programmable Counter Data Setting

Divide ratio (\mathbf{N})	N11	N10	N9	N8	N7	N6	N5	N4	N3	N2	N1
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
\cdot											
2047	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio less than 3 is prohibited.
Table 5. Binary 7-bit Swallow Counter Data Setting

Divide ratio (\mathbf{A})	A7	A6	A5	A4	A3	A2	A1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\cdot							
127	1	1	1	1	1	1	1

Note: Divide ratio (A) range $=0$ to 127
Table 6. Prescaler Data Setting

		SW = "H"	SW = "L"
Prescaler divide ratio	IF-PLL	$8 / 9$	$16 / 17$
	RF-PLL	$64 / 65$	$128 / 129$

Table 7. Phase Comparator Phase Switching Data Setting

	FC $_{\text {IF }}, \mathrm{FC}_{\text {RF }}=$ " H "	FC $_{\text {IF }} \mathrm{FC}_{\text {RF }}=$ " L "
	Doif, Dorf	
$\mathrm{fr}>\mathrm{fp}$	H	L
$\mathrm{fr}=\mathrm{fp}$	Z	Z
$\mathrm{fr}<\mathrm{fp}$	L	H
VCO polarity	(1)	(2)

Note: • Z = High-impedance

- Depending upon the VCO and LPF polarity, FC bit should be set.

Table 8. LD/fout Output Select Data Setting

LDS	LD/fout output signal
H	fout (fri//fref, fpif/fprF) signals
L	LD signal

Table 9. Charge Pump Current Setting

CS	Current value
H	$\pm 6.0 \mathrm{~mA}$
L	$\pm 1.5 \mathrm{~mA}$

Power Saving Mode (Intermittent Mode Control Circuit)

Table 10. PS Pin Setting

PS pin	Status
H	Normal mode
L	Power saving mode

The intermittent mode control circuit reduces the PLL power consumption.
By setting the PS pin low, the device enters into the power saving mode, reducing the current consumption. See the Electrical Characteristics chart for the specific value.
The phase detector output, Do, becomes high impedance.
For the dual PLL, the lock detector, LD, is as shown in the LD Output Logic table.
Setting the PS pin high, releases the power saving mode, and the device works normally.
The intermittent mode control circuit also ensures a smooth startup when the device returns to normal operation. When the PLL is returned to normal operation, the phase comparator output signal is unpredictable. This is because of the unknown relationship between the comparison frequency (fp) and the reference frequency (fr) which can cause a major change in the comparator output, resulting in a VCO frequency jump and an increase in lockup time. To prevent a major VCO frequency jump, the intermittent mode control circuit limits the magnitude of the error signal from the phase detector when it returns to normal operation.

Note: • When power $\left(V_{c c}\right)$ is first applied, the device must be in standby mode, $\mathrm{PS}=$ Low, for at least $1 \mu \mathrm{~s}$.

- PS pin must be set at "L" for Power-ON.

MB15F02SL

SERIAL DATA INPUT TIMING

On rising edge of the clock, one bit of the data is transfered into the shift register.

Parameter	Min.	Typ.	Max.	Unit
t_{1}	20	-	-	ns
t_{2}	20	-	-	ns
t_{3}	30	-	-	ns
t_{4}	30	-	-	ns

Parameter	Min.	Typ.	Max.	Unit
t_{5}	100	-	-	ns
t_{6}	20	-	-	ns
t_{7}	100	-	-	ns

Note: LE should be "L" when the data is transferred into the shift register.

PHASE COMPARATOR OUTPUT WAVEFORM

LD Output Logic Table

IF-PLL section	RF-PLL section	LD output
Locking state/Power saving state	Locking state/Power saving state	H
Locking state/Power saving state	Unlocking state	L
Unlocking state	Locking state/Power saving state	L
Unlocking state	Unlocking state	L

Notes: - Phase error detection range $=-2 \pi$ to $+2 \pi$

- Pulses on Doif/RF signals are output to prevent dead zone.
- LD output becomes low when phase error is twu or more.
- LD output becomes high when phase error is twl or less and continues to be so for three cycles or more.
- twu and twl depend on OSCin input frequency as follows.
$t w u \geq 2 / f o s c:$ i. e. twu $\geq 156.3 \mathrm{~ns}$ when fosc $=12.8 \mathrm{MHz}$
$t w u \leq 4 / f o s c:$ i. e. $\mathrm{twL} \leq 312.5 \mathrm{~ns}$ when fosc $=12.8 \mathrm{MHz}$

MB15F02SL

MEASURMENT CIRCUIT (for Measuring Input Sensitivity fin/OSCin)

Note: SSOP-16

MB15F02SL

TYPICAL CHARACTERISTICS

1. fin input impedance

MB15F02SL

2. OSCin input sensitivity

MB15F02SL

3. Do output current (RF-PLL)

- 1.5 mA mode

- 6.0 mA mode

MB15F02SL

4. Do output current (IF-PLL)

- 1.5 mA mode

- 6.0 mA mode

MB15F02SL

5. fin input impedance

MB15F02SL

6. OSCin input impedance

APPLICATION EXAMPLE

USAGE PRECAUTIONS

(1) Vccrf must equal Vccir.

Even if either RF-PLL or IF-PLL is not used, power must be supplied to both $V_{\text {ccra }}$ and $V_{\text {ccif }}$ to keep them equal. It is recommended that the non-use PLL is controlled by power saving function.
(2) To protect against damage by electrostatic discharge, note the following handling precautions:
-Store and transport devices in conductive containers.
-Use properly grounded workstations, tools, and equipment.
-Turn off power before inserting or removing this device into or from a socket.
-Protect leads with conductive sheet, when transporting a board mounted device.

MB15F02SL

- ORDERING INFORMATION

Part number	Package	Remarks
MB15F02SLPFV1	16-pin, plastic SSOP (FPT-16P-M05)	
MB15F02SLPV1	16-pad, plastic BCC (LCC-16P-M04)	

MB15F02SL

PACKAGE DIMENSIONS

(Continued)

MB15F02SL

(Continued)
16-pad, Plastic BCC
$($ LCC-16P-M04) (LCC-16P-M04)

© 1999 FUJTSU LIMTED C160015S-IC-1
Dimensions in mm (inches)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan
Tel: +81-44-754-3763
Fax: +81-44-754-3329
http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, USA
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am-5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH
Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fujitsu-fme.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD \#05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741
Tel: +65-281-0770
Fax: +65-281-0220
http://www.fmap.com.sg/

All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION:
Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

[^0]: CN1,2 : Control bit
 [Table 1]
 R1 to R14 : Divide ratio setting bits for the programmable reference counter (3 to 16,383)[Table 2]
 T1, $2 \quad$: Test purpose bit
 CS : Charge pump currnet select bit
 X : Dummy bits (Set "0" or "1")
 NOTE: Data input with MSB first.

