16-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD784935A, 784936A, 784937A, and 784938A are members of the μ PD784938A Subseries in the 78K/IV Series. These microcontrollers are based on the μ PD784908 Subseries but are provided with the higher internal ROM and RAM capacities and a ROM correction function.

In addition, a flash memory version, μ PD78F4938A, that can operate in the same power supply voltage range as the mask ROM version, and various development tools are also available.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μ PD784938A Subseries User's Manual - Hardware: U13987E
78K/IV Series User’s Manual - Instructions: U10905E

FEATURES

- 78K/IV Series
- Minimum instruction execution time:

$$
\begin{aligned}
& 320 \mathrm{~ns}(\mathrm{fxx}=6.29 \mathrm{MHz}) \\
& 160 \mathrm{~ns}(\mathrm{fxx}=12.5 \mathrm{MHz})
\end{aligned}
$$

- I/O ports: 80 pins
- Timers/counters: 16-bit timer/event counter $\times 1$ unit

$$
\text { 8-/16-bit timer/event counter } \times 2 \text { units }
$$ 8-/16-bit timer $\times 1$ unit

- Serial interface: 4 channels
- UART/IOE (3-wire serial I/O): 2 channels
- CSI (3-wire serial I/O): 2 channels
- PWM output: 2 outputs
- Standby function

HALT/STOP/IDLE mode

- Clock division function
- External expansion function
- Internal ROM correction function
- Watchdog timer: 1 channel
- Clock output function:

Selectable from fclk, fclk/2, fclk/4, fclк/8, and fclk/16

- A/D converter: 8 -bit resolution $\times 8$ channels
- IEBus ${ }^{\text {TM }}$ controller
- Watch timer
- Low power consumption
- Supply voltage:
- VDD $=4.0$ to 5.5 V (@12.58 MHz operation)
- $V_{D D}=3.0$ to 5.5 V (@6.29 MHz operation)

APPLICATION

Car audio, etc.

Unless otherwise specified, the μ PD784938A is treated as the representative model in this document.
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

ORDERING INFORMATION

Part Number	Package	Internal ROM (bytes)	Internal RAM (bytes)
μ PD784935AGF- $\times \times \times-3 B A$	100-pin plastic QFP (14×20)	96 KB	5120 bytes
μ PD784936AGF- $\times \times \times-3 B A$	100-pin plastic QFP (14×20)	128 KB	6656 bytes
μ PD784937AGF- $\times \times \times-3 B A$	100-pin plastic QFP (14×20)	192 KB	8192 bytes
μ PD784938AGF- $\times \times \times-3 B A$	100-pin plastic QFP (14×20)	256 KB	10496 bytes

Remark $\times \times \times$ indicates ROM code suffix.

* 78K/IV Series Product Development

FUNCTION LIST
(1/2)
\star

Part Number Item			$\mu \mathrm{PD} 784935 \mathrm{~A}$	$\mu \mathrm{PD} 784936 \mathrm{~A}$	$\mu \mathrm{PD} 784937 \mathrm{~A}$	$\mu \mathrm{PD} 784938 \mathrm{~A}$
Number of basic instructions (mnemonics)			113			
General-purpose registers			8 bits $\times 32$ registers $\times 8$ banks, or 16 bits $\times 8$ registers $\times 8$ banks (memory map)			
Minimum instruction execution time			$320 \mathrm{~ns} / 636 \mathrm{~ns} / 1.27 \mu \mathrm{~s} / 2.54 \mu \mathrm{~s}$ (@6.29 MHz operation) $160 \mathrm{~ns} / 320 \mathrm{~ns} / 636 \mathrm{~ns} / 1.27 \mu \mathrm{~s}$ (@12.58 MHz operation)			
Internal memory		ROM	96 KB	128 KB	192 KB	256 KB
		RAM	5120 bytes	6656 bytes	8192 bytes	10496 bytes
Memory space			1 MB with program and data spaces combined			
I/O port		Total	80 pins			
		Input	8 pins			
		1/O	72 pins			
Pins with ancillary function ${ }^{\text {Note }}$		direct drive output	24 pins			
		sistor direct drive	8 pins			
		open drain drive	4 pins			
Real-time output port			4 bits $\times 2$, or 8 bits $\times 1$			
IEBus controller			Internal (simple version)			
Timer/counter			Timer/event counter 0: Timer counter $\times 1$ $(16$ bits $)$ Capture register $\times 1$ Compare register $\times 2$			Pulse output possible - Toggle output - PWM/PPG output - One-shot pulse output
			Timer/event counter 1: Timer counter $\times 1$ Real-time output port (16 bits) Capture register $\times 1$ Capture/compare register $\times 1$ Compare register $\times 1$			
			Timer/event counter 2: Timer counter $\times 1$ Pulse output possible (16 bits) Capture register $\times 1$ - Toggle output Capture/compare register $\times 1$ Compare register $\times 1$ • PWM/PPG output			
			$\begin{array}{ll}\text { Timer } 3 \text { (16 bits): } & \text { Timer counter } \times 1 \\ & \text { Compare register } \times 1\end{array}$			
Watch timer			Generates interrupt request at 0.5 -second intervals (internal watch clock oscillator provided) Main clock (12.58 MHz) or watch clock (32.7 kHz) selectable as input clock			
Clock output			Selectable from fclk, fclk/2, fclk/4, fclk/8, or fclk/16 (also usable as 1-bit output port)			
PWM output			12-bit resolution $\times 2$ channels			
Serial interface			UART/IOE (3-wire serial I/O): 2 channels (with internal baud rate generator) CSI (3-wire serial I/O): 2 channels			
A/D converter			8-bit resolution $\times 8$ channels			
Watchdog timer			1 channel			
ROM correction function			Internal (4 points of correction addresses can be set.)			
External expansion function			Provided (up to 1 MB)			

Note Pins with ancillary functions are included in the I/O pins.

Item \quad Part Number		$\mu \mathrm{PD} 784935 \mathrm{~A}$	$\mu \mathrm{PD} 784936 \mathrm{~A}$	$\mu \mathrm{PD} 784937 \mathrm{~A}$	$\mu \mathrm{PD} 784938 \mathrm{~A}$
Standby		HALT/STOP/IDLE mode			
Interrupt	Hardware source	27 (internal: 20, external: 7 (sampling clock variable input: 1))			
	Software source	BRK instruction, BRKCS instruction, operand error			
	Non-maskable	Internal: 1, external: 1			
	Maskable	Internal: 19, external: 6			
		Four programmable priority levels Three types of processing formats: Vectored interrupt/macro service/context switching			
Supply voltage		- $V_{D D}=4.0$ to 5.5 V (@12.58 MHz operation) - $\mathrm{VDD}=3.0$ to 5.5 V (@6.29 MHz operation)			
Package		100-pin plastic QFP (14×20)			

CONTENTS

1. DIFFERENCES BETWEEN PRODUCTS IN μ PD784938A SUBSERIES 8
2. MAJOR DIFFERENCES BETWEEN μ PD784908, μ PD784038, AND μ PD78098 SUBSERIES 9
3. PIN CONFIGURATION (Top View) 10
4. SYSTEM CONFIGURATION EXAMPLE (car audio system (tuner and deck)) 12
5. BLOCK DIAGRAM 13
6. PIN FUNCTIONS 14
6.1 Port Pins 14
6.2 Non-Port Pins 16
6.3 Pin I/O Circuits and Recommended Connection of Unused Pins 18
7. CPU ARCHITECTURE 22
7.1 Memory Space 22
7.2 CPU Registers 27
7.2.1 General-purpose registers 27
7.2.2 Control registers 28
7.2.3 Special function registers (SFRs) 29
8. PERIPHERAL HARDWARE FUNCTIONS 34
8.1 Ports 34
8.2 Clock Generator 36
8.3 Real-Time Output Port 39
8.4 Timers/Counters 40
8.5 Watch Timer 42
8.6 PWM Output (PWM0, PWM11) 43
8.7 A/D Converter 44
8.8 Serial Interface 45
8.8.1 Asynchronous serial interface/3-wire serial I/O (UART/IOE) 46
8.8.2 Clocked serial interface (CSI) 48
8.9 Clock Output Function 49
8.10 Edge Detection Function 50
8.11 Watchdog Timer 50
8.12 Simplified IEBus Controller 51
9. INTERRUPT FUNCTION 54
9.1 Interrupt Sources 54
9.2 Vectored Interrupt 56
9.3 Context Switching 57
9.4 Macro Service 57
9.5 Application Examples of Macro Service 58
10. LOCAL BUS INTERFACE 60
10.1 Memory Expansion 60
10.2 Memory Space 61
10.3 Programmable Wait 62
10.4 Pseudo Static RAM Refresh Function 62
10.5 Bus Hold Function 62
11. STANDBY FUNCTION 63
12. RESET FUNCTION 64
13. REGULATOR 65
14. ROM CORRECTION 66
15. INSTRUCTION SET 67
\star 16. ELECTRICAL SPECIFICATIONS 72
16. PACKAGE DRAWINGS 92
17. RECOMMENDED SOLDERING CONDITIONS 93
APPENDIX A. DEVELOPMENT TOOLS 94
APPENDIX B. RELATED DOCUMENTS 97

1. DIFFERENCES BETWEEN PRODUCTS IN μ PD784938A SUBSERIES

The only difference between the μ PD784935A, 784936A, 784937A, and 784938A is the internal memory capacity. The μ PD78F4938A has a 256 KB flash memory in the place of the mask ROM of the above models. Table 1-1 shows the differences between these models.

Part Number Item	$\mu \mathrm{PD} 784935 \mathrm{~A}$	$\mu \mathrm{PD} 784936 \mathrm{~A}$	$\mu \mathrm{PD} 784937 \mathrm{~A}$	$\mu \mathrm{PD} 784938 \mathrm{~A}$	$\mu \mathrm{PD} 78 \mathrm{~F} 4938 \mathrm{~A}$
Internal ROM	96 KB	128 KB	192 KB	256 KB	
	Mask ROM				Flash memory
Internal RAM	5120 bytes	6656 bytes	8192 bytes	10496 bytes	
Regulator	Provided				None
Electrical specifications	Refer to the Data Sheet of each product.				
Internal memory size switching register ${ }^{\text {Note }}$	None				Provided
IC pin	Provided				None
VPP pin	None				Provided

Note The internal flash memory capacity and internal RAM capacity can be changed by using the internal memory size switching register (IMS).

2. MAJOR DIFFERENCES BETWEEN μ PD784908, μ PD784038, AND μ PD78098 SUBSERIES

Item	Series Name	μ PD784938A Subseries	μ PD784908 Subseries	μ PD784038 Subseries	μ PD78098 Subseries
Number of basic instructions (mnemonics)		113			63
Minimum instruction execution time		160 ns (@12.5 MHz operation, internally)		125 ns (@32 MHz operation)	$480 \mathrm{~ns}$ (@6.29 MHz operation)
Memory space (program data)		1 MB			60 KB
Timer/counter		16-bit timer/event counter $\times 1$ 8 -/16-bit timer/event counter $\times 2$ 8-/16-bit timer $\times 1$ Watch timer		16-bit timer/ event counter $\times 1$ 8-/16-bit timer/ event counter $\times 2$ 8-/16-bit timer $\times 1$	16-bit timer/ event counter $\times 1$ 8-bit timer/ event counter $\times 2$ Watch timer
		Single clock Watch clock provided for watch operation.		Single clock	Dual clock
Serial interface		UART/IOE (3-wire serial I/O): 2 channels (baud rate generator) CSI (3-wire serial I/O): 2 channels		UART/IOE (3-wire serial I/O): 2 channels CSI (3-wire serial I/O, 2-wire serial I/O): 1 channel	UART (3-wire serial I/O): 1 channel CSI/SBI (3-wire serial I/O): 1 channel CSI (3-wire serial I/O): 1 channel
PWM output		12-bit resolution $\times 2$ channels			None
D/A converter		None		8 -bit resolution $\times 2$ channels	
Interrupt	Hardware source	27 sources		24 sources	23 sources (with two test flags)
	Internal	20 sources		17 sources	14 sources
	External	7 sources		7 sources	7 sources
External expansion function		Provided (up to 1 MB)			None
IEBus controller		Internal (simple version)		Not provided	Internal (complete hardware)
ROM correction		Internal (4 points can be set.)	Not provided		
Supply voltage		$\mathrm{V}_{\mathrm{DD}}=4.0$ to 5.5 V	V DD $=3.5$ to 5.5 V (mask ROM versions) $V_{D D}=4.0$ to 5.5 V (PROM versions)	$V_{D D}=2.7$ to 5.5 V	$V_{D D}=2.7$ to 6.0 V
Package		100-pin plastic QFP (14×20)	100-pin plastic QFP (14×20)	80-pin plastic QFP (14×14) 80-pin plastic TQFP (fine pitch) (14×14) 80-pin plastic WQFN (14×14): μ PD78P4038 only	80-pin plastic TQFP (fine pitch) (14×14) 80-pin plastic WQFN (14×14): μ PD78P098A only

Note Pins with ancillary functions are included in the I/O pins.

3. PIN CONFIGURATION (Top View)

- 100-pin plastic QFP (14×20)
μ PD784935AGF- $\times \times \times-3 B A$
μ PD784936AGF- $\times \times \times-3 B A$
μ PD784937AGF- $\times \times \times-3 B A$
μ PD784938AGF- $\times \times \times-3 B A$

Cautions 1. Connect the IC (Internally Connected) pin directly to Vss.
2. Connect the AVdd pin directly to Vdd.
3. Connect the AVss pin directly to Vss.

A8 to A19:	Address Bus
AD0 to AD7:	Address/Data Bus
ANI0 to ANI7:	Analog Input
ASCK, ASCK2:	Asynchronous Serial Clock
ASTB:	Address Strobe
AVDD:	Analog Power Supply
AVREF1:	Reference Voltage
AVss:	Analog Ground
CI:	Clock Input
CLKOUT:	Clock Output
HLDAK:	Hold Acknowledge
HLDRQ:	Hold Request
IC:	Internally Connected
INTP0 to INTP5: Interrupt from Peripherals	
NMI:	Non-maskable interrupt
P00 to P07:	Port0
P10 to P17:	Port1
P20 to P27:	Port2
P30 to P37:	Port3
P40 to P47:	Port4
P50 to P57:	Port5
P60 to P67:	Port6
P70 to P77:	Port7
P90 to P97:	Port9
P100 to P107:	Port10

PWM0, PWM1: Pulse Width Modulation Output
$\overline{\mathrm{RD}}: \quad$ Read Strobe
REFRQ: Refresh Request
REGC: Regulator Capacitance
REGOFF: Regulator Off
RESET: Reset
$\overline{\mathrm{RX}}$: IEBus Receive Data
RxD, RxD2: Receive Data
SCKO to SCK3: Serial Clock
SIO to SI3: Serial Input
SO0 to SO3: Serial Output
TO0 to TO3: Timer Output
$\overline{T X}$: IEBus Transmit Data
TxD, TxD2: Transmit Data
VDD: Power Supply
Vss: Ground
WAIT: Wait
WR: Write Strobe
X1, X2: \quad Crystal (Main System Clock)
XT1, XT2: Crystal (Watch)
4. SYSTEM CONFIGURATION EXAMPLE (car audio system (tuner and deck))

5. BLOCK DIAGRAM

Remark The internal ROM and RAM capacities vary depending on the product.

6. PIN FUNCTIONS

6.1 Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function
P00 to P07	Input/ output	-	Port 0 (PO): - 8-bit I/O port. - Can be used as real-time output port (4 bits $\times 2$). - Input/output can be specified in 1-bit units. - An on-chip pull-up resistor can be specified by means of software for pins in input mode. - Can drive transistor.
P10	Input/ output	-	Port 1 (P1): - 8-bit I/O port. - Input/output can be specified in 1-bit units. - An on-chip pull-up resistor can be specified by means of software for pins in input mode. - Can drive LED.
P11		-	
P12		ASCK2/ $\overline{\text { SCK2 }}$	
P13		RxD2/SI2	
P14		TxD2/SO2	
P15 to 17		-	
P20	Input	NMI	Port 2 (P2): - 8-bit input port. - P20 cannot be used as general-purpose port pin (non-maskable interrupt). However, input level can be checked by interrupt routine. - An on-chip pull-up resistor can be specified for P22 to P27 by means of software in 6-bit units. - P25/INTP4/ASCK/ $\overline{\text { SCK } 1}$ pin operates as $\overline{\text { SCK1 }}$ I/O pin if so specified by CSIM1.
P21		INTPO	
P22		INTP1	
P23		INTP2/CI	
P24		INTP3	
P25		INTP4/ASCK/援	
P26		INTP5	
P27		SIO	
P30	Input/ output	RxD/SI1	Port 3 (P3): - 8-bit I/O port. - Input/output can be specified in 1-bit units. - An on-chip pull-up resistor can be specified by means of software for pins in input mode. - P32 and P33 can be specified for N-ch open-drain connection.
P31		TxD/SO1	
P32		$\overline{\text { SCK0 }}$	
P33		SO0	
P34 to P37		TO0 to TO3	
P40 to P47	Input/ output	AD0 to AD7	Port 4 (P4): - 8-bit I/O port. - Input/output can be specified in 1-bit units. - An on-chip pull-up resistor can be specified by means of software for pins in input mode. - Can drive LED.
P50 to P57	Input/ output	A8 to A15	Port 5 (P5): - 8-bit I/O port. - Input/output can be specified in 1-bit units. - An on-chip pull-up resistor can be specified by means of software for pins in input mode. - Can drive LED.
P60 to P63	Input/ output	A16 to A19	Port 6 (P6): - 8-bit I/O port. - Input/output can be specified in 1-bit units. - An on-chip pull-up resistor can be specified by means of software for pins in input mode.
P64		$\overline{\mathrm{RD}}$	
P65		$\overline{\mathrm{WR}}$	
P66		$\overline{\text { WAIT/HLDRQ }}$	
P67		$\overline{\mathrm{REFRQ}} / \mathrm{HLDAK}$	

6.1 Port Pins (2/2)

Pin Name	I/O	Alternate Function	Function
P70 to P77	Input/ output	ANIO to ANI7	Port 7 (P7): - 8-bit I/O port. - Input/output can be specified in 1-bit units.
P90 to P97	Input/ output	-	Port 9 (P9): - 8-bit I/O port. - Input/output can be specified in 1-bit units. - An on-chip pull-up resistor can be specified by means of software for pins in input mode.
P100 to P104	Input/ output	-	Port 10 (P10): - 8-bit I/O port. - Input/output can be specified in 1-bit units. - An on-chip pull-up resistor can be specified by means of software for pins in input mode. - P105 and P107 can be specified for N-ch open-drain connection.
P105		$\overline{\text { SCK3 }}$	
P106		SI3	
P107		SO3	

6.2 Non-Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function	
TOO to TO3	Output	P34 to P37	Timer output	
Cl	Input	P23/INTP2	Count clock input to timer/counter 2	
RxD	Input	P30/SI1	Serial data input (UART0)	
RxD2		P13/SI2	Serial data input (UART2)	
TxD	Output	P31/SO1	Serial data output (UART0)	
TxD2		P14/SO2	Serial data output (UART2)	
ASCK	Input	P25/INTP4/ $\overline{\text { SCK1 }}$	Baud rate clock input (UARTO)	
ASCK2		P12/SCK2	Baud rate clock input (UART2)	
SIO	Input	P27	Serial data input (3-wire serial I/O0)	
SI1		P30/RxD	Serial data input (3-wire serial I/O1)	
SI2		P13/RxD2	Serial data input (3-wire serial I/O2)	
SI3		P106	Serial data input (3-wire serial I/O3)	
SO0	Output	P33	Serial data output (3-wire serial I/O0)	
SO1		P31/TxD	Serial data output (3-wire serial I/O1)	
SO2		P14/TxD2	Serial data output (3-wire serial I/O2)	
SO3		P107	Serial data output (3-wire serial I/O3)	
$\overline{\text { SCK0 }}$	Input/ output	P32	Serial clock input/output (3-wire serial I/O0)	
$\overline{\text { SCK1 }}$		P25/INTP4/ASCK	Serial clock input/output (3-wire serial I/O1)	
$\overline{\text { SCK2 }}$		P12/ASCK2	Serial clock input/output (3-wire serial I/O2)	
SCK3		P105	Serial clock input/output (3-wire serial I/O3)	
NMI	Input	P20	External interrupt requests	-
INTPO		P21		- Count clock input to timer/counter 1 - Capture trigger signal of CR11 or CR12
INTP1		P22		- Count clock input to timer/counter 2 - Capture trigger signal of CR22
INTP2		P23/CI		- Count clock input to timer/counter 2 - Capture trigger signal of CR21
INTP3		P24		- Count clock input to timer/counter 0 - Capture trigger signal of CR02
INTP4		P25/ASCK/ $\overline{\text { SCK1 }}$		-
INTP5		P26		Conversion start trigger input of A/D converter
AD0 to AD7	Input/ output	P40 to P47	Time-division address/data bus (external memory connection)	
A8 to A15	Output	P50 to P57	Higher address bus (external memory connection)	
A16 to A19	Output	P60 to P63	Higher address for address extension (external memory connection)	
$\overline{\mathrm{RD}}$	Output	P64	Read strobe to external memory	
$\overline{\mathrm{WR}}$	Output	P65	Write strobe to external memory	
WAIT	Input	P66/HLDRQ	Wait insertion	
$\overline{\text { REFRQ }}$	Output	P67/HLDAK	Refresh pulse output to external pseudo-static memory	
HLDRQ	Input	P66/WAIT	Bus hold request input	
HLDAK	Output	P67/REFRQ	Bus hold acknowledge output	
ASTB	Output	CLKOUT	Latch timing output of time-division address (A0 to A7) (when external memory is accessed)	

6.2 Non-Port Pins (2/2)

Pin Name	I/O	Alternate Function	Function
CLKOUT	Output	ASTB	Clock output
PWM0	Output	-	PWM output 0
PWM1	Output	-	PWM output 1
$\overline{\mathrm{RX}}$	Input	-	Data input (IEBus)
TX	Output	-	Data output (IEBus)
REGC	-	-	Capacitor connection for regulation output stabilization/power supply when regulator is stopped
REGOFF	-	-	Regulator operation specification signal
RESET	Input	-	Chip reset
X1	Input	-	Crystal connection for system clock oscillation (clock can be also input to X1.)
X2	-		
XT1	Input	-	Watch clock connection
XT2	-	-	
ANIO to ANI7	Input	P70 to P77	Analog voltage input for A/D converter
AVref1	-	-	Application of reference voltage for A/D converter
AV ${ }_{\text {dD }}$			Positive power supply for A/D converter
AVss			GND for A/D converter
Vdo			Positive power supply
Vss			GND
IC	Input		Internally connected. Connect this pin directly to $\mathrm{V}_{\text {ss }}$ (this pin is used to test the IC.)

6.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 6-1. For the input/output circuit configuration of each type, refer to Figure 6-1.

Table 6-1. Types of Pin Input/Output Circuits (1/2)

Pin Name	Input/output Circuit Type	I/O	Recommended Connection of Unused Pins
P00 to P07	5-A	Input/output	Input: Connect to Vdd. Output: Leave open.
P10, P11			
P12/ASCK2/SCK2	8-A		
P13/RxD2/SI2	5-A		
P14/TxD2/SO2			
P15 to P17			
P20/NMI	2	Input	Connect to Vod or Vss.
P21/INTP0			
P22/INTP1	$2-A$		Connect to VDD.
P23/INTP2/CI			
P24/INTP3			
P25/INTP4/ASCK/ $\overline{\text { SCK1 }}$	8-A	Input/output	Input: Connect to Vdd. Output: Leave open.
P26/INTP5	2-A	Input	Connect to VDD.
P27/SI0			
P30/RxD/SI1	5-A	Input/output	Input: Connect to Vdd. Output: Leave open.
P31/TxD/SO1			
P32/SCK0	10-A		
P33/SO0			
P34/TO0 to P37/TO3	5-A		
P40/AD0 to P47/AD7			
P50/A8 to P57/A15			
P60/A16 to P63/A19			
P64/RD			
P65/WR			
P66/WAIT/HLDRQ			
P67/REFRQ/HLDAK			
P70/ANI0 to P77/ANI7	20	Input/output	Input: Connect to VdD or Vss. Output: Leave open.
P90 to P97	5-A		
P100 to P104			
P105/ $\overline{\text { SCK3 }}$	10-A		
P106/SI3	8-A		
P107/SO3	10-A		
ASTB/CLKOUT	4	Output	Leave open.
RESET	2	Input	-
IC	1		Connect directly to Vss.
XT2	-	-	Leave open.
XT1	-	Input	Connect directly to Vss.

Table 6-1. Types of Pin Input/Output Circuits (2/2)

Pin Name	Input/output Circuit Type	I/O	Recommended Connection of Unused Pins
REGOFF	1	-	Connect directly to Vod.
REGC	-	-	Connect to Vdo.
PWM0, PWM1	3	Output	Leave open.
$\overline{\mathrm{RX}}$	1	Input	Connect to Vdo or Vss.
TX	3	Output	Leave open.
AVref 1	-	-	Connect to Vss.
AVss			
AV ${ }_{\text {do }}$			Connect to Vdo.

Caution Connect an I/O pin to Vdd via a resistor of several $10 \mathrm{k} \Omega$ if the I/O mode of the pin is unstable (especially if the voltage on the reset pin is higher than the low-level input voltage on power application or if the mode is changed between input and output by software).

Remark The circuit type numbers are common for the 78 K series and are not always sequential for one product (some circuits are not provided).

Figure 6-1. Pin Input/Output Circuits (1/2)

Type 1	Type 4
	Push-pull output that can go into a high-impedance state (both P -ch and N -ch are off).
Type 2	Type 5-A Vid
Schmitt triggered input with hysteresis characteristics	
Type 2-A	Type 8-A
Schmitt triggered input with hysteresis characteristics	
Type 3	Type 10-A Vid

Figure 6-1. Pin Input/Output Circuits (2/2)

7. CPU ARCHITECTURE

7.1 Memory Space

A memory space of 1 MB can be accessed. Mapping of the internal data area (special function registers and internal RAM) can be selected by using the LOCATION instruction. The LOCATION instruction must be always executed after the reset signal has been cleared, and must not be used more than once.

(1) When LOCATION OH instruction is executed

- Internal memory

The internal data area and internal ROM area are as follows:

Part Number	Internal Data Area	Internal ROM Area
μ PD784935A	OEBOOH to OFFFFH	00000 H to OEAFFH 10000H to 17FFFH
μ PD784936A	0E500H to 0FFFFH	00000 H to 0 E 4 FFH 10000 H to 1 FFFFH
μ PD784937A	ODFOOH to OFFFFFH	00000 H to ODEFFH 10000 H to 2FFFFH
μ PD784938A	OD600H to OFFFFH	00000 H to 0D5FFH 10000 H to 3FFFFH

Caution The following area of the internal ROM that overlaps the internal data area cannot be used when the LOCATION OH instruction is executed.

Part Number	Unusable Area
μ PD784935A	OEB00H to 0FFFFH (5376 bytes)
μ PD784936A	OE500H to 0FFFFH (6192 bytes)
μ PD784937A	ODF00H to OFFFFH (8448 bytes)
μ PD784938A	OD600H to OFFFFH

- External memory

The external memory is accessed in the external memory expansion mode.
(2) When LOCATION OFH instruction is executed

- Internal memory

The internal data area and internal ROM area are as follows:

Part Number	Internal Data Area	Internal ROM Area
μ PD784935A	FEB00H to FFFFFH	00000 H to $17 F F F H$
μ PD784936A	FE500H to FFFFFH	00000 H to 1 FFFFH
μ PD784937A	FDF00H to FFFFFH	00000 H to $2 F F F F H$
$\mu \mathrm{PD} 784938 \mathrm{~A}$	FD600H to FFFFFH	00000 H to $3 F F F F H$

- External memory

The external memory is accessed in the external memory expansion mode.

Figure 7-1. Memory Map of μ PD784935A

Notes 1. Accessed in the external memory expansion mode.
2. 5376 bytes in this area can be used as an internal ROM area only when the LOCATION OFH instruction is executed.
3. When LOCATION OH instruction is executed: 92928 bytes, when LOCATION OFH instruction is executed: 98304 bytes

When LOCATION OH instruction is executed
When LOCATION OFH instruction is executed

Notes 1. Accessed in the external memory expansion mode.
2. 6912 bytes in this area can be used as an internal ROM area only when the LOCATION OFH instruction is executed.
3. When LOCATION OH instruction is executed: 124160 bytes, when LOCATION OFH instruction is executed: 131072 bytes
4. Base area, or entry area used in the case of reset or interrupt. However, the internal RAM is excluded in the case of reset.

Figure 7-3. Memory Map of μ PD784937A

Notes 1. Accessed in the external memory expansion mode.
2. 8448 bytes in this area can be used as an internal ROM area only when the LOCATION OFH instruction is executed.
3. When LOCATION OH instruction is executed: 188160 bytes, when LOCATION OFH instruction is executed: 196608 bytes

Notes 1. Accessed in the external memory expansion mode.
2. 10752 bytes in this area can be used as an internal ROM area only when the LOCATION OFH instruction is executed.
3. When LOCATION OH instruction is executed: 251392 bytes, when LOCATION OFH instruction is executed: 262144 bytes
4. Base area, or entry area used in the case of reset or interrupt. However, the internal RAM is excluded in the case of reset.

7.2 CPU Registers

7.2.1 General-purpose registers

Sixteen 8-bit general-purpose registers are available. Two 8-bit general-purpose registers can be used in combination as a 16-bit general-purpose register. Four of the 16 -bit registers can be used in combination with an 8 -bit register for address extension as 24 -bit address specification registers.

Eight banks of register sets are available, which can be selected by software or using the context switching function. The general-purpose registers, except registers $\mathrm{V}, \mathrm{U}, \mathrm{T}$, and W for address extension, are mapped to the internal RAM.

Figure 7-5. General-Purpose Register Format

Caution R4, R5, R6, R7, RP2, and RP3 can be used as $X, A, C, B, A X$, and BC registers, respectively, by setting the RSS bit of PSW to 1. However, use this function only when using a program written for the $78 \mathrm{~K} / \mathrm{III}$ series.

7.2.2 Control registers

(1) Program counter (PC)

The contents of this 20-bit counter are automatically updated as a program is executed.

Figure 7-6. Format of Program Counter (PC)

(2) Program status word (PSW)

This register holds the status of the CPU. Its contents are automatically updated as a program is executed.

Figure 7-7. Format of Program Status Word (PSW)

Note This flag is used to maintain compatibility with the $78 \mathrm{~K} / \mathrm{III}$ series. Keep this flag cleared to 0 except when using the software written for the $78 \mathrm{~K} / \mathrm{III}$ series.
(3) Stack pointer (SP)

This is a 24-bit pointer that holds the first address of the stack.
Be sure to write 0 to the higher 4 bits of this pointer.

Figure 7-8. Format of Stack Pointer (SP)

SP

23	20	0		
0	0	0	0	

7.2.3 Special function registers (SFRs)

The special function registers (SFRs) are registers having a special function, such as the mode registers and control registers of the on-chip peripheral hardware, and are mapped to a 256-byte space of addresses 0FF00H to 0FFFFH ${ }^{\text {Note }}$.

Note This is the case when the LOCATION OH instruction is executed. They are mapped to FFFOOH to FFFFFFH when the LOCATION OFH instruction is executed.

Caution Do not access an address in this area to which no SFR is allocated. If such an address is accessed by mistake, the μ PD784938A may be deadlocked. The deadlock status can be released only by a reset.

Table 7-1 lists the special function registers (SFRs). The meanings of the symbols in this table are as follows:

- Abbreviation \qquad Abbreviation of the SFR. This abbreviation is reserved for use with NEC's assembler (RA78K4). With the C compiler (CC78K4), this abbreviation can be used as an sfr variable when the \#pragma sfr command is used.
- R/W Indicates whether the SFR can be read or written.

R/W: Read/Write
R: Read only
W: Write only

- Bit Units for Manipulation Indicates the bit units in which the SFR can be manipulated. An SFR that can be manipulated in 16-bit units can be written as operand sfrp. When specifying the SFR using an address, use the even address.
An SFR that can be manipulated in 1-bit units can be written with a bit manipulation instruction.
- After Reset \qquad Indicates the status of the register when the RESET signal is input.

Table 7-1. Special Function Register (SFR) List (1/4)

Address ${ }^{\text {Note }}$	Special Function Register (SFR) Name		Abbreviation		R/W	Bit Units for Manipulation			After Reset		
			1 bit	8 bits		16 bits					
OFFOOH	Port 0				P0		R/W	\checkmark	\checkmark	-	Undefined
0FF01H	Port 1		P1		\checkmark	\checkmark		-			
0FF02H	Port 2		P2		R	\checkmark	\checkmark	-			
0FF03H	Port 3		P3		R/W	\checkmark	\checkmark	-			
0FF04H	Port 4		P4			\checkmark	\checkmark	-			
0FF05H	Port 5		P5			\checkmark	\checkmark	-			
0FF06H	Port 6		P6			\checkmark	\checkmark	-	OOH		
0FF07H	Port 7		P7			\checkmark	\checkmark	-	Undefined		
0FF09H	Port 9		P9			\checkmark	\checkmark	-			
OFFOAH	Port 10		P10			\checkmark	\checkmark	-			
OFF0EH	-	Port 0 buffer register L	POL			\checkmark	\checkmark	-			
OFFOFH	Port 0 buffer register H		POH			\checkmark	$\sqrt{ }$	-			
0FF10H	Compare register (timer/counter 0)		CR00			-	-	\checkmark			
0FF12H	Capture/compare register (timer/counter 0)		CR01			-	-	\checkmark			
0FF14H	Compare register L (timer/counter 1)		CR10	CR10W		-	\checkmark	\checkmark			
0FF15H	Compare register H (timer/counter 1)		-			-	-				
OFF16H	Capture/compare register L (timer/counter 1)		CR11	CR11W		-	\checkmark	\checkmark			
0FF17H	Capture/compare register H (timer/counter 1)		-			-	-				
0FF18H	Compare register L (timer/counter 2)		CR20	CR20W		-	\checkmark	\checkmark			
OFF19H	Compare register H (timer/counter 2)		-			-	-				
0FF1AH	Capture/compare register L (timer/counter 2)		CR21	CR21W		-	\checkmark	\checkmark			
0FF1BH	Capture/compare register H (timer/counter 2)		-			-	-				
0FF1CH	Compare register L (timer 3)		CR30	CR30W		-	\checkmark	\checkmark			
0FF1DH	Compare register H (timer 3)		-			-	-				
0FF20H	Port 0 mode register		PM0			\checkmark	\checkmark	-	FFH		
0FF21H	Port 1 mode register		PM1			\checkmark	\checkmark	-			
0FF23H	Port 3 mode register		PM3			\checkmark	$\sqrt{ }$	-			
0FF24H	Port 4 mode register		PM4			\checkmark	\checkmark	-			
0FF25H	Port 5 mode register		PM5			\checkmark	\checkmark	-			
0FF26H	Port 6 mode register		PM6			\checkmark	$\sqrt{ }$	-			
0FF27H	Port 7 mode register		PM7			\checkmark	\checkmark	-			
0FF29H	Port 9 mode register		PM9			\checkmark	\checkmark	-			
0FF2AH	Port 10 mode register		PM10			\checkmark	$\sqrt{ }$	-			
0FF2EH	Real-time output port control register		RTPC			\checkmark	$\sqrt{ }$	-	00H		
OFF30H	Capture/compare control register 0		CRC0			-	\checkmark	-	10H		
0FF31H	Timer output control register		TOC			\checkmark	$\sqrt{ }$	-	00H		
OFF32H	Capture/compare control register 1		CRC1			-	\checkmark	-			
0FF33H	Capture/compare control register 2		CRC2			-	$\sqrt{ }$	-	10 H		

Note This is the case when the LOCATION OH instruction is executed. When the LOCATION OFH instruction is executed, "F0000H" is added to this value.

Table 7-1. Special Function Register (SFR) List (2/4)

Address ${ }^{\text {Note }}$	Special Function Register (SFR) Name	Abbreviation		R/W	Bit Units for Manipulation			After Reset	
				1 bit	8 bits	16 bits			
0FF36H	Capture register (timer/counter 0)	CR02			R	-	-	\checkmark	0000H
0FF38H	Capture register L (timer/counter 1)	CR12	CR12W	-		\checkmark	\checkmark		
0FF39H	Capture register H (timer/counter 1)	-		-		-			
OFF3AH	Capture register L (timer/counter 2)	CR22	CR22W	-		\checkmark	\checkmark		
0FF3BH	Capture register H (timer/counter 2)	-		-		-			
0FF41H	Port 1 mode control register	PMC1		R/W	\checkmark	\checkmark	-	00H	
0FF43H	Port 3 mode control register	PMC3			\checkmark	\checkmark	-		
0FF4AH	Port 10 mode control register	PMC10			\checkmark	\checkmark	-		
0FF4EH	Pull-up resistor option register L	PUOL			\checkmark	\checkmark	-		
0FF4FH	Pull-up resistor option register H	PUOH			\checkmark	\checkmark	-		
0FF50H	Timer register 0	TMO		R	-	-	\checkmark	0000H	
0FF51H				-	-				
0FF52H	Timer register 1	TM1	TM1W		-	\checkmark	\checkmark		
0FF53H		-			-	-			
0FF54H	Timer register 2	TM2	TM2W		-	\checkmark	\checkmark		
0FF55H		-			-	-			
0FF56H	Timer register 3	TM3	TM3W		-	$\sqrt{ }$	\checkmark		
0FF57H		-			-	-			
0FF5CH	Prescaler mode register 0	PRM0			R/W	-	\checkmark	-	11H
0FF5DH	Timer control register 0	TMC0		\checkmark		\checkmark	-	00 H	
0FF5EH	Prescaler mode register 1	PRM1		-		$\sqrt{ }$	-	11H	
0FF5FH	Timer control register 1	TMC1		\checkmark		\checkmark	-	00H	
0FF68H	A/D converter mode register	ADM		\checkmark		$\sqrt{ }$	-	00H	
0FF6AH	A/D conversion result register	ADCR		R	-	\checkmark	-	Undefined	
0FF6CH	A/D current cut select register	IEAD		R/W	\checkmark	\checkmark	-	00H	
0FF6FH	Watch timer mode register	WM			\checkmark	\checkmark	-		
0FF70H	PWM control register	PWMC			\checkmark	\checkmark	-	05H	
0FF71H	PWM prescaler register	PWPR			-	\checkmark	-	00H	
0FF72H	PWM modulo register 0	PWM0			-	-	\checkmark	Undefined	
0FF74H	PWM modulo register 1	PWM1			-	-	\checkmark		
0FF78H	ROM correction control register	CORC			\checkmark	\checkmark	-	00H	
0FF79H	ROM correction address pointer H	CORAH			-	$\sqrt{ }$	-		
0FF7AH	ROM correction address pointer L	CORAL			-	-	\checkmark	0000H	
0FF7DH	One-shot pulse output control register	OSPC			\checkmark	\checkmark	-	OOH	
0FF80H	Clocked serial interface mode register 3	CSIM3			$\sqrt{ }$	$\sqrt{ }$	-		
0FF82H	Clocked serial interface mode register	CSIM			\checkmark	\checkmark	-		
0FF84H	Clocked serial interface mode register 1	CSIM1			\checkmark	\checkmark	-		
0FF85H	Clocked serial interface mode register 2	CSIM2			\checkmark	$\sqrt{ }$	-		
0FF86H	Serial shift register	SIO			-	$\sqrt{ }$	-	Undefined	

Note This is the case when the LOCATION OH instruction is executed. When the LOCATION OFH instruction is executed, " F 0000 H " is added to this value.

Table 7-1. Special Function Register (SFR) List (3/4)

Address ${ }^{\text {Note }} 1$	Special Function Register (SFR) Name	Abbreviation		R/W	Bit Units for Manipulation			After Reset	
				1 bit	8 bits	16 bits			
0FF88H	Asynchronous serial interface mode register	ASIM			R/W	\checkmark	\checkmark	-	OOH
0FF89H	Asynchronous serial interface mode register 2	ASIM2		\checkmark		\checkmark	-		
0FF8AH	Asynchronous serial interface status register	ASIS		R	\checkmark	\checkmark	-		
0FF8BH	Asynchronous serial interface status register 2	ASIS2			\checkmark	$\sqrt{ }$	-		
0 FF 8 CH	Serial receive buffer: UART0	RXB			-	\checkmark	-	Undefined	
	Serial transmit shift register: UART0	TXS		W	-	\checkmark	-		
	Serial shift register: IOE1	SIO1		R/W	-	\checkmark	-		
0FF8DH	Serial receive buffer: UART2	RXB2		R	-	\checkmark	-		
	Serial transmit shift register: UART2	TXS2		W	-	\checkmark	-		
	Serial shift register: IOE2	SIO2		R/W	-	\checkmark	-		
0FF8EH	Serial shift register 3: IOE3	SIO3			-	\checkmark	-		
0FF90H	Baud rate generator control register	BRGC			-	\checkmark	-	OOH	
0FF91H	Baud rate generator control register 2	BRGC2			-	\checkmark	-		
OFFAOH	External interrupt mode register 0	INTMO			\checkmark	\checkmark	-		
0FFA1H	External interrupt mode register 1	INTM1			\checkmark	\checkmark	-		
OFFA4H	Sampling clock select register	SCS0			-	\checkmark	-		
0FFA8H	In-service priority register	ISPR		R	\checkmark	\checkmark	-		
OFFAAH	Interrupt mode control register	IMC		R/W	\checkmark	\checkmark	-	80H	
OFFACH	Interrupt mask register OL	MKOL	MK0		\checkmark	\checkmark	$\sqrt{ }$	FFFFH	
OFFADH	Interrupt mask register OH	MKOH			\checkmark	\checkmark			
OFFAEH	Interrupt mask register 1L	MK1L	MK1		\checkmark	\checkmark	\checkmark		
OFFAFH	Interrupt mask register 1H	MK1H			\checkmark	\checkmark			
OFFBOH	Bus control register	BCR			\checkmark	\checkmark	-	00H	
0FFB2H	Unit address register	UAR			-	-	\checkmark	0000H	
0FFB4H	Slave address register	SAR			-	-	\checkmark		
0FFB6H	Partner address register	PAR		R	-	-	\checkmark		
0FFB8H	Control data register	CDR		R/W	-	\checkmark	-	01H	
0FFB9H	Message length register	DLR			-	\checkmark	-		
OFFBAH	Data register	DR			-	\checkmark	-	00H	
OFFBBH	Unit status register	USR		R	\checkmark	\checkmark	-		
OFFBCH	Interrupt status register	ISR		R/W	\checkmark	$\sqrt{ }$	-		
0FFBDH	Slave status register	SSR		R	\checkmark	\checkmark	-	41H	
OFFBEH	Success count register	SCR			-	\checkmark	-	01H	
OFFBFH	Communication count register	CCR			-	$\sqrt{ }$	-	20 H	
OFFCOH	Standby control register	STBC		R/W	-	$\sqrt{ }$ Note 2	-	30 H	
0FFC2H	Watchdog timer mode register	WDM			-	$\sqrt{ }$ Note 2	-	OOH	

Notes 1. This is the case when the LOCATION OH instruction is executed. When the LOCATION OFH instruction is executed, " F 0000 H " is added to this value.
2. Data can be written to these registers only by using dedicated instructions MOV STBC, \#byte and MOV MDM, \#byte. Other instructions cannot be used.

Table 7-1. Special Function Register (SFR) List (4/4)

Address ${ }^{\text {Note } 1}$	Special Function Register (SFR) Name	Abbreviation	R/W	Bit Units for Manipulation			After Reset
				1 bit	8 bits	16 bits	
0FFC4H	Memory expansion mode register	MM	R/W	\checkmark	\checkmark	-	20 H
0FFC5H	Hold mode register	HLDM		\checkmark	\checkmark	-	00H
0FFC6H	Clock output mode register	CLOM		\checkmark	\checkmark	-	
0FFC7H	Programmable wait control register 1	PWC1		-	\checkmark	-	AAH
0FFC8H	Programmable wait control register 2	PWC2		-	-	\checkmark	AAAAH
OFFCCH	Refresh mode register	RFM		\checkmark	\checkmark	-	00H
OFFCDH	Refresh area specification register	RFA		\checkmark	\checkmark	-	
OFFCFH	Oscillation stabilization time specification register	OSTS		-	\checkmark	-	
OFFDOH- 0FFDFH	External SFR area	-		\checkmark	\checkmark	-	-
OFFEOH	Interrupt control register (INTPO)	PIC0		\checkmark	\checkmark	-	43H
OFFE1H	Interrupt control register (INTP1)	PIC1		\checkmark	\checkmark	-	
0FFE2H	Interrupt control register (INTP2)	PIC2		\checkmark	\checkmark	-	
OFFE3H	Interrupt control register (INTT3)	PIC3		\checkmark	\checkmark	-	
OFFE4H	Interrupt control register (INTC00)	CICOO		\checkmark	\checkmark	-	
OFFE5H	Interrupt control register (INTC01)	CIC01		\checkmark	\checkmark	-	
0FFE6H	Interrupt control register (INTC10)	CIC10		\checkmark	$\sqrt{ }$	-	
OFFE7H	Interrupt control register (INTC11)	CIC11		\checkmark	$\sqrt{ }$	-	
0FFE8H	Interrupt control register (INTC20)	CIC20		\checkmark	$\sqrt{ }$	-	
OFFE9H	Interrupt control register (INTC21)	CIC21		\checkmark	$\sqrt{ }$	-	
OFFEAH	Interrupt control register (INTC30)	CIC30		\checkmark	\checkmark	-	
OFFEBH	Interrupt control register (INTP4)	PIC4		\checkmark	\checkmark	-	
OFFECH	Interrupt control register (INTP5)	PIC5		\checkmark	$\sqrt{ }$	-	
OFFEDH	Interrupt control register (INTAD)	ADIC		\checkmark	$\sqrt{ }$	-	
OFFEEH	Interrupt control register (INTSER)	SERIC		\checkmark	$\sqrt{ }$	-	
OFFEFH	Interrupt control register (INTSR)	SRIC		\checkmark	\checkmark	-	
	Interrupt control register (INTCSI1)	CSIIC1		\checkmark	$\sqrt{ }$	-	
OFFFOH	Interrupt control register (INTST)	STIC		\checkmark	$\sqrt{ }$	-	
0FFF1H	Interrupt control register (INTCSI)	CSIIC		\checkmark	$\sqrt{ }$	-	
OFFF2H	Interrupt control register (INTSER2)	SERIC2		\checkmark	$\sqrt{ }$	-	
OFFF3H	Interrupt control register (INTSR2)	SRIC2		$\sqrt{ }$	\checkmark	-	
	Interrupt control register (INTCSI2)	CSIIC2		\checkmark	\checkmark	-	
OFFF4H	Interrupt control register (INTST2)	STIC2		$\sqrt{ }$	$\sqrt{ }$	-	
OFFF6H	Interrupt control register (INTIE1)	IEIC1		\checkmark	\checkmark	-	
0FFF7H	Interrupt control register (INTIE2)	IEIC2		$\sqrt{ }$	$\sqrt{ }$	-	
OFFF8H	Interrupt control register (INTW)	WIC		$\sqrt{ }$	$\sqrt{ }$	-	
OFFF9H	Interrupt control register (INTCSI3)	CSIIC3		\checkmark	\checkmark	-	
0FFFFCH	Internal memory size switching register ${ }^{\text {Note } 2}$	IMS		-	$\sqrt{ }$	-	FFH

Notes 1. This is the case when the LOCATION OH instruction is executed. When the LOCATION OFH instruction is executed, " F 0000 H " is added to this value.
2. Writing this register is meaningful only with the μ PD78F4938A.

8. PERIPHERAL HARDWARE FUNCTIONS

8.1 Ports

The ports shown in Figure 8-1 are provided for various control operations. The function of each port is as shown in Table 8-1. On-chip pull-up resistors can be specified for ports 0 to 6,9 , and 10 by means of software.

Figure 8-1. Port Configuration

Table 8-1. Port Functions

Port Name	Pin Name	Function	Software Specification of Pull-up Resistor
Port 0	P00 to P07	- Input/output can be specified in 1-bit units. - Can also operate as a 4-bit real-time output port (POO to P03, P04 to P07). - Can drive a transistor.	Pull-up resistors can be specified for the pins in input mode all at once.
Port 1	P10 to P17	- Input/output can be specified in 1-bit units. - Can drive an LED.	Pull-up resistors can be specified for the pins in input mode all at once.
Port 2	P20 to P27	- Input port	Pull-up resistors can be specified in 6-bit units (P22 to P27).
Port 3	P30 to P37	- Input/output can be specified in 1-bit units. - P32/ $\overline{\mathrm{SCKO}}$ and P33/SO0 pins can be used as N -ch open-drain pins.	Pull-up resistors can be specified for the pins in input mode all at once.
Port 4	P40 to P47	- Input/output can be specified in 1-bit units. - Can drive an LED.	Pull-up resistors can be specified for the pins in input mode all at once.
Port 5	P50 to P57	- Input/output can be specified in 1-bit units. - Can drive an LED.	Pull-up resistors can be specified for the pins in input mode all at once.
Port 6	P60 to P67	- Input/output can be specified in 1-bit units.	Pull-up resistors can be specified for the pins in input mode all at once.
Port 7	P70 to P77	- Input/output can be specified in 1-bit units.	-
Port 9	P90 to P97	- Input/output can be specified in 1-bit units.	Pull-up resistors can be specified for the pins in input mode all at once.
Port 10	$\begin{aligned} & \text { P100 to } \\ & \text { P107 } \end{aligned}$	- Input/output can be specified in 1-bit units. - P105/डCK3 pin and P107/SO3 pin can be used as N-ch open-drain pins.	Pull-up resistors can be specified for the pins in input mode all at once.

8.2 Clock Generator

This circuit generates a clock necessary for operation. It is also provided with a frequency divider. When highspeed operation is not necessary, the power consumption can be lowered by reducing the internal operating frequency.

Figure 8-2. Block Diagram of Clock Generator

Note Be sure to set bit 7 of the standby control register (STBC) to 1 when using the main clock.

Remark fxx: Oscillation frequency fcık: Internal operating frequency

Figure 8-3. Example of Using Oscillator

Crystal/ceramic oscillation

Caution When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

The subsystem oscillator has a low amplification factor so as to lower the current consumption and is more susceptible to noise than the main system clock oscillator. When using the subsystem clock circuit, therefore, utmost care must be exercised in wiring the circuit.

If the oscillator does not operate correctly, the microcontroller cannot operate correctly, either. Consult the oscillator manufacturer if you need an oscillation frequency at high accuracy.

Figure 8-4. Notes on Connecting Resonator

Cautions 1. Keep the oscillator as close to the X 1 and X 2 (XT1 and XT2) pins as possible.
2. Do not pass any other signal lines through the region indicated by the dotted line.

8.3 Real-Time Output Port

The real-time output port outputs the data stored in the buffer in synchronization with the match interrupt of timer/ counter 1 or an external interrupt. As a result, it can output pulses without jitter.

Therefore, this port is ideal for applications where different patterns are output at different intervals (such as open loop control of a stepper motor).

The real-time output port consists mainly of port 0 and the port 0 buffer registers (POH and POL) as shown in Figure 8-5.

Figure 8-5. Block Diagram of Real-Time Output Port

8.4 Timers/Counters

Three timer/event counters and one timer are provided.
In addition, because seven interrupt requests are supported, the timer/counters and timer can be used as seven timer/counters.

Table 8-2. Operations of Timers/Counters

Item		Timer/Event Counter 0	Timer/Event Counter 1	Timer/Event Counter 2	Timer 3
Count width	8 bits	-	\checkmark	\checkmark	\checkmark
	16 bits	\checkmark	\checkmark	\checkmark	\checkmark
Operation mode	Interval timer	2 ch	2 ch	2 ch	1ch
	External event counter	\checkmark	\checkmark	\checkmark	-
	One-shot timer	-	-	\checkmark	-
Function	Timer output	2 ch	-	2 ch	-
	Toggle output	\checkmark	-	\checkmark	-
	PWM/PPG output	$\sqrt{ }$	-	\checkmark	-
	One-shot pulse output ${ }^{\text {Note }}$	\checkmark	-	-	-
	Real-time output	-	\checkmark	-	-
	Pulse width measurement	1 input	1 input	2 inputs	-
	Number of interrupt requests	2	2	2	1

Note The one-shot pulse output function is used to make a pulse output level active by software and inactive by hardware (interrupt request signal).
This function is different from the one-shot timer function of timer/event counter 2 in nature.

Figure 8-6. Block Diagram of Timers/Counters

Timer/event counter 0

Timer/event counter 1

Timer/event counter 2

Timer 3

Remark OVF: Overflow flag

8.5 Watch Timer

The count clock to be input to the watch timer can be selected from the main clock (12.58 MHz) or watch clock $(32.768 \mathrm{kHz})$ by using a control register. The watch clock is input only to the watch timer and not to the CPU or other peripheral circuits. Therefore, the operation speed of the CPU cannot be slowed down by the watch clock.

The watch timer generates an interrupt signal (INTW) at intervals of 0.5 seconds ${ }^{\text {Note }}$ by dividing the count clock. At the same time, it also sets an interrupt request flag (WIF) (bit 7 of the interrupt control register (WIC)).

The interval of generating INTW can be changed to about 1 ms by changing the mode (fast forward mode: 512 times faster than the normal mode).

When the main clock is selected as the count clock, the watch timer stops its operation in the STOP mode and IDLE mode. In the HALT mode, however, it continues operating. When the watch clock is selected as the count clock, the watch timer can continue operating in any of the STOP, IDLE, and HALT modes. The operation of the watch clock oscillator is controlled by the watch timer mode register (WM).

The watch timer of the μ PD784938A does not have a buzzer output function.

Note This doesn't mean the first INTW occurs within 0.5 seconds after the operation has been enabled.

Table 8-3. Relation Between Count Clock and Watch Timer Operation

Selection of Count Clock	Normal Operation Mode	Types of Standby Modes		
		HALT mode	STOP mode	IDLE mode
Main clock	Can operate	Can operate	Stops	Stops
Watch clock	Can operate	Can operate	Can operate	Can operate

The watch timer consists of a frequency divider that divides the count clock by three and a counter that divides the output of the frequency divider by 2^{14}. As the count clock, select a signal resulting from dividing the internal system clock by 128 or the signal from the watch clock oscillator.

Figure 8-7. Block Diagram of Watch Timer

(Set by instruction when main clock (12.58 MHz) is used)

8.6 PWM Output (PWM0, PWM11)

Two PWM (pulse width modulation) output circuits with a resolution of 12 bits are provided. The active level of each PWM output channel can be selected independently of the other channel. The PWM output is ideal for controlling the speed of a DC motor.

Figure 8-8. Block Diagram of PWM Output Unit

Remark $\mathrm{n}=0$ or 1

8.7 A/D Converter

An analog-to-digital (A/D) converter having 8 multiplexed analog input lines (ANIO to ANI7) is provided.
This A / D converter is of the successive approximation type, and the result of conversion is stored in an 8-bit A / D conversion result register (ADCR). Therefore, conversion can be carried out with a high accuracy.

The A/D conversion operation can be started in the following two modes:

- Hardware start: Conversion is started by trigger input (INTP5).
- Software start: Conversion is started by setting a bit of the A/D converter mode register (ADM).

After the conversion has been started, the following two operation modes can be selected.

- Scan mode: Two or more analog input pins are sequentially selected to convert multiple signals.
- Select mode: Only one analog input pin is used to successively convert one signal.

These operations modes are selected and conversion is stopped by ADM.
When the result of conversion is transferred to ADCR, the interrupt request INTAD is generated. By using this interrupt and a macro service, the converted values can be successively transferred to memory.

Cautions 1. Apply the same voltage as the supply voltage (AVDD) to the reference voltage input pin (AVREF1) of this product.
 2. When port 7 is used both as an output port and A / D input lines, do not manipulate the output port while A/D conversion is in progress.

Figure 8-9. Block Diagram of A/D Converter

8.8 Serial Interface

Four independent serial interface channels are provided.

- Asynchronous serial interface (UART)/3-wire serial I/O (IOE) $\times 2$
- Clocked serial interface (CSI) $\times 2$
- 3-wire serial I/O (IOE)

Therefore, communication with an external device and internal, local communication within the system can be performed simultaneously (refer to Figure 8-10).

Figure 8-10. Example of Serial Interface

UART + 3-wire serial I/O + 2-wire serial I/O

Note Handshake line

8.8.1 Asynchronous serial interface/3-wire serial I/O (UART/IOE)

Two serial interface channels that can select an asynchronous serial interface mode and 3-wire serial I/O mode are available.

(1) Asynchronous serial interface mode

In this mode, 1-byte data is transmitted or received after a start bit.
Because an internal baud rate generator is available, communication can be performed at a wide range of baud rates.
In addition, the baud rate can be defined by dividing the clock input to the ASCK pin.
When the baud generator is used, a MIDI Standard baud rate (31.25 kbps) can be also obtained.

Figure 8-11. Block Diagram in Asynchronous Serial Interface Mode

Remark fxx: Oscillation frequency
$\mathrm{n}=0$ to 11
$m=16$ to 30

(2) 3-wire serial I/O mode

In this mode, the master device makes the serial clock active and starts transmission. One byte of data is communicated in synchronization with this clock.
This interface mode is to communicate with a device with a conventional clocked serial interface.
Basically, communication is established by using three lines: serial clock ($\overline{\mathrm{SCK}}$) and serial data (SI and SO). Generally, a handshake line is necessary for checking the communication status.

Figure 8-12. Block Diagram in 3-Wire Serial I/O Mode

Remark fxx: Oscillation frequency
$\mathrm{n}=0$ to 11
$m=1$, or 16 to 30

8.8.2 Clocked serial interface (CSI)

In this mode, the master device makes the serial clock active and starts transmission. One byte of data is communicated in synchronization with this clock.

Figure 8-13. Block Diagram of Clocked Serial Interface

Remark fxx: Oscillation frequency

$$
\mathrm{n}=0 \text { or } 3
$$

- 3-wire serial I/O mode

This mode is used to communicate with a device having a conventional clocked serial interface.
Basically, communication is performed by using three lines: serial clock ($\overline{\mathrm{SCKn}}$) and serial data (SIn and SOn) ($\mathrm{n}=0$ or 3).
Generally, a handshake line is necessary for checking the communication status.

8.9 Clock Output Function

The operating clock of the CPU can be divided and output to an external device. The line that outputs the divided clock can be also used as a 1-bit port.

When this function is used, the local bus interface cannot be used, because the ASTB and CLKOUT pins are multiplexed.

Figure 8-14. Block Diagram of Clock Output Function

8.10 Edge Detection Function

The interrupt input pins (NMI and INTPO to INTP5) are used to input trigger signals for the on-chip hardware units, as well as to input interrupt requests. Because these pins operate at the edge of an input signal, they are provided with a function to detect edges. In addition, these pins also have a noise eliminator function to prevent erroneous detection of an edge due to noise.

Table 8-4. Noise Elimination of Interrupt Input Pins

Pin Name	Detectable Edge	Noise Rejection
NMI	Either rising or falling edge	By analog delay
INTP0 to INTP3	Either or both rising or falling edge	By clock samplingNote
		By analog delay

Note INTPO can select a sampling clock.

8.11 Watchdog Timer

A watchdog timer is provided to detect inadvertent program loop of the CPU. This watchdog timer generates a nonmaskable interrupt request unless it is cleared by software within specified interval time. Once the watchdog timer has been enabled to operate, it cannot be stopped by software. It can be specified whether the interrupt request from the watchdog timer or the interrupt request from the NMI pin takes precedence.

Figure 8-15. Block Diagram of Watchdog Timer

8.12 Simplified IEBus Controller

The μ PD784938A has a newly developed IEBus controller. The functions of this controller are limited compared with the IEBus interface function (provided to the $78 \mathrm{~K} / 0$ Series) of conventional microcontrollers.

Table 8-5 compares the simplified IEBus interface of the μ PD784938A and the conventional IEBus interface.

Table 8-5. Comparison Between Conventional IEBus Interface and Simplified IEBus Interface

Item	Conventional Model (IEBus of 78K/0)	Simplified IEBus
Communication mode	Mode 0, mode 1, mode 2	Fixed to mode 1
Internal system clock	$6.0(6.29) \mathrm{MHz}$	Transmit/receive register: 1 byte
Internal buffer size	Transmit buffer: 33 bytes (FIFO) Receive buffer: 40 bytes (FIFO) Up to 4 frames can be received.	Preprocessing before start of communication (data setting) Setting and managing each communication status Data write to transmit buffer Data read from receive buffer CPU processing Setting and managing each communication status 1-byte data write processing 1-byte data read processing Management of transmission such as slave status Multiple frame management, re-master request
Hardware processing	Bit processing (modulation/demodulation, error detection) Field processing (generation/management) Arbitration result detection Parity processing (generation/error detection) Automatic returning of $\overline{\text { ACK/NACK }}$ Automatic data re-transmission processing Automatic re-master processing Automatic transmission processing such as slave status Multiple frame reception processing	Bit processing (modulation/demodulation, error detection) Field processing (generation/management) Arbitration result detection Parity processing (generation/error detection) Automatic returning of ACK/NACK Automatic data re-transmission processing

Figure 8-16. Block Diagram of IEBus Controller

- Hardware configuration and function

The IEBus internally consists of the following six blocks:

- CPU interface block
- Interrupt control block
- Internal registers
- Bit processing block
- Field processing block
- IEBus interface block

<CPU interface block>

This control block interfaces the CPU (78K/IV) with the IEBus.

<Interrupt control block>

This block passes interrupt request signals from the IEBus to the CPU.

<Internal registers>

These registers specify the data in each field of the control register that controls the IEBus.

<Bit processing block>

This block generates and disassembles bit timing, and mainly consists of a bit sequence ROM, 8-bit preset timer, and decision unit.

<Field processing block>

This block generates each field in a communication frame, and mainly consists of a field sequence ROM, 4-bit down counter, and decision unit.

<IEBus interface block>

This block is used to interface with an external driver/receiver, and mainly consists of a noise filter, shift register, conflict detection unit, parity detection unit, parity generator, and $\overline{\mathrm{ACK}} / \mathrm{NACK}$ generator.

9. INTERRUPT FUNCTION

To service an interrupt, the three servicing formats shown in Table 9-1 can be selected in software.

Table 9-1. Interrupt Request Servicing

Servicing Mode	Main Body of Servicing Routine	Servicing	Contents of PC and PSW
Vectored interrupt	Software	Branches to and executes servicing routine (any servicing).	Saves to and restores from stack.
		Automatically selects register bank, and branches to and executes servicing routine (any servicing).	Saves to or restores from fixed area in register bank.
Macro service	Firmware	Executes data transfer between memory and I/O (servicing is fixed).	Held

9.1 Interrupt Sources

The sources of interrupts include the 27 sources listed in Table 9-2, execution of the BRK or BRKCS instruction, and operand errors.

Four interrupt priority levels can be selected, so that nesting of interrupts can be controlled and that two or more interrupt requests that are simultaneously generated can be controlled. When a macro service is used, however, nesting always progresses (is not kept pending).

The default priority determines the priorities of the servicing of two or more interrupt requests that are generated at the same time (fixed priorities) (refer to Table 9-2).

Table 9-2. Interrupt Sources

Type	Default Priority	Source		Internal/ External	Macro Service
		Name	Trigger		
Software	-	BRK instruction	Execution of instruction	-	-
		BRKCS instruction	Execution of instruction		
		Operand error	If result of exclusive-OR of operands byte and $\overline{\text { byte }}$ is not FFH when MOV STBC, \#byte, MOV WDM, \#byte, or LOCATION instruction is executed		
Nonmaskable	-	NMI	Detection of pin input edge	External	-
		WDT	Overflow of watchdog timer	Internal	
Maskable	0 (highest)	INTPO	Detection of pin input edge (TM1/TM1W capture trigger)	External	$\sqrt{ }$
	1	INTP1	Detection of pin input edge (TM2/TM2W capture trigger)		
	2	INTP2	Detection of pin input edge (TM2/TM2W event counter input)		
	3	INTP3	Detection of pin input edge (TM0 capture trigger)		
	4	INTC00	Generation of TMO to CR00 matching signal	Internal	\checkmark
	5	INTC01	Generation of TM0 to CR01 matching signal		
	6	INTC10	Generation of TM1 to CR10 matching signal (in 8-bit operation mode) Generation of TM1W to CR10W matching signal (in 16-bit operation mode)		
	7	INTC11	Generation of TM1 to CR11 matching signal (in 8-bit operation mode) Generation of TM1W to CR11W matching signal (in 16-bit operation mode)		
	8	INTC20	Generation of TM2 to CR20 matching signal (in 8-bit operation mode) Generation of TM2W to CR20W matching signal (in 16-bit operation mode)		
	9	INTC21	Generation of TM2 to CR21 matching signal (in 8-bit operation mode) Generation of TM2W to CR21W matching signal (in 16-bit operation mode)		
	10	INTC30	Generation of TM3 to CR30 matching signal (in 8-bit operation mode) Generation of TM3W to CR30W matching signal (in 16-bit operation mode)		
	11	INTP4	Detection of pin input edge	External	$\sqrt{ }$
	12	INTP5	Detection of pin input edge		
	13	INTAD	End of A/D conversion (transfer of ADCR)	Internal	\checkmark
	14	INTSER	Occurrence of ASIO reception error		-
	15	INTSR	End of ASIO reception or end of CSI1 transfer		$\sqrt{ }$
		INTCSI1			
	16	INTST	End of ASIO transmission		
	17	INTCSI	End of CSIO transfer		
	18	INTSER2	Occurrence of ASI2 reception error		-
	19	INTSR2	End of ASI2 reception or end of CSI2 transfer		\checkmark
		INTCSI2			
	20	INTST2	End of ASI2 transmission		
	21	INTIE1	IEBus data access request		
	22	INTIE2	Occurrence of IEBus communication error and start/end of communication		
	23	INTW	Watch timer output		
	24 (lowest)	INTCSI3	End of CSI3 transfer		

Remark ASI: Asynchronous serial interface
CSI: Clocked serial interface

9.2 Vectored Interrupt

If an interrupt occurs, execution branches to the interrupt routine, using the contents of the vector table address corresponding to the interrupt source as the branch destination address.

The following operations are performed so that the CPU executes interrupt servicing.

- When execution branches: Saves the status of the CPU (contents of PC and PSW) to stack
- When execution returns: Restores the status of the CPU (contents of PC and PSW) from stack

To return execution from an interrupt routine to the main routine, the RETI instruction is used. The branch destination address must be in the range 0 to FFFFH.

Table 9-3. Vector Table Address

Interrupt Source	Vector Table Address
BRK instruction	003 EH
Operand error	003 CH
NMI	0002 H
WDT	0004 H
INTP0	0006 H
INTP1	0008 H
INTP2	000 AH
INTP3	000 CH
INTC00	000 EH
INTC01	0010 H
INTC10	0012 H
INTC11	0014 H
INTC20	0016 H
INTC21	0018 H
INTC30	001 AH
INTP4	001 CH
INTP5	001 EH
INTAD	0020 H
INTSER	0022 H
INTSR	0024 H
INTCSI1	
INTST	0026 H
INTCSI	0028 H
INTSER2	002 AH
INTSR2	002 CH
INTCSI2	002 EH
INTST2	

Interrupt Source	Vector Table Address
INTIE1	0032 H
INTIE2	0034 H
INTW	0036 H
INTCSI3	0038 H

9.3 Context Switching

Context switching is a function used to select a specific register bank by hardware when an interrupt request is generated or when the BRKCS instruction is executed. Program execution then branches to the vector address stored in advance in the register bank and, at the same time, the current contents of the program counter (PC) and program status word (PSW) are temporarily stored in the register bank.

The branch destination address is in the range 0 to FFFFH.

Figure 9-1. Context Switching Operation When an Interrupt Request Is Generated

9.4 Macro Service

A macro service is a function used to transfer data between memory and a special function register (SFR) without the intervention of the CPU. A macro service controller accesses memory and SFR in the same transfer cycle, and directly transfers data without loading it.

Because it is not necessary to save or restore the status of the CPU or to load data, data can be transferred at high speed using this function.

Figure 9-2. Macro Service

9.5 Application Examples of Macro Service

(1) Transmit operation of serial interface

Each time a macro service request (INTST) is generated, the next transmit data is transferred from memory to TXS. When data n (last byte) is transferred to TXS (when the transmit data storage buffer becomes empty), a vectored interrupt request (INTST) is generated.
(2) Receive operation of serial interface

Each time a macro service request (INTSR) is generated, the receive data is transferred from RXB to memory. When data n (last byte) is transferred to memory (when no more vacant area is available in the receive data storage buffer), a vectored interrupt request (INTSR) is generated.

(3) Real-time output port

INTC10 and INTC11 are used as the output triggers of the real-time output port. The macro service corresponding to these interrupts can set the next output pattern and interval at the same time. Therefore, INTC10 and INTC11 can control two stepper motors independently. The real-time output port can be also used to control PWM and a DC motor.

Each time a macro service request (INTC10) is generated, the pattern and timing are transferred to a buffer register (POL) and a compare register (CR10), respectively. If the contents of the timer register 1 (TM1) coincide with those of CR10, the next INTC10 is generated, and at the same time, the contents of POL are sent to the output latch. When Tn (last byte) is transferred, a vectored interrupt request (INTC10) is generated. The same applies to INTC11.

10. LOCAL BUS INTERFACE

The local bus interface is used to connect an external memory or I/O (memory mapped I/O), supporting a memory space of 1 MB (refer to Figure 10-1).

Figure 10-1. Example of Local Bus Interface

10.1 Memory Expansion

The memory space can be expanded in seven steps, from 256 bytes to 1 MB , by connecting an external program memory or data memory.

10.2 Memory Space

The 1 MB memory space is divided into eight areas by logical addresses. Each of these areas can be controlled by using the programmable wait function and pseudo static RAM refresh function.

Figure 10-2. Memory Space

FFFFFH	512 KB
	80000 H
7FFFFH	256 KB
40000H	
3FFFFH	128 KB
20000 H	
1FFFFFH	64 KB
10000 H	
OFFFFH	16 KB
0C000H	
0BFFFH	16 KB
08000H	
07FFFH	16 KB
04000H	
03FFFH	16 KB
00000H	

10.3 Programmable Wait

The memory space can be divided into eight areas. Wait cycles can be inserted while the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ signals are active for each of these areas independently. Therefore, even when memory with a different access times is connected, the efficiency of the entire system does not drop.

In addition, an address wait function that extends the active period of the ASTB signal to ensure the lapse of address decode time is also available (this function can be used on the entire memory space).

10.4 Pseudo Static RAM Refresh Function

The refresh operations include the following operations:

- Pulse refresh

A bus cycle that outputs a refresh pulse to the $\overline{\operatorname{REFRQ}}$ pin is inserted at specific intervals. The memory is divided into eight areas. When a specified area is accessed, the refresh pulse can be output from the $\overline{R E F R Q}$ pin, so that the ordinary memory access is not kept waiting by the refresh cycle.

- Power-down self-refresh

The contents of the pseudo static RAM are retained by outputting a low level to the $\overline{\operatorname{REFRQ}}$ pin in the standby mode.

10.5 Bus Hold Function

The bus hold function facilitates connection of a DMA controller. When a bus hold request signal (HLDRQ) is received from an external bus master, and once the bus cycle under execution is completed, the address bus, address/ data bus, and ASTB, $\overline{R D}$, and $\overline{W R}$ pins go into a high-impedance state. The bus hold acknowledge signal (HLDAK) is made active, and the bus is released to the external bus master.

When the bus hold function is used, the external wait function and pseudo static RAM refresh function cannot be used.

11. STANDBY FUNCTION

The standby function is used to reduce the power consumption of the chip and can be used in the following modes:

- HALT mode: In this mode, the operation clock of the CPU is stopped. This mode can reduce the average power consumption when used in combination with the normal operation mode for intermittent operation.
- IDLE mode: In this mode, the operation of the oscillator continues but the other circuits of the system are stopped. The power consumption in this mode is close to that in the STOP mode, but the time required for the program execution to restore to the normal status from this mode is equivalent to the time in the HALT mode.
- STOP mode: In this mode, the oscillator is stopped. All the operations of the chip are stopped, so that the power consumption is minimized with only leakage current flowing.

These modes are programmable.
A macro service can be started from the HALT mode.

Figure 11-1. Status Transition in Standby Mode

Notes 1. When INTW, INTP4, and INTP5 are not masked
2. Only interrupt requests that are not masked
3. Subclock operation

Remark Only an externally input NMI is valid. The watchdog timer cannot be used to release a standby mode (STOP/HALT/IDLE).

12. RESET FUNCTION

When a low level is input to the $\overline{\text { RESET }}$ pin, the internal hardware is initialized (reset status).
When the RESET pin goes high, the following data is written to the program counter (PC):

- Lower 8 bits of PC: Contents of address 0000 H
- Middle 8 bits of PC: Contents of address 0001H
- Higher 4 bits of PC: 0

The contents of the PC are used as a branch destination address, and program execution is started from that address. Therefore, execution can be reset and started from any address.

Set the contents of each register in software as necessary.
The RESET input circuit has a noise eliminator to prevent malfunctioning due to noise. This noise eliminator is a sampling circuit using analog delay.

Figure 12-1. Reception of RESET Signal

Keep the $\overline{R E S E T}$ signal active until the oscillation stabilization time (about 40 ms) has elapsed when the reset operation is performed on power application.

Figure 12-2. Reset Operation on Power Application

13. REGULATOR

The μ PD784938A has a regulator (circuit that helps the internal circuitry operate at a low voltage) to reduce the power consumption of the device. The operation of this regulator is controlled by the input level of the REGOFF pin. When the REGOFF pin goes high, the regulator is turned OFF; when it goes low, the regulator is turned ON. When the regulator is ON, operation at a low voltage become possible. In the $\mu \mathrm{PD} 784938 \mathrm{~A}$, operation with the regulator turned on (REGOFF pin = low level) is recommended.

To stabilize the output voltage of the regulator, connect a capacitor of $1 \mu \mathrm{~F}$ to the REGC pin (regulator stabilization capacitor connecting pin).

When the regulator is stopped, apply the same level as VDD to the REGC pin. Figure $13-1$ shows the peripheral circuits of the regulator.

Figure 13-1. Block Diagram of Regulator Peripheral

- Processing of REGC pin

When regulator operates	Connect capacitor $(1 \mu \mathrm{~F})$ to stabilize regulator.
When regulator stops	Supply Vod.

14. ROM CORRECTION

ROM correction is a function to replace part of a program in the internal ROM with a program in the internal RAM for execution.

By using this function, bugs found in the internal ROM can be avoided or the program flow can be changed. ROM correction can be used at up to four places in the internal ROM (program).

Figure 14-1. Block Diagram of ROM Correction Function

Remark $\mathrm{n}=0$ to $3, \mathrm{~m}=0$ or 1

15. INSTRUCTION SET

(1) 8-bit instructions (() indicates a combination implemented by using A as r.)

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, SHR, SHL, SOR4, ROL4, DBNZ, PUSH, POP, MOVM, XCHM, CMPME, CMPMNE, CMPMNC, CMPMC, MOVBK, XCHBK, CMPBKE, CMPBKNE, CMPBKNC, CMPBKC

Table 15-1. 8-Bit Instructions and Addressing

	\#byte	A	r'	saddr saddr'	sfr	!addr16 !!addr24	mem [saddrp] [\%saddrg]	r3 PSWL PSWH	[WHL+] [WHL-]	n	None ${ }^{\text {Note } 2}$
A	(MOV) ADD ${ }^{\text {Note } 1}$	$\begin{aligned} & (\mathrm{MOV}) \\ & (\mathrm{XCH}) \\ & (\mathrm{ADD})^{\text {Note } 1} \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \mathrm{XCH} \\ & (\text { ADD })^{\text {Note } 1} \end{aligned}$	$\begin{aligned} & (\mathrm{MOV})^{\text {Note } 6} \\ & (\mathrm{XCH})^{\text {Note } 6} \\ & (\mathrm{ADD})^{\text {Notes } 1,6} \end{aligned}$	$\begin{aligned} & \mathrm{MOV} \\ & (\mathrm{XCH}) \\ & (\mathrm{ADD})^{\text {Note } 1} \end{aligned}$	$\begin{aligned} & (\mathrm{MOV}) \\ & (\mathrm{XCH}) \\ & \text { ADD }^{\text {Note } 1} \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \mathrm{XCH} \\ & \text { ADD }^{\text {Note } 1} \end{aligned}$	MOV	$\begin{aligned} & (\mathrm{MOV}) \\ & (\mathrm{XCH}) \\ & (\mathrm{ADD})^{\text {Note } 1} \end{aligned}$		
r	MOV ADD ${ }^{\text {Note }} 1$	$\begin{array}{\|l} \hline(\mathrm{MOV}) \\ (\mathrm{XCH}) \\ (\mathrm{ADD})^{\text {Note } 1} \end{array}$	MOV XCH ADD ${ }^{\text {Note } 1}$	MOV XCH ADD ${ }^{\text {Note } 1}$	MOV XCH ADD ${ }^{\text {Note } 1}$	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{XCH} \end{aligned}$				ROR ${ }^{\text {Note } 3}$	MULU DIVUW INC DEC
saddr	MOV ADD ${ }^{\text {Note } 1}$	$\begin{aligned} & (\mathrm{MOV})^{\text {Note } 6} \\ & (\mathrm{ADD})^{\text {Note } 1} \end{aligned}$	MOV ADD ${ }^{\text {Note }} 1$	MOV XCH ADD ${ }^{\text {Note } 1}$							INC DEC DBNZ
sfr	MOV ADD ${ }^{\text {Note }} 1$	$\begin{aligned} & \text { MOV } \\ & \left(\text { (ADD) }{ }^{\text {Note } 1}\right. \end{aligned}$	MOV ADD ${ }^{\text {Note }} 1$								$\begin{aligned} & \text { PUSH } \\ & \text { POP } \end{aligned}$
!addr16 !!addr24	MOV	(MOV) ADD ${ }^{\text {Note }} 1$	MOV								
mem [saddrp] [\%saddrg]		MOV ADD ${ }^{\text {Note } 1}$									
mem3											$\begin{aligned} & \text { ROR4 } \\ & \text { ROL4 } \end{aligned}$
r3 PSWL PSWH	MOV	MOV									
B, C											DBNZ
STBC, WDM	MOV										
$\begin{aligned} & {[\mathrm{TDE}+]} \\ & {[\mathrm{TDE}-]} \end{aligned}$		(MOV) $(A D D)^{\text {Note }} 1$ MOVM ${ }^{\text {Note } 4}$							MOVBK ${ }^{\text {Note } 5}$		

Notes 1. The operand of ADDC, SUB, SUBC, AND, OR, XOR, and CMP is the same as that of ADD.
2. Either the second operand is not used or the second operand is not an operand address.
3. The operand of ROL, RORC, ROLC, SHR, and SHL is the same as that of ROR.
4. The operand of XCHM, CMPME, CMPMNE, CMPMNC, and CMPMC is the same as that of MOVM.
5. The operand of XCHBK, CMPBKE, CMPBKNE, CMPBKNC, and CMPBKC is the same as that of MOVBK.
6. If saddr is saddr2 in this combination, the code length of some instructions is short.
(2) 16-bit instructions (() indicates a combination implemented by using AX as rp.)

MOVW, XCHW, ADDW, SUBW, CMPW, MULUW, MULW, DIVUX, INCW, DECW, SHRW, SHLW, PUSH, POP, ADDWG, SUBWG, PUSHU, POPU, MOVTBLW, MACW, MACSW, SACW

Table 15-2. 16-Bit Instructions and Addressing

	\#word	AX	$\begin{aligned} & \text { rp } \\ & \text { rp' } \end{aligned}$	saddrp saddrp'	sfrp	!addr16 !!addr24	mem [saddrp] [\%saddrg]	[WHL+]	byte	n	None ${ }^{\text {Note } 2}$
AX	(MOVW) ADDW Note 1	(MOVW) (XCHW) (ADD) Note 1	$\begin{aligned} & \hline(\mathrm{MOVW}) \\ & (\mathrm{XCHW}) \\ & (\text { ADDW })^{\text {Note } 1} \end{aligned}$	(MOVW) ${ }^{\text {Note } 3}$ (XCHW) ${ }^{\text {Note } 3}$ (ADDW) Notes 1,3	MOVW (XCHW) (ADDW) ${ }^{\text {Note } 1}$	$\begin{aligned} & \text { (MOVW) } \\ & \text { XCHWW } \end{aligned}$	MOVW XCHW	$\begin{aligned} & \text { (MOVW) } \\ & (\mathrm{XCHW}) \end{aligned}$			
rp	MOVW ADDW ${ }^{\text {Note } 1}$	(MOVW) (XCHW) (ADDW) ${ }^{\text {Note } 1}$	MOVW XCHW ADDW ${ }^{\text {Note }} 1$	MOVW XCHW ADDW ${ }^{\text {Note } 1}$	MOVW XCHW ADDW ${ }^{\text {Note } 1}$	MOVW				SHRW SHLW	MULW ${ }^{\text {Note }} 4$ INCW DECW
saddrp	MOVW ADDW Note 1	(MOVW) ${ }^{\text {Note } 3}$ (ADDW) ${ }^{\text {Note }} 1$	MOVW ADDW Note 1	MOVW XCHW ADDW Note 1							$\begin{aligned} & \text { INCW } \\ & \text { DECW } \end{aligned}$
sfrp	MOVW ADDW Note 1	MOVW (ADDW) ${ }^{\text {Note } 1}$	MOVW ADDW Note 1								$\begin{aligned} & \text { PUSH } \\ & \text { POP } \end{aligned}$
!addr16 !!addr24	MOVW	(MOVW)	MOVW						MOVTBLW		
mem [saddrp] [\%saddrg]		MOVW									
PSW											$\begin{aligned} & \text { PUSH } \\ & \text { POP } \end{aligned}$
SP	ADDWG SUBWG										
post											PUSH POP PUSHU POPU
[TDE+]		(MOVW)						SACW			
byte											MACW MACSW

Notes 1. The operand of SUBW and CMPW is the same as that of ADDW.
2. Either the second operand is not used or the second operand is not an operand address.
3. If saddrp is saddrp2 in this combination, the code length of some instructions is short.
4. The operand of MULUW and DIVUX is the same as that of MULW.
(3) 24-bit instructions (() indicates a combination implemented by using WHL as rg.) MOVG, ADDG, SUBG, INCG, DECG, PUSH, POP

Table 15-3. 24-Bit Instructions and Addressing

	\#imm24	WHL	rg rg'	saddrg	!!addr24	mem1	[\%saddrg]	SP	None ${ }^{\text {Note } 2}$
WHL	(MOVG) (ADDG) (SUBG)	(MOVG) (ADDG) (SUBG)	(MOVG) (ADDG) (SUBG)	(MOVG) ADDG SUBG	(MOVG)	MOVG	MOVG	MOVG	
rg	MOVG ADDG SUBG	(MOVG) (ADDG) (SUBG)	MOVG ADDG SUBG	MOVG	MOVG				INCG DECG PUSH POP
saddrg		(MOVG)	MOVG						
!!addr24		(MOVG)	MOVG						
mem1		MOVG							
[\%saddrg]		MOVG							
SP	MOVG	MOVG							$\begin{aligned} & \text { INCG } \\ & \text { DECG } \end{aligned}$

Note Either the second operand is not used or the second operand is not an operand address.
(4) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR, BFSET

Table 15-4. Bit Manipulation Instructions and Addressing

	CY	saddr.bit sfr.bit A.bit X.bit PSWL.bit PSWH.bit mem2.bit !addr16.bit !!addr24.bit	/saddr.bit /sfr.bit /A.bit /X.bit /PSWL.bit /PSWH.bit /mem2.bit /!addr16.bit /!!addr24.bit	None ${ }^{\text {Note }}$
CY		MOV1 AND1 OR1 XOR1	AND1 OR1	NOT1 SET1 CLR1
saddr.bit sfr.bit A.bit X.bit PSWL.bit PSWH.bit mem2.bit !addr16.bit !!addr24.bit	MOV1			NOT1 SET1 CLR1 BF BT BTCLR BFSET

Note Either the second operand is not used or the second operand is not an operand address.
(5) Call/return instructions/branch instructions

CALL, CALLF, CALLT, BRK, RET, RETI, RETB, RETCS, RETCSB, BRKCS, BR, BNZ, BNE, BZ, BE, BNC, BNL, $B C, B L, B N V, B P O, B V, B P E, B P, B N, B L T, B G E, B L E, B G T, B N H, B H, B F, B T, B T C L R, B F S E T, D B N Z$

Table 15-5. Call/return and Branch Instructions and Addressing

Operand of Instruction Address	\$addr20	\$!addr20	!addr16	!!addr20	rp	rg	[rp]	[rg]	!addr11	[addr5]	RBn	None ${ }^{\text {Note }}$
Basic instruction	$\begin{aligned} & B C^{\text {Note }} \\ & B R \end{aligned}$	CALL BR	CALL BR RETCS RETCSB	CALL BR	CALLF	CALLF	BRKCS	BRK RET RETI RETB				
Compound instruction	BF BT BTCLR BFSET DBNZ											

Note The operand of BNZ, BNE, BZ, BE, BNC, BNL, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, and BH is the same as that of BC .
(6) Other instructions

ADJBA, ADJBS, CVTBW, LOCATION, SEL, NOT, EI, DI, SWRS

* 16. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD		-0.3 to +6.5	V
	AV ${ }_{\text {dD }}$		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	AVss		-0.3 to Vss +0.3	V
	AVREF1	A/D converter reference voltage input	-0.3 to $\mathrm{VDD}+0.3$	V
Input voltage	V_{11}		-0.3 to VDD +0.3	V
Analog input voltage	Vian	Analog input voltage	$\mathrm{AV}_{\text {ss }}-0.3$ to $\mathrm{AV}_{\text {ReF }}+0.3$	V
Output voltage	Vo		-0.3 to VDD +0.3	V
Output current, low	loL	Per pin	10	mA
		Total of all pins of ports $0,3,6,10$ and the P54 to P57 pins	50	mA
		Total of all pins of ports 1, 4, 7, 9, and the P50 to P53, PWM0, PWM1, and TX pins	50	mA
Output current, high	Іон	Per pin	-6	mA
		Total of all pins of ports $0,3,6,10$ and the P54 to P57 pins	-30	mA
		Total of all pins of ports 1, 4, 7, 9, and the P50 to P53, PWM0, PWM1, and $\overline{T X}$ pins	-30	mA
Operating ambient temperature	TA		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-65 to +150	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Operating Conditions

- Clock frequency

Clock Frequency	Supply Voltage
$2 \mathrm{MHz} \leq \mathrm{fxx}^{\mathrm{M}} 12.58 \mathrm{MHz}$	$4.0 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$
$2 \mathrm{MHz} \leq \mathrm{fxx}_{\mathrm{Xx}} \leq 6.29 \mathrm{MHz}$	$3.0 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$

- Operating ambient temperature (T_{A}): -40 to $+85^{\circ} \mathrm{C}$
- Power supply voltage and clock cycle time: Refer to Figure 16-1
- Selection of internal regulator operation (REGOFF pin: low-level input)

Figure 16-1. Power Supply Voltage and Clock Cycle Time

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dD}}=\mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .			15	pF
Output capacitance	Cout				15	pF
I/O capacitance	Cıo				15	pF

Main Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=3.0$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	MAX.	Unit
Oscillator frequency	fxx	Ceramic resonator or recommended resonator	$4.0 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.0	12.58	MHz
			$3.0 \leq \mathrm{V}$ DD $\leq 5.5 \mathrm{~V}$	2.0	6.29	MHz

Caution When using the main clock oscillator, wire as follows to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

Remarks 1. Connect a 12.582912 MHz or 6.291456 MHz oscillator to operate the internal clock timer with the main clock.
2. For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} \mathrm{dD}=3.0$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Oscillator frequency	fxT^{\prime}	Ceramic resonator or crystal resonator	32	32.768	35	KHz
Oscillation stabilization time	$\mathrm{f}_{\mathrm{sxt}}$	$4.5 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1.2	2	s
					10	s
Oscillation hold voltage	VDDXT		3.0		5.5	V
Watch timer operating voltage	VDDW		3.0		5.5	V

DC Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=3.0$ to $\left.5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}\right)(1 / 2)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, low ${ }^{\text {Note }}$	VIL1	P10, P11, P13 to P17, P30, P31, P34 to P37, P70 to P77, P90 to P97, P100 to P104, X1, X2, XT1, XT2		-0.3		0.3VDD	V
	VIL2	P12, P20 to P27, P32, P33, P105 to P107 RESET		-0.3		0.2VdD	V
	VIL3	P00 to P07, P40 to P47, P50 to P57, P60 to P67	$4.5 \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	-0.3		0.8	V
	VIL4			-0.3		0.2Vdd	V
Input voltage, high	$\mathrm{V}_{\mathrm{H} 1}$	P10, P11, P13 to P17, P30, P31, P34 to P37, P70 to P77, P90 to P97, P100 to P104, X1, X2, XT1, XT2		0.7VdD		V ${ }_{\text {dD }}+0.3$	V
	VIH2	P12, P20 to P27, P32, P33, P105 to P107 RESET		0.8VdD		V ${ }_{\text {dD }}+0.3$	V
	Vінз	P00 to P07, P40 to P47, P50 to P57, P60 to P67	$4.5 \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	2.2		V ${ }_{\text {dD }}+0.3$	V
	$\mathrm{V}_{\mathrm{IH} 4}$			0.7VdD		0.3VdD	V
Output voltage, low	Vol1	lol $=20 \mu \mathrm{~A}$				0.1	V
		$\mathrm{loL}=100 \mu \mathrm{~A}$				0.2	V
		$\mathrm{loL}=2 \mathrm{~mA}$				0.4	V
	Vol2	$\mathrm{lol}=8 \mathrm{~mA}, \mathrm{P} 10$ to P17, P40 to P47, P50 to P57	$4.5 \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$			1.0	V
Output voltage, high	Voh1	Іон $=-20 \mu \mathrm{~A}$		VDD-0.1			V
		lol $=-100 \mu \mathrm{~A}$		VDD-0.2			V
		$\mathrm{loL}=-2 \mathrm{~mA}$		VDD-1.0			V
	Voh2	$\text { lol }=-5 \mathrm{~mA} \text {, }$ P10 to P17, P40 to P47, P50 to P57	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	VDD-2.4			V
Input leakage current, low	ILIL1	$\mathrm{Vin}=0 \mathrm{~V}$	For pins other than $\mathrm{X} 1, \mathrm{X} 2, \mathrm{XT} 1$, and XT 2			10	$\mu \mathrm{A}$
	ILIL2		X1, X2, XT1, XT2			-20	$\mu \mathrm{A}$
Input leakage current, high	ILIH1	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {dD }}$	For pins other than X1, X2, XT1, and XT2			10	$\mu \mathrm{A}$
	ILIH2		X1, X2, XT1, XT2			20	$\mu \mathrm{A}$
Output leakage current, low	ILOL1	Vout $=0 \mathrm{~V}$				-10	$\mu \mathrm{A}$
Output leakage current, high	ILOH1	Vout $=\mathrm{V}_{\text {DD }}$				10	$\mu \mathrm{A}$

Note These values are valid when the pull-up resistor is off.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AV} \mathrm{DD}=3.0$ to $\left.5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{~A}=\mathrm{AV} \mathrm{Vs}=0 \mathrm{~V}\right)(2 / 2)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Power supply current	ldo1	Operating mode	$\begin{aligned} & \mathrm{fxx}_{\mathrm{x}}=12.58 \mathrm{MHz}, \\ & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} \end{aligned}$		10	20	mA
			$\begin{aligned} & f_{\mathrm{xx}}=6.29 \mathrm{MHz}, \\ & 3.0 \mathrm{~V} \leq \mathrm{VD} \leq 5.5 \mathrm{~V} \end{aligned}$		5	10	mA
	IDD2	HALT mode	$\mathrm{fxx}_{\mathrm{x}}=12.58 \mathrm{MHz}$, when peripheral clock stops ${ }^{\text {Note }}$, $4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$		2	4	mA
			$\begin{aligned} & \mathrm{fxx}=6.29 \mathrm{MHz} \text {, when } \\ & \text { peripheral clock stops }{ }^{\text {Notete }}, \\ & 3.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} \end{aligned}$		1.2	2.4	mA
	ldD3	IDLE mode	$\begin{aligned} & f_{x x}=12.58 \mathrm{MHz}, \\ & 4.0 \leq V_{D D} \leq 5.5 \mathrm{~V} \end{aligned}$		0.6	1.2	mA
			$\begin{aligned} & f_{x x}=6.29 \mathrm{MHz}, \\ & 3.0 \mathrm{~V} \leq \mathrm{VD} \leq 5.5 \mathrm{~V} \end{aligned}$		0.3	0.6	mA
Data hold voltage	Voddr	STOP mode		2.5		5.5	V
Data hold current	lddor	STOP mode	$\mathrm{V} D \mathrm{LD}=2.5 \mathrm{~V}$, subclock stops		2	10	$\mu \mathrm{A}$
			VDD $=5.5 \mathrm{~V}$, subclock stops		10	50	$\mu \mathrm{A}$
Pull-up resistor	RL	$\mathrm{VIN}=0 \mathrm{~V}$		15	40	80	k Ω

Note When the main system clock: $\mathrm{fcLk}=\mathrm{fxx} / 8$ is selected (set by the standby control register (STBC)) and the watch timer is operating.

Remark These values are valid when the internal regulator is on (REGOFF pin = low-level input).

AC Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~V} s=\mathrm{AVss}=0 \mathrm{~V}$)
(1) Read/write operation (1/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	tcyk	$4.0 \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	79			ns
		V DD $=3.0 \mathrm{~V}$	159			ns
Address setup time (to ASTB \downarrow)	tsast	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$	(0.5+a) T-11			ns
		V DD $=3.0 \mathrm{~V}$	(0.5+a) T-15			ns
Address hold time (from ASTB \downarrow)	thstla	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	0.5T-19			ns
		$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$	0.5T-24			ns
ASTB high-level width	twsth	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	(0.5+a) T-17			ns
		$\mathrm{VDD}=3.0 \mathrm{~V}$	(0.5+a) T-40			ns
Address hold time (from $\overline{\mathrm{RD}} \uparrow$)	thra	V DD $=5.0 \mathrm{~V}$	$0.5 \mathrm{~T}-14$			ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	0.5T-14			ns
Delay from address to $\overline{\mathrm{RD}} \downarrow$	tDar	V DD $=5.0 \mathrm{~V}$	(1+a) T-5			ns
		V DD $=3.0 \mathrm{~V}$	(1+a) T-10			ns
Address float time (from $\overline{\mathrm{RD}} \downarrow$)	trar				0	ns
Data input time from address	tdaid	V DD $=5.0 \mathrm{~V}$			(2.5+a+n) T-37	ns
		$\mathrm{VDD}=3.0 \mathrm{~V}$			(2.5+a+n) T-52	ns
Data input time from ASTB \downarrow	tostid	$\mathrm{VDD}=5.0 \mathrm{~V}$			(2+n) T-35	ns
		$\mathrm{VDD}=3.0 \mathrm{~V}$			(2+n) T-50	ns
Data input time from $\overline{\mathrm{RD}} \downarrow$	torid	V DD $=5.0 \mathrm{~V}$			(1.5+n) T-40	ns
		V DD $=3.0 \mathrm{~V}$			(1.5+n) T-50	ns
Delay from ASTB \downarrow to $\overline{\mathrm{RD}} \downarrow$	tostr	$\mathrm{Vdd}=5.0 \mathrm{~V}$	0.5T-9			ns
		V DD $=3.0 \mathrm{~V}$	0.5T-9			ns
Data hold time (from $\overline{\mathrm{RD}} \uparrow$)	thrid		0			ns
Address active time from $\overline{\mathrm{RD}} \uparrow$	tora	$\mathrm{VdD}=5.0 \mathrm{~V}$	0.5T-2			ns
		V DD $=3.0 \mathrm{~V}$	0.5T-12			ns
Delay from $\overline{\mathrm{RD}} \uparrow$ to ASTB \uparrow	torst	$\mathrm{VdD}=5.0 \mathrm{~V}$	0.5T-9			ns
		$\mathrm{VDD}=3.0 \mathrm{~V}$	0.5T-9			ns
$\overline{\mathrm{RD}}$ low-level width	twrL	$\mathrm{VdD}=5.0 \mathrm{~V}$	(1.5+n) T-25			ns
		V DD $=3.0 \mathrm{~V}$	(1.5+n) T-30			ns

Remarks 1. $\mathrm{T}:$ tcyk $=1 /$ fclk (fclk: internal system clock cycle)
2. a: 1 during address wait; otherwise 0
3. n : Number of wait states $(\mathrm{n} \geq 0)$
4. Calculated as $T=79 \mathrm{~ns}$ (min.) $@ \mathrm{VDD}=5.0 \mathrm{~V}$
5. Calculated as $\mathrm{T}=159 \mathrm{~ns}$ (min.) @ $\mathrm{VdD}=3.0 \mathrm{~V}$

AC Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~V} \mathrm{Ss}=\mathrm{AV}$ ss $\left.=0 \mathrm{~V}\right)$
(1) Read/write operation (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Delay from address to $\overline{\mathrm{WR}} \downarrow$	tdaw	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	(1+a) T-5			ns
		$\mathrm{VDD}=3.0 \mathrm{~V}$	(1+a) T-10			ns
Address hold time (from $\overline{\mathrm{WR}} \uparrow$)	thwa	$\mathrm{VDD}=5.0 \mathrm{~V}$	0.5T-14			ns
		$\mathrm{VDD}=3.0 \mathrm{~V}$	$0.5 \mathrm{~T}-14$			ns
Delay from ASTB \downarrow to data output	tostod	$\mathrm{VDD}=5.0 \mathrm{~V}$			$0.5 \mathrm{~T}+15$	ns
		$\mathrm{V} D=3.0 \mathrm{~V}$			$0.5 \mathrm{~T}+20$	ns
Data output time from $\overline{\mathrm{WR}} \downarrow$	towod				15	ns
Delay from ASTB \downarrow to $\overline{\mathrm{WR}} \downarrow$	tostw	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	0.5T-9			ns
		$\mathrm{VDD}=3.0 \mathrm{~V}$	0.5T-9			ns
Data setup time (to $\overline{\mathrm{WR}} \uparrow$)	tsoowr	$\mathrm{VDD}=5.0 \mathrm{~V}$	(1.5+n) T-20			ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	(1.5+n) T-25			ns
Data hold time (from $\overline{\mathrm{WR}} \uparrow$)	thwod	$\mathrm{VDD}=5.0 \mathrm{~V}$	0.5T-14			ns
		$\mathrm{V} D=3.0 \mathrm{~V}$	0.5T-14			ns
Delay from $\overline{\mathrm{WR}} \uparrow$ to ASTB \uparrow	towst	$\mathrm{VDD}=5.0 \mathrm{~V}$	0.5T-9			ns
		V DD $=3.0 \mathrm{~V}$	0.5T-9			ns
$\overline{\mathrm{WR}}$ low-level width	tww	$\mathrm{VDD}=5.0 \mathrm{~V}$	(1.5+n) T-25			ns
		$\mathrm{V} D=3.0 \mathrm{~V}$	(1.5+n) T-30			ns

Remarks 1. T: tçk $=1 /$ fclk (fclk: internal system clock cycle)
2. a: 1 during address wait; otherwise 0
3. n : Number of wait states $(\mathrm{n} \geq 0)$
4. Calculated as $\mathrm{T}=79 \mathrm{~ns}$ (min.) @ $\mathrm{VdD}=5.0 \mathrm{~V}$
5. Calculated as $\mathrm{T}=159 \mathrm{~ns}$ (min.) @ $\mathrm{VDD}=3.0 \mathrm{~V}$

AC Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~V} s=\mathrm{AVss}=0 \mathrm{~V}$)
(2) External wait timing

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { WAIT }} \downarrow$ input time from address	tdawt	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$			(2+a) T-40	ns
		$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$			(2+a) T-60	ns
$\overline{\text { WAIT }} \downarrow$ input time from ASTB \downarrow	tostwt	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$			$1.5 \mathrm{~T}-40$	ns
		$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$			1.5T-60	ns
$\overline{\text { WAIT }}$ hold time from ASTB \downarrow	thstwth	V DD $=5.0 \mathrm{~V}$	(0.5+n) T+5			ns
		$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$	$(0.5+n) T+10$			ns
Delay from ASTB \downarrow to $\overline{\text { WAIT }} \uparrow$	tostwth	$\mathrm{V} D \mathrm{DD}=5.0 \mathrm{~V}$			(1.5+a) T-40	ns
		V DD $=3.0 \mathrm{~V}$			(1.5+a) T-60	ns
$\overline{\text { WAIT }} \downarrow$ input time from $\overline{\mathrm{RD}} \downarrow$	torwtL	V DD $=5.0 \mathrm{~V}$			T-40	ns
		$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$			T-60	ns
$\overline{\text { WAIT }}$ hold time from $\overline{\mathrm{RD}} \downarrow$	thrwt	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	$\mathrm{nT}+5$			ns
		$\mathrm{V} D \mathrm{DD}=3.0 \mathrm{~V}$	$n \mathrm{~T}+10$			ns
Delay from $\overline{\mathrm{RD}} \downarrow$ to $\overline{\mathrm{WAIT}} \uparrow$	torwth	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$			$(1+n)$ T-40	ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$			$(1+n)$ T-60	ns
Data input time from $\overline{\text { WAIT }} \uparrow$	towtid	$\mathrm{V} D \mathrm{DD}=5.0 \mathrm{~V}$			0.5T-5	ns
		$\mathrm{V} D \mathrm{DD}=3.0 \mathrm{~V}$			0.5T-10	ns
Delay from $\overline{\mathrm{WAIT}} \uparrow$ to $\overline{\mathrm{RD}} \uparrow$	towtr	V DD $=5.0 \mathrm{~V}$	0.5T			ns
		V DD $=3.0 \mathrm{~V}$	0.5T			ns
Delay from $\overline{\text { WAIT } \uparrow \text { to } \overline{\mathrm{WR}} \uparrow \sim}$	towtw	V DD $=5.0 \mathrm{~V}$	0.5T			ns
		V DD $=3.0 \mathrm{~V}$	0.5T			ns
$\overline{\text { WAIT }} \downarrow$ input time from $\overline{\text { WR }} \downarrow$	towwtL	V DD $=5.0 \mathrm{~V}$			T-40	ns
		V DD $=3.0 \mathrm{~V}$			T-60	ns
$\overline{\text { WAIT }}$ hold time from $\overline{\mathrm{WR}} \downarrow$	thwwt	V DD $=5.0 \mathrm{~V}$	$\mathrm{nT}+5$			ns
		$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$	$\mathrm{nT}+10$			ns
Delay from $\overline{\mathrm{WR}} \downarrow$ to $\overline{\mathrm{WAIT}} \uparrow$	towwth	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$			$(1+n) T-40$	ns
		V DD $=3.0 \mathrm{~V}$			$(1+n)$ T-60	ns

Remarks 1. T : tcyk $=1 / \mathrm{fclk}$ (fclk: internal system clock cycle)
2. a: 1 during address wait; otherwise 0
3. n : Number of wait states $(\mathrm{n} \geq 0)$
4. Calculated as $T=79 \mathrm{~ns}$ (min.) @ $\mathrm{VdD}=5.0 \mathrm{~V}$
5. Calculated as $T=159 \mathrm{~ns}$ (min.) @ $\mathrm{VDD}=3.0 \mathrm{~V}$

AC Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~V} \mathrm{Ss}=\mathrm{AV}$ ss $\left.=0 \mathrm{~V}\right)$
(3) Bus hold/refresh timing

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Delay from HLDRQ \uparrow to float	trhac	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$			(2+4+a+n) T+50	ns
		$\mathrm{VDD}=3.0 \mathrm{~V}$			(2+4+a+n) T+50	ns
Delay from HLDRQ \uparrow to HLDAK \uparrow	tононнан	$\mathrm{VDD}=5.0 \mathrm{~V}$			(3+4+a+n) T+30	ns
		$\mathrm{VDD}=3.0 \mathrm{~V}$			$(3+4+a+n) T+40$	ns
Delay from float to HLDAK \uparrow	tocfha	$\mathrm{VDD}=5.0 \mathrm{~V}$			T+30	ns
		V DD $=3.0 \mathrm{~V}$			T+30	ns
Delay from HLDRQ \downarrow to HLDAK \downarrow	tohalhal	V DD $=5.0 \mathrm{~V}$			$2 \mathrm{~T}+40$	ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$			$2 \mathrm{~T}+60$	ns
Delay from HLDAK \downarrow to active	tohac	$\mathrm{VDD}=5.0 \mathrm{~V}$	T-20			ns
		$\mathrm{VDD}=3.0 \mathrm{~V}$	T-30			ns
Random read/write cycle time	trc	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	$3 T$			ns
		$\mathrm{VDD}=3.0 \mathrm{~V}$	$3 T$			ns
$\overline{\mathrm{REFRQ}}$ low-level pulse width	twrfal	$\mathrm{VDD}=5.0 \mathrm{~V}$	1.5T-25			ns
		$\mathrm{VDD}=3.0 \mathrm{~V}$	1.5T-30			ns
Delay from ASTB \downarrow to $\overline{\mathrm{REFRQ}}$	tostrag	$\mathrm{VDD}=5.0 \mathrm{~V}$	0.5T-9			ns
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	0.5T-9			ns
Delay from RD¢ to $\overline{\mathrm{REFRQ}}$	tdrrag	$\mathrm{VDD}=5.0 \mathrm{~V}$	1.5T-9			ns
		$\mathrm{VDD}=3.0 \mathrm{~V}$	1.5T-9			ns
Delay from WR \uparrow to $\overline{\mathrm{REFRQ}}$	towrfa	$\mathrm{VDD}=5.0 \mathrm{~V}$	1.5T-9			ns
		$\mathrm{VDD}=3.0 \mathrm{~V}$	1.5T-9			ns
Delay from $\overline{\mathrm{REFRQ}} \uparrow$ to ASTB	torfost	$\mathrm{VDD}=5.0 \mathrm{~V}$	0.5T-9			ns
		$\mathrm{VDD}=3.0 \mathrm{~V}$	0.5T-9			ns
$\overline{\mathrm{REFRQ}}$ high-level pulse width	twrfar	$\mathrm{VDD}=5.0 \mathrm{~V}$	1.5T-25			ns
		$\mathrm{V} D=3.0 \mathrm{~V}$	1.5T-30			ns

Remarks 1. T: tcyk $=1 /$ fclk (fclk: internal system clock cycle)
2. a: 1 during address wait; otherwise 0
3. n : Number of wait states $(\mathrm{n} \geq 0)$
4. Calculated as $T=79 \mathrm{~ns}$ (min.) @ Vdd $=5.0 \mathrm{~V}$
5. Calculated as $T=159 \mathrm{~ns}$ (min.) @ $\mathrm{VDD}=3.0 \mathrm{~V}$

Timing Waveform

(1) Read operation

(2) Write operation

Hold Timing

External Wait Signal Input Timing

(1)

Read operation

(2) Write operation

Refresh Timing Waveform

(1) Random read/write cycle

(2) When refresh memory is accessed for a read and write at the same time

(3) Refresh after a read

(4) Refresh after a write

Serial Operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=3.0$ to $\left.5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{~S}=\mathrm{AV} \mathrm{Vs}=0 \mathrm{~V}\right)$
(a) CSIO, CSI3 3-wire serial I/O mode (SCK0, $\overline{\text { SCK3 } . . . \text { External clock input) }}$

Parameter	Symbol	Conditions		MIN.	MAX.	Unit
$\overline{\mathrm{SCK}}$ cycle time ($\overline{\text { SCKO }}, \overline{\text { SCK }}$)	tcysko, tcysкз	SO and SO3 are CMOS outputs	$\mathrm{fcLek}^{\text {f }} \mathrm{fxx}$	8/fxx		ns
			Except fclk $=\mathrm{fxx}$	4/fctk		ns
$\overline{\text { SCK }}$ low-level width ($\overline{\text { SCKO }}, \overline{\text { SCK }}$)	twsklo, twskL3	SOO and SO3 are CMOS outputs	$\mathrm{fcLk}^{\text {¢ }} \mathrm{fxx}$	4/fxx-40		ns
			Except fclk $=\mathrm{fxx}^{\text {che }}$	2/f¢டк-40		ns
$\overline{\mathrm{SCK}}$ high-level width ($\overline{\mathrm{SCKO}}, \overline{\mathrm{SCK}}$)	twskho, twsкнз	SOO and SO3 are CMOS outputs	$\mathrm{fcLk}=\mathrm{f}_{\mathrm{xx}}$	4/fxx-40		ns
			Except fcLk $=\mathrm{fxx}$	2/fcıк-40		ns
SIO, SI3 setup time (to $\overline{\mathrm{SCKO}}, \overline{\mathrm{SCK}} \uparrow$)	tsssko, tsssk3			80		ns
SIO, SI3 hold time (from $\overline{\mathrm{SCKO}}, \overline{\mathrm{SCK3}} \uparrow$)	tнssko, tнsskз			1/fcık+80		ns
Output delay time from SCKO, $\overline{\text { SCK3 }} \downarrow$	tDbsko, tDBSk3	CMOS output		0	1/fclk 150	ns
		N -ch Open-drain output RL $=1 \mathrm{k} \Omega$		0	1/f¢Lк+400	ns
SO0, SO3 output hold time (from SCKO, $\overline{\mathrm{SCK}} \uparrow$)	thsbsko, tнSBSk	When data is transferred		$\begin{aligned} & 0.5 \text { tčsко-40, } \\ & 0.5 \text { tčSкз }-40 \end{aligned}$		ns

Remarks 1. The values in this table are those when $C L=100 \mathrm{pF}$.
2. fxx : External oscillator frequency ($f \mathrm{fx}=12.58 \mathrm{MHz}$ or $\mathrm{fxx}=6.29 \mathrm{MHz}$)
3. fclk: System clock oscillation frequency (selectable from $\mathrm{fxx}_{\mathrm{x}}, \mathrm{fxx} / 2, \mathrm{fxx}_{\mathrm{x}} / 4$, and $\mathrm{f}_{\mathrm{xx}} / 8$ by the standby control register (STBC))
(b) CSIO, CSI3 3-wire serial I/O mode ($\overline{\mathrm{SCKO}}, \overline{\mathrm{SCK}}$... Internal clock output)

Parameter	Symbol	Conditions		MIN.	MAX.	Unit
$\overline{\mathrm{SCK}}$ cycle time ($\overline{\mathrm{SCKO}}, \overline{\mathrm{SCK}}$)	tcysko, tcysкз	SOO and SO3 are CMOS outputs	Except fcık $=\mathrm{fxx} / 8$	8/fxx		ns
			$\mathrm{fcLk}=\mathrm{fxx} / 8$	16/fxx		ns
$\overline{\text { SCK }}$ low-level width ($\overline{\mathrm{SCKO}}, \overline{\mathrm{SCK3}}$)	twskLo, twsKL3	SOO and SO3 are CMOS outputs	Except fcık $=\mathrm{fxx} / 8$	4/fxx-40		ns
			f сLк $=\mathrm{fxx} / 8$	8/fxx-40		ns
$\overline{\text { SCK }}$ high-level width ($\overline{\mathrm{SCKO}}, \overline{\mathrm{SCK3}}$)	twskнo, twskH3	SOO and SO 3 are CMOS outputs	Except fcık $=\mathrm{fxx} / 8$	4/fxx-40		ns
			$\mathrm{f}_{\text {cLK }}=\mathrm{fxx} / 8$	8/fxx-40		ns
SIO, SI3 setup time (to $\overline{\mathrm{SCKO}}, \overline{\mathrm{SCK}} \uparrow$)	tsssko, tssskз			80		ns
SIO, SI3 hold time (from $\overline{\mathrm{SCKO}}, \overline{\mathrm{SCK3}} \uparrow$)	thssko, thssk			80		ns
Output delay time from SCK0, $\overline{\text { SCK3 }} \downarrow$	tobsko, tDBSk	CMOS output		0	150	ns
		N -ch Open-drain output RL $=1 \mathrm{k} \Omega$		0	400	ns
SOO, SO3 output hold time (from $\overline{\text { SCKO }}, \overline{\text { SCK3 }} \uparrow$)	thsbsko, thsbsk3	When data is transferred		$\begin{array}{\|l\|} \hline 0.5 \text { tčяко-40, } \\ 0.5 \text { tcүккз }-40 \end{array}$		ns

Remarks 1. The values in this table are those when $C L=100 \mathrm{pF}$.
2. $f_{x x}$: External oscillator frequency ($f x x=12.58 \mathrm{MHz}$ or $f_{x x}=6.29 \mathrm{MHz}$)
3. fclk: System clock oscillation frequency (selectable from $\mathrm{fxx}^{\mathrm{f}} \mathrm{f}_{\mathrm{fx}} / 2, \mathrm{ffx}_{\mathrm{f}} / 4$, and $\mathrm{fxx} / 8$ by the standby control register (STBC))

Serial Operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=3.0$ to $\left.5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{~S}=\mathrm{AV} \mathrm{VS}=0 \mathrm{~V}\right)$
(c) UARTO, UART3 (asynchronous serial interface mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK0, ASCK2 cycle time	tcyask	$4.0 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	160			ns
			320			ns
ASCK0, ASCK2 low-level width	twaskl	$4.0 \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	65			ns
			120			ns
ASCK0, ASCK2 high-level width	twaskh	$4.0 \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	65			ns
			120			ns

Serial Operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{AD}=\mathrm{AVD}=3.0$ to $\left.5.5 \mathrm{~V}, \mathrm{~V} s=\mathrm{AVss}=0 \mathrm{~V}\right)$
(d) IOE1, IOE2 3-wire serial I/O mode (SCK1, SCK2 ... External clock input)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time ($\overline{\text { SCK1 }}$, $\overline{\text { SCK2 }}$)	tcysk1 tcrsk2	$4.0 \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	640		ns
			1280		ns
$\overline{\text { SCK }}$ low-level width ($\overline{\mathrm{SCK} 1}, \overline{\mathrm{SCK} 2}$)	twskL1, twskL2	$4.0 \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	280		ns
			600		ns
$\overline{\mathrm{SCK}}$ high-level width ($\overline{\mathrm{SCK} 1}, \overline{\mathrm{SCK} 2}$)	twskh1, twskH2	$4.0 \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	280		ns
			600		ns
SI1, SI2 setup time (to $\overline{\mathrm{SCK} 1}, \overline{\mathrm{SCK}} \uparrow$)	tsssk1, tsssk2		40		ns
SI1, SI2 hold time (from $\overline{\text { SCK1 }}, \overline{\text { SCK2 }} \uparrow$)	thssk1, thssk2		40		ns
Output delay time from $\overline{\text { SCK1 }}, \overline{\text { SCK2 }} \downarrow$	tDSosk1, tososk2		0	50	ns
SO1, SO2 output hold time (from $\overline{\mathrm{SCK} 1}, \overline{\mathrm{SCK}} \uparrow$)	thsosk1, thsosk2	When data is transferred	$\begin{aligned} & 0.5 \text { tcysk1-40, } \\ & 0.5 \text { tcrsk2-40 } \end{aligned}$		ns

Remarks 1. The values in this table are those when $\mathrm{CL}=100 \mathrm{pF}$.
2. T: Selected serial clock cycle. The minimum value is $8 / f x x$.
(e) IOE1, IOE2 3-wire serial I/O mode ($\overline{\mathrm{SCK}}, \overline{\mathrm{SCK}}$... Internal clock output)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time ($\overline{\text { SCK1 }}$, $\overline{\text { SCK2 }}$)	tcysk 1 tcysk2		T		ns
$\overline{\text { SCK }}$ low-level width ($\overline{\mathrm{SCK} 1}, \overline{\mathrm{SCK} 2}$)	twskL1, twskL2		0.5T-40		ns
$\overline{\text { SCK }}$ high-level width ($\overline{\mathrm{SCK} 1}, \overline{\mathrm{SCK} 2})$	twSkH1, twskH2		0.5T-40		ns
SI1, SI2 setup time (to $\overline{\mathrm{SCK} 1}, \overline{\mathrm{SCK} 2} \uparrow$)	tsssk1, tsssk2		40		ns
SI1, SI2 hold time (from $\overline{\text { SCK1 }}, \overline{\text { SCK2 }} \uparrow$)	thssk1, thsskz		40		ns
Output delay time from $\overline{\text { SCK } 1, ~} \overline{\text { SCK2 }} \downarrow$	tDsosk1, tdsosk2		0	50	ns
SO1, SO2 output hold time (from SCK1, SCK2 \uparrow)	thsoski, thsosk2	When data is transferred	$\begin{array}{\|l} \hline 0.5 \text { tcrsk1-40, } \\ 0.5 \text { tcysk2-40 } \end{array}$		ns

Remarks 1. The values in this table are those when $C L=100 \mathrm{pF}$.
2. T: Selected serial clock cycle. The minimum value is $8 / f x x$.

Other Operations ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{DD}=\mathrm{AVDD}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~V} s=\mathrm{AV} s \mathrm{Ds}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
NMI high-/low-level width	twnil twnih		10			$\mu \mathrm{s}$
INTPO high-/low-level width	twitol twitoh		4tcysmp			S
INTPO to INTP3, CI high-/ low-level width	twitil twitin		4tcycru			S
INTP4, INTP5 high-/ low-level width	twiT2L twit2H		10			$\mu \mathrm{s}$
$\overline{\text { RESET }}$ high-/low-level width ${ }^{\text {Note }}$	twrsL twrsh		10			$\mu \mathrm{s}$

Note When the power is turned on or when STOP mode is released by reset, secure the oscillation stabilization wait time while the RESET is at a low-level width.
When the power is turned on, be sure to activate VDD in the $\overline{R E S E T}=$ low-level state.

Remark tcysmp: Sampling clock set by software
tcycpu: CPU clock set by software in the CPU

Clock Output Operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{DD}=\mathrm{AVDD}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AVss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CLKOUT cycle time	tcycl	nT	79		32000	$n s$
CLKOUT low-level width	tcle	$4.5 \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.5T-10			$n s$
			0.5T-20			$n s$
CLKOUT high-level width	tcli	$4.5 \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.5T-10			ns
			0.5T-20			$n s$
CLKOUT rise time	tclr	$4.5 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			10	$n s$
		$3.0 \leq \mathrm{VDD}^{5} 4.5 \mathrm{~V}$			20	ns
CLKOUT fall time	tcla	$4.5 \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$			10	$n s$
		$3.0 \leq \mathrm{VDD}^{5} 4.5 \mathrm{~V}$			20	$n s$

Remark n: Division ratio of clock output frequency, T: tcyk $=1 /$ fclk (system clock cycle time)

IEBus Controller Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=\mathrm{AVdD}=4.5$ to 5.5 V , V ss $=\mathrm{AV} \mathrm{Vs}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.
IEBus system clock frequency	fs_{s}	Mode 1		6.29	

Remark Although the system clock frequency in the IEBus specifications is 6.0 MHz , in the μ PD784938A, operation at 6.29 MHz is also guaranteed. Note, however, that operation at 6.0 MHz and 6.29 MHz cannot be used together.

A/D Converter Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=\mathrm{AVDD}=\mathrm{AV}$ REF1 $=3.0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Ss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution				8			bit
Overall errorNote		IEAD $=00 \mathrm{H}$	$\begin{aligned} & \text { 6.29 MHz } \leq f x x \leq 12.58 \mathrm{MHz} \\ & \text { and other than } \mathrm{FR}=1 \end{aligned}$			0.6	\%FSR ${ }^{\text {Note } 2}$
			$\begin{aligned} & 6.29 \mathrm{MHz} \leq \mathrm{fxx}_{\mathrm{x}} \leq 12.58 \mathrm{MHz} \\ & \text { and } \mathrm{FR}=1 \end{aligned}$			1.5	\%FSR ${ }^{\text {Note } 2}$
		$I E A D=01 \mathrm{H}$	$4.5 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1	2.2	\%FSR ${ }^{\text {Note } 2}$
			$3.0 \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$		1.4	2.6	\%FSR ${ }^{\text {Note } 2}$
Quantization error						$\pm 1 / 2$	LSB
Conversion time	tconv	FR = 1: 120 tcyk		9.5		480	$\mu \mathrm{s}$
		FR = 0 : 240 tcrk		19.1		960	$\mu \mathrm{s}$
Sampling time	tsamp	FR = 1: 18 tсүк		1.4		72	$\mu \mathrm{s}$
		FR $=0: 36$ tcyk		2.9		144	$\mu \mathrm{s}$
Analog input voltage	Vian			AVss		AV ${ }_{\text {REF } 1}$	V
Analog input impedance	Ran				1000		$\mathrm{M} \Omega$
Reference voltage	$\mathrm{AV}_{\text {ReF } 1}$			3.0		AVDD	V
AV ${ }_{\text {REF1 } 1}$ resistor	Ravref 1			3.0	10		k Ω
AV $\mathrm{ref}^{\text {1 }}$ current	Alref1				0.5	1.5	mA
AV ${ }_{\text {do c current }}$	Aldod				2.0	5.0	mA
	Aldo2					20	mA

Notes 1. Excludes quantization error ($\pm 1 / 2$ LSB).
2. It is indicated as a ratio (\%FSR) to the full-scale value.

Caution The analog input pins of the μ PD784938A function alternately as the port 7 pins (I/O port pins). However when using the A/D converter, it is necessary to set all the pins of port 7 to input mode in order to prevent data from being inverted by the output port operation, thus degrading the A/D conversion accuracy. At this time, pins cannot be used as output ports even though they are not used as A/D analog input port.

Serial Operation (CSI, CSI3)

$$
\mathrm{n}=0,3
$$

Serial Operation (IOE1, IOE2)

Serial Operation (UART0, UART2)

Clock Output Timing

Interrupt Request Input Timing

INTP4, INTP5

Reset Input Timing

Data Retention Characteristics

17. PACKAGE DRAWINGS

100PIN PLASTIC QFP (14x20)

NOTE
Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	23.6 ± 0.4	$0.929_{ \pm} 0.016$
B	20.0 ± 0.2	$0.795_{-0.008}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	17.6 ± 0.4	$0.693_{ \pm} 0.016$
F	0.8	0.031
G	0.6	0.024
H	0.30 ± 0.10	$0.012_{-0.005}^{+0.004}$
I	0.15	0.006
J	$0.65($ T.P. $)$	$0.026($ T.P. $)$
K	1.8 ± 0.2	$0.071_{-0.009}^{+0.008}$
L	0.8 ± 0.2	$0.031_{-0.008}^{+0.009}$
M	$0.15_{-0.05}^{+0.10}$	$0.006_{-0.003}^{+0.004}$
N	0.10	0.004
P	2.7 ± 0.1	$0.106_{-0.004}^{+0.005}$
Q	0.1 ± 0.1	0.004 ± 0.004
R	$5^{\circ} \pm 5^{\circ}$	$5^{\circ} \pm 5^{\circ}$
S	3.0 MAX.	0.119 MAX.
		P100GF-65-3BA1-3

Remark The external dimensions and material of the ES version are the same as those of the mass-produced version.

18. RECOMMENDED SOLDERING CONDITIONS

The μ PD784938A should be soldered and mounted under the following recommended conditions.
For details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual (C10535E).

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 18-1. Surface Mounting Type Soldering Conditions
μ PD784935AGF- $\times \times \times-3 B A: 100$-pin plastic QFP (14×20)
μ PD784936AGF- $\times \times \times-3 B A: 100$-pin plastic QFP (14×20)
μ PD784937AGF- $\times \times \times-3 B A: 100$-pin plastic QFP (14×20)
μ PD784938AGF- $\times \times \times-3 B A: 100-$ pin plastic QFP (14×20)

Soldering Method		Roldering Conditions Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 sec. Max. (at $210^{\circ} \mathrm{C}$ or higher), Count: two times or less	IR35-00-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 sec. Max. (at $200^{\circ} \mathrm{C}$ or higher), Count: two times or less	VP15-00-2
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ Max., Time: 10 sec. Max., Count: once, Preheating temperature: $120^{\circ} \mathrm{C}$ Max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ Max., Time: 3 sec. Max. (per pin row)	-

Caution Do not use different soldering methods together (except for partial heating).

* APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD784938A.
Also refer to (5) Cautions on using development tools.

(1) Language processing software

RA78K4	Assembler package common to 78K/IV Series
CC78K4	C compiler package common to 78K/IV Series
DF784937	Device file for μ PD784938A Subseries
CC78K4-L	C compiler library source file common to 78K/IV Series

(2) Flash memory writing tools

Flashpro IIINote (PG-FP III)	Flash programmer for microcontroller with flash memory
FA-100GF	Flash memory writing adapter for 100-pin plastic QFP (GF-3BA type). Wiring must be performed according to the product used.

Note Under development

(3) Debugging tools

- When IE-78K4-NS in-circuit emulator is used

IE-78K4-NS	In-circuit emulator common to 78K/IV Series
IE-70000-MC-PS-B	Power supply unit for IE-78K4-NS
IE-70000-98-IF-C	Interface adapter used when PC-9800 series (except notebook type) is used as host machine
IE-70000-CD-IF-C	PC card and cable used when PC-9800 series notebook type PC is used as host machine
IE-70000-PC-IF-C	Interface adapter used when IBM PC/AT ${ }^{\text {TM }}$ or compatible is used as host machine
IE-784937-NS-EM1	Emulation board to emulate μ PD784938A Subseries
NP-100GF	Emulation probe for 100-pin plastic QFP (GF-3BA type)
EV-9200GF-100	Socket to be mounted on a target system board made for 100-pin plastic QFP (GF-3BA type)
ID78K4-NS	Integrated debugger for IE-78K4-NS
SM78K4	System simulator common to 78K/IV Series
DF784937	Device file for μ PD784938A Subseries

- When IE-784000-R in-circuit emulator is used

IE-784000-R	In-circuit emulator common to 78K/IV Series
IE-70000-98-IF-B IE-70000-98-IF-C	Interface adapter used when PC-9800 series (except notebook type) is used as host machine
IE-70000-98N-IF	Interface adapter and cable used when PC-9800 series notebook type PC is used as host machine
IE-70000-PC-IF-B IE-70000-PC-IF-C	Interface adapter used when IBM PC/AT or compatible is used as host machine
IE-78000-R-SV3	Interface adapter and cable used when EWS is used as host machine
IE-784937-NS-EM1	Emulation board to emulate μ PD784938A Subseries
IE-784000-R-EM	Emulation board common to 78K/IV Series
IE-78K4-R-EX2	Emulation probe conversion board necessary when using IE-784937-NS-EM1 on IE-784000-R.
EP-78064GF-R	Emulation probe for 100-pin plastic QFP (GF-3BA type)
EV-9200GF-100	Socket to be mounted on a target system board made for 100-pin plastic QFP (GF-3BA type)
ID78K4	Integrated debugger for IE-784000-R
SM78K4	System simulator common to 78K/IV Series
DF784937	Device file for μ PD784938A Subseries

(4) Real-time OS

RX78K/IV	Real-time OS for 78K/IV Series
MX78K4	OS for 78K/IV Series

(5) Cautions on using development tools

- The ID78K4-NS, ID78K4, and SM78K4 are used in combination with the DF784937.
- The CC78K4 and RX78K/IV are used in combination with the RA78K4 or DF784937.
- The Flashpro III, FA-100GF, and NP-100GF are products made by Naito Densei Machida Mfg. Co, Ltd (TEL +81-44-822-3813).
- The host machine and OS suitable for each software are as follows:

Host Machine [OS]	PC	EWS
Software	PC-9800 series [Windows] IBM PC/AT and compatibles [Japanese/English Windows]	HP9000 series $700^{\text {TM }}$ [HP-UX ${ }^{\text {TM }}$] SPARCstation ${ }^{\text {TM }}$ [SunOS ${ }^{\top \mathrm{M}}$, Solaris ${ }^{\top \mathrm{M}}$] NEWS ${ }^{\text {TM }}$ (RISC) [NEWS-OS ${ }^{\text {TM }}$]
RA78K4	$\sqrt{ }$ Note	\checkmark
CC78K4	$\sqrt{ }$ Note	\checkmark
ID78K4-NS	\checkmark	-
ID78K4	$\sqrt{ }$	\checkmark
SM78K4	$\sqrt{ }$	-
RX78K/IV	$\sqrt{ }$ Note	\checkmark
MX78K4	$\sqrt{ }$ Note	\checkmark

Note DOS-based software

APPENDIX B. RELATED DOCUMENTS

- Documents related to devices

Document Name	Document Number
μ PD784935A, 784936A, 784937A, 784938A Data Sheet	This document
μ PD78F4937 Preliminary Product Information	U13573E
μ PD784938A Subseries User's Manual - Hardware	U13987E
$78 \mathrm{~K} /$ IV Series User's Manual - Instructions	U10905E
$78 \mathrm{~K} /$ IV Series Application Note - Software basics	U10095E

- Documents related to development tools (user's manuals)

Document Name		Document Number		
RA78K4 Assembler Package	Language	U11162E		
	Operation	U11334E		
RA78K4 Structured Assembler Preprocessor	Language	U11743E		
CC78K4 C Compiler	Operation	U11571E		
		U11572E		
IE-784000-R		U13556E		
IE-784937-R-EM1	Reference	U12903E		
IE-784937-NS-EM1	External Part User Open			
EP-78064	Interface Specifications		U10092E	Planned
:---				
SM78K4 System Simulator - Windows Based				
SM78K Series System Simulator				
Reference				
ID78K4-NS Integrated Debugger				
ID78K4 Integrated Debugger - Windows Based				
ID78K4 Integrated Debugger - HP-UX, SunOS, NEWS-OS Based				

[^0]- Documents related to embedded software (user's manuals)

Document Name		Document Number
$78 K / I V$ Series Real-Time OS	Fundamental	U10603E
	Installation	U10604E

- Other documents

Document Name	Document Number
SEMICONDUCTOR SELECTION GUIDE Products \& Packages (CD-ROM)	X13769X
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	U10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.
[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.
(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

[^1]
Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.I.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Madrid Office
Madrid, Spain
Tel: 91-504-2787
Fax: 91-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore
Tel: 65-253-8311
Fax: 65-250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951
NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP Brasil
Tel: 55-11-6462-6810
Fax: 55-11-6462-6829

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of September, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

[^0]: Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

[^1]: EEPROM, FIP, and IEBus are trademarks of NEC Corporation.
 Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/ or other countries.
 HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.
 SPARCstation is a trademark of SPARC International, Inc.
 Solaris and SunOS are trademarks of Sun Microsystems, Inc.
 NEWS and NEWS-OS are trademarks of Sony Corporation.

