16-bit Proprietary Microcontroller смоз

F²MC-16LX MB90820 Series

MB90822/F822/F823/V820

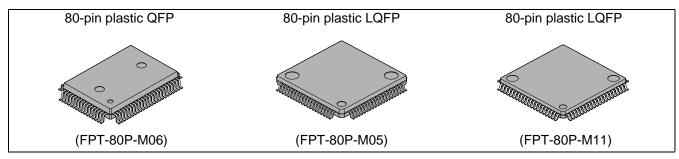
DESCRIPTION

The MB90820 series is a line of general-purpose, Fujitsu 16-bit microcontrollers designed for process control applications which require high-speed real-time processing, such as consumer products.

While inheriting the AT architecture of the F²MC* family, the instruction set for the F²MC-16LX CPU core of the MB90820 series incorporates additional instructions for high-level languages, supports extended addressing modes, and contains enhanced multiplication and division instructions as well as a substantial collection of improved bit manipulation instructions. In addition, the MB90820 series has an on-chip 32-bit accumulator which enables processing of long-word data.

The peripheral resources integrated in the MB90820 series include : an 8/10-bit A/D converter, 8-bit D/A converters, UARTs (SCI) 0, 1, multi-functional timer (16-bit free-running timer, input capture units (ICUs) 0 to 3, output compare units (OCUs) 0 to 5, 16-bit PPG timer 0, waveform generator), 16-bit PPG timer 1, 2, PWC 0, 1, 16-bit reload timer 0, 1 and DTP/external interrupt.

*: F²MC stands for FUJITSU Flexible Microcontroller, a registered trademark of FUJITSU LIMITED.


FEATURES

• Minimum execution time of instruction : 42 ns / 4 MHz oscillation (uses PLL clock multiplication) maximum

multiplier = 6

 Maximum memory space 16M bytes Linear/bank access

PACKAGES

(Continued)

- Instruction set optimized for controller applications
 Supported data types : bit, byte, word, and long-word types
 Standard addressing modes : 23 types
 32-bit accumulator enhancing high-precision operations
 Enhanced multiplication/division and RETI instructions
- Enhanced high level language (C) and multi-tasking support instructions Use of a system stack pointer
 Symmetrical instruction set and barrel shift instructions
- Program patch function (for two address pointers)
- www.DataSheet4U.eoIncreased execution speed : 4-byte instruction queue
 - Powerful interrupt function
 Up to eight priority levels programmable
 External interrupt inputs : 8 lines
 - Automatic data transmission function independent of CPU operation Up to 16 channels for the extended intelligent I/O service DTP request inputs : 8 lines
 - Internal ROM FLASH : 64/128K bytes with flash security MASKROM : 64K bytes
 - Internal RAM EVA : 16K bytes
 FLASH : 4K bytes
 MASKROM : 4K bytes
 - General-purpose ports
 Up to 66 channels (pull-up resistor settable input for : 32 channels)
 - A/D Converter (RC) : 16 channels 8/10-bit resolution selectable Conversion time : Min 3 μs at 24 MHz operating clock (including sampling time)
 - 8-bit D/A Converter : 2 channels
 - UART : 2 channels
 - 16-bit PPG : 3 channels
 Mode switching function provided (PWM mode or one-shot mode)
 Channel 0 can be worked with multi-functional timer or independently
 - 16-bit reload timer : 2 channels
 - 16-bit PWC timer : 2 channels
 - Multi-functional timer
 - Input capture : 4 channels Output compare with selectable buffer : 6 channels Free-running timer with up or up-down mode selection and selectable buffer: 1 channel 16-bit PPG : 1 channel Waveform generator : (16-bit timer : 3 channels, 3-phase waveform or dead time)
 - Timebase counter/watchdog timer : 18-bit
 - Low-power consumption mode :
 - Sleep mode
 - Stop mode
 - CPU intermittent operation mode

(Continued)

- Package : LQFP-80 (FPT-80P-M05 : 0.50 mm pitch) LQFP-80 (FPT-80P-M11 : 0.65 mm pitch) QFP-80 (FPT-80P-M06 : 0.80 mm pitch)
- CMOS technology

/ww.DataSheet4U.com

■ PRODUCT LINEUP

Part number Item	MB90V820	MB90F822	MB90F823	MB90822					
Classification	Development /evaluation product	(Flash ROI	ced products M with flash urity)	Mass-produced product (Mask ROM)					
ROM size	_	64K bytes	128K bytes	64K bytes					
RAM size	16K bytes		4K b	ytes					
CPU function	Number of instruction : 351 Minimum execution time : 42 Addressing mode : 23 Data bit length : 1, 8, 16 bits Maximum memory space: 161	·	x 6)						
I/O port	I/O port (CMOS) : 66								
	Pulse width counter timer : 2 of	channels							
PWC	Various pulse width measuring	Timer function (select the counter timer from three internal clocks) Various pulse width measuring function (H pulse width, L pulse width, rising edge to falling edge period, falling edge to rising edge period, rising edge to rising edge period and falling edge to falling edge period)							
UART	UART : 2 channels With full-duplex double buffer Clock asynchronized or clock selected and used. Transmission can be one-to-o munication).	synchronized tra	·	start and stop bits) can be or one-to-n (master-slave com					
16-bit reload timer	Reload timer : 2 channels Reload mode, single-shot mo	de or event coun	t mode selectabl	e					
16-bit PPG	PPG timer : 3 channels								
timer	PWM mode or single-shot mo Channel 0 can be worked with		timer or indeper	ndently.					
Multi-functional timer (for AC/DC motor control)	16-bit free-running timer with 16-bit output compare : 6 cha 16-bit input capture : 4 channe 16-bit PPG timer : 1 channel Waveform generator (16-bit ti	nnels els							
8/10-bit A/D converter	8/10-bit resolution (16 channe Conversion time : Min 3 μ s (2	,	lock, including sa	ampling time)					
8-bit D/A converter	8/10-bit resolution (2 channels)								
DTP/External interrupt	8 independent channels Interrupt factors : Rising edge, falling edge, "L" level or "H" level								
Low-power consumption	Stop mode / Sleep mode / CP	U intermittent op	peration mode						

(Continued)

Part number Item	MB90V820	MB90F822	MB90F823	MB90822				
Package	PGA-299	LQFF	P-80 (FPT-80P-M1	5 : 0.50 mm pitch) 1 : 0.65 mm pitch) 5 : 0.80 mm pitch)				
Power supply voltage for operation*1	4.5 V to 5.5 V*1	 3.5 V to 5.5 V : Normal operation when A/D converter and D/A converter are not used 4.0 V to 5.5 V : Normal operation when D/A converter is not used 4.5 V to 5.5 V : Normal operation 						
Process		CMOS						
Emulator power supply ^{*2}	Included		_					

*1 : Assurance for the MB90V820 is operating temperature 0 °C to +25 °C.

*2: It is setting of Jumper switch (TOOL VCC) when emulator (MB2147-01) is used. Please refer to the MB2147-01 or MB2147-20 hardware manual (3.3 Emulator-dedicated Power Supply switching) about details.

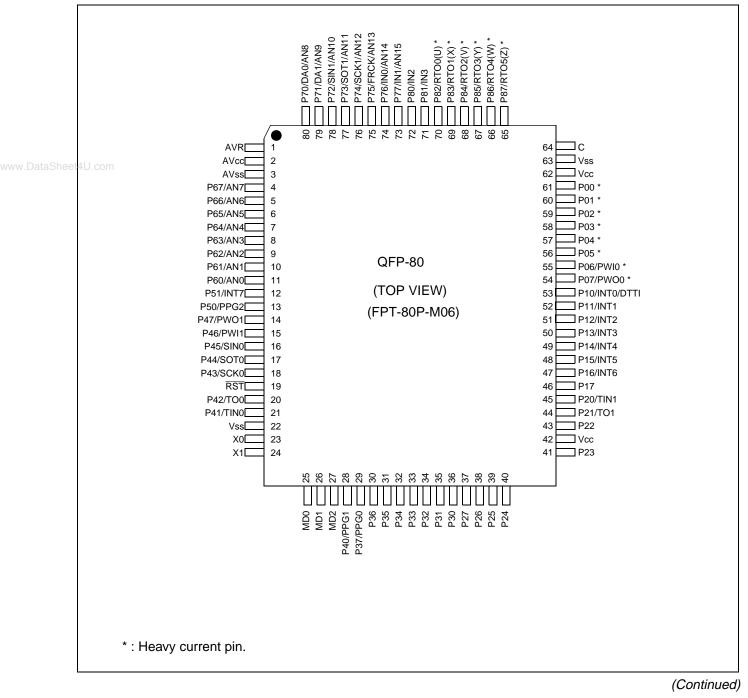
■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB90V820	MB90F822	MB90F823	MB90822
PGA299	0	Х	Х	Х
FPT-80P-M05	Х	0	0	0
FPT-80P-M11	X	0	0	0
FPT-80P-M06	Х	0	0	0

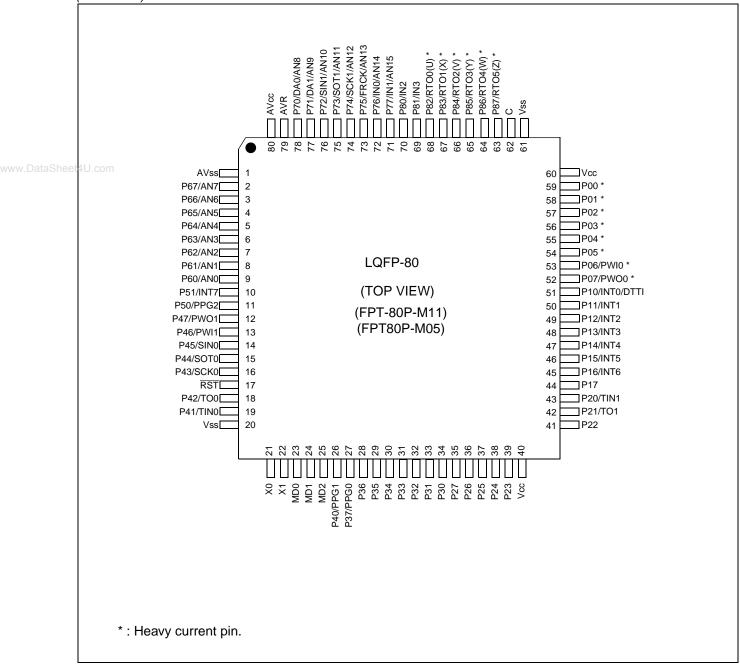
 \bigcirc : Available

X : Not available

Note: For more information about each package, see "■ PACKAGE DIMENSIONS".


DIFFERENCES AMONG PRODUCTS

Memory Size


In evaluation with an evaluation product, note the difference between the evaluation product and the product actually used. The following items must be taken into consideration.

- The MB90V820 does not have an internal ROM, however, operations equivalent to chips with an internal ROM can be evaluated by using a dedicated development tool, enabling selection of ROM size by settings of the development tool.
- In the MB90V820, images from FF8000^H to FFFFF^H are mapped to bank 00, and FE0000^H to FF7FFF^H are mapped to bank FE and bank FF only. (This setting can be changed by configuring the development tool.)
- In the MB90822/F822/F823, images from FF8000H to FFFFFFH are mapped to bank 00, and FF0000H to FF7FFFH are mapped to bank FF only. In the MB90F823, images from FF8000H to FFFFFFH are mapped to bank 00, and FE0000H to FF7FFFH are mapped to bank FE and bank FF only.

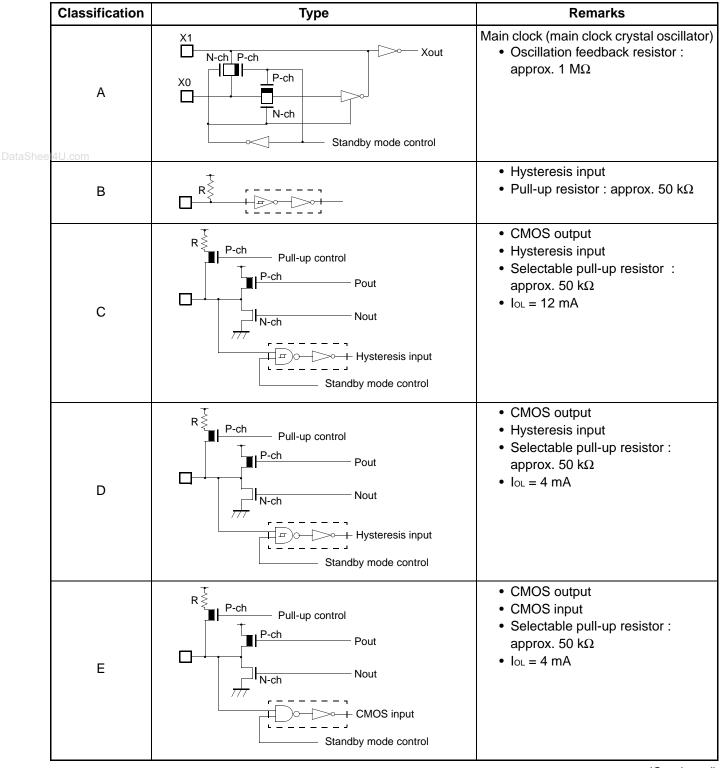
■ PIN ASSIGNMENT

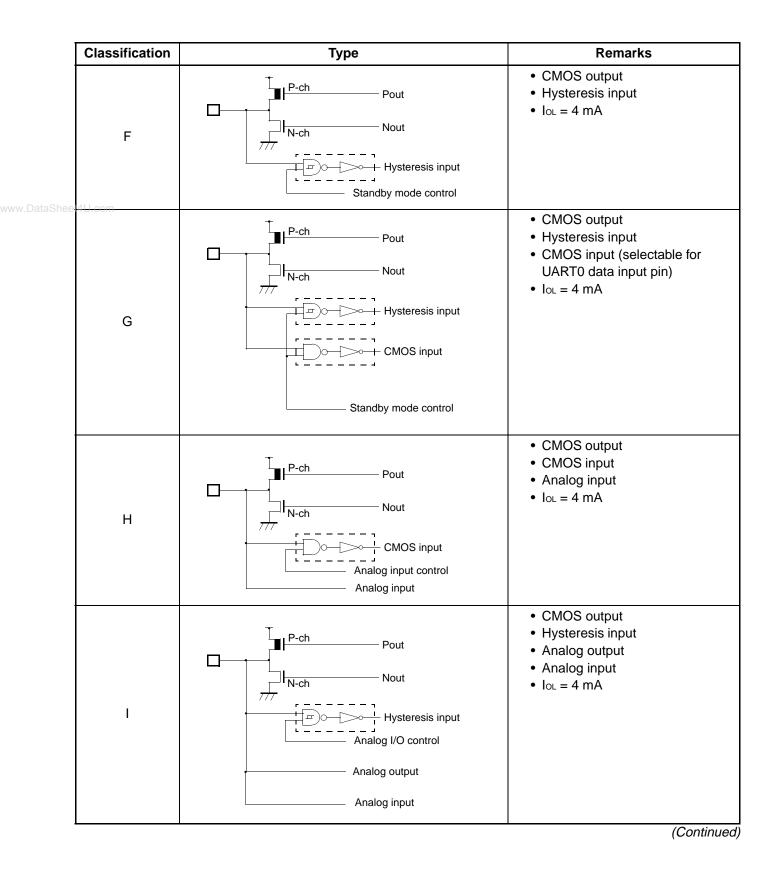
■ PIN DESCRIPTION

Pir	n no.		I/O	Pin status			
LQFP *1	QFP *2	Pin name	circuit	during reset	Function		
21, 22	23, 24	X0,X1	А	Oscillating	Oscillation input pins.		
17	19	RST	В	Reset input	External reset input pin.		
59 to 54	61 to 56	P00 to P05	С		General-purpose I/O ports.		
^{4U.c} 53	55	P06	С		General-purpose I/O ports.		
		PWI0	0		PWC0 signal input pin.		
52	54	P07	С		General-purpose I/O ports.		
52	54	PWO0	0		PWC0 signal output pin.		
		P10			General-purpose I/O ports.		
51	53	INT0	D		Can be used as interrupt request input channel 0. In put is enabled when 1 is set in EN0 in standby mode		
		DTTI			RTO0 to 5 pins for fixed-level input. This function enabled when the waveform generator specifies i input bits.		
		P11 to P16			General-purpose I/O ports.		
50 to 45	52 to 47	INT1 to INT6	D		Can be used as interrupt request input channel 1 to 6. Input is enabled when 1 is set in EN1 to EN6 in standby mode.		
44	46	P17	D		General-purpose I/O ports.		
40	45	P20	D	Port input	General-purpose I/O ports.		
43	45	TIN1	D	· or input	External clock input pin for reload timer1.		
42	44	P21	D	-	General-purpose I/O ports.		
42	44	TO1	D		Event output pin for reload timer1.		
41, 39 to 35	43, 41 to 37	P22 to P27	D		General-purpose I/O ports.		
34 to 28	36 to 30	P30 to P36	E	-	General-purpose I/O ports.		
		P37			General-purpose I/O ports.		
27	29	PPG0	E		Output pins for PPG channel 0. This function is enabled when output of PPG channel 0 is specified.		
		P40			General-purpose I/O ports.		
26	28	PPG1	F		Output pins for PPG channel 1. This function is enabled when output of PPG channel 1 is specified.		
19	21	P41	F		General-purpose I/O ports.		
19	21	TINO			External clock input pin for reload timer0.		
18	20	P42	F		General-purpose I/O ports.		
10	20	TO0	Г		Event output pin for reload timer0.		

	Pin	no.		I/O	Pin status	
	LQFP *1	QFP *2	Pin name	circuit	during reset	Function
			P43			General-purpose I/O ports.
	16	18	SCK0	F		Serial clock I/O pin for UART channel 0. This function is enabled when clock output of UART channel 0 is specified.
			P44			General-purpose I/O ports.
www.DataShee	4U.cc 15	17	SOT0	F		Serial data output pin for UART channel 0. This func- tion is enabled when data output of UART channel 0 is specified.
			P45			General-purpose I/O ports.
	14	16	SIN0	G	Port Input	Serial data input pin for UART channel 0. While UART channel 0 is operating for input, the input of this pin is used as required. This pin must not be used for any other input. CMOS input can be selected by user program.
	13	4.5	P46	-	-	General-purpose I/O ports.
		15	PWI1	F		PWC1 signal input pin.
	12	14	P47	F		General-purpose I/O ports.
	12	14	PWO1	Г		PWC1 signal output pin.
			P50			General-purpose I/O ports.
	11	13	PPG2	F		Output pins for PPG channel 2. This function is enabled when output of PPG channel 2 is specified.
			P51			General-purpose I/O ports.
	10	12	INT7	F		Usable as interrupt request input channel 7. Input is enabled when 1 is set in EN7 in standby mode.
			P60 to P67			General-purpose I/O ports.
		11 to 4	AN0 to AN7	Н		A/D converter analog input pins. This function is enabled when the analog input is specified (ADER0).
			P70, P71		Analog	General-purpose I/O ports.
		80, 79	DA0, DA1		input	D/A converter analog output pins. This function is enabled when D/A converter is specified.
			AN8, AN9			A/D converter analog input pins. This function is enabled when the analog input is specified (ADER1).

	Pin	no.		I/O	Pin status				
	LQFP *1	QFP *2	Pin name	circuit	during reset	Function			
			P72			General-purpose I/O ports.			
	76	78	SIN1	J		Serial data input pin for UART channel 1. While UART channel 1 is operating for input, the input of this pin is used as required. This pin must not be used for any other input. CMOS input can be selected by user program.			
vww.DataSheel	4U.com		AN10			A/D converter analog input pins. This function is enabled when the analog input is specified (ADER1).			
			P73			General-purpose I/O ports.			
	75	77	SOT1	к		Serial data output pin for UART channel 1. This func- tion is enabled when data output of UART channel 1 is specified.			
			AN11			A/D converter analog input pins. This function is enabled when the analog input is specified (ADER1).			
		76	P74		Analog input	General-purpose I/O port.			
	74		SCK1	ĸ		Serial clock I/O pin for UART channel 1. This function is enabled when clock output of UART channel 1 is specified.			
			AN12			A/D converter analog input pins. This function is enabled when the analog input is specified (ADER1).			
			P75			General-purpose I/O ports.			
	73	75	FRCK	К		External clock input pin for free-running timer.			
		-	AN13			A/D converter analog input pins. This function is enabled when the analog input is specified (ADER1).			
			P76, P77			General-purpose I/O ports.			
	72, 71	74, 73	INO, IN1	к		Trigger input pins for input capture channels 0, 1. When input capture channels 0, 1 are used for input operation, these pins are enabled as required and must not be used for any other input.			
			AN14, AN15			A/D converter analog input pins. This function is enabled when the analog input is specified (ADER1).			


(Continued)


	Pin	no.		I/O	Pin status			
	LQFP *1	QFP *2	Pin name	circuit	during reset	Function		
			P80, P81			General-purpose I/O ports.		
	70, 69	72, 71	72, 71 IN2, IN3 F Port inpu		Portinput	Trigger input pins for input capture channels 2, 3. When input capture channels 2, 3 are used for input operation, these pins are enabled as required and must not be used for any other input.		
taSheel	neel4U.com		P82 to P87		Fortinput	General-purpose I/O ports.		
laoneei	68 to 63	70 to 65	RTO0 to RTO5	L		Waveform generator output pins. These pins output the waveforms specified at the waveform generator. Output is generated when waveform generator output is enabled.		
	25	27	MD0	М		Input pin for operation mode specification. Connect this pin directly to Vcc or Vss.		
	24, 23	26, 25	MD1, MD0	Ν	Mode input	Input pin for operation mode specification. Connect this pin directly to Vcc or Vss.		
	80	2	AVcc	-		Vcc power input pin for analog circuits.		
	79	1	AVR	_	Power	Vref + input pin for the A/D converter. This voltage must not exceed AVcc. Vref - is fixed to AVss.		
	1	3	AVss	-		Vss power input pin for analog circuits.		
	20, 61	22, 63	Vss	-	Power	Power (0 V) input pin.		
	40, 60	42, 62	Vcc	_	Fower	Power (5 V) input pin.		
	62	64	С	_	_	Capacity pin for power stabilization. Please connect to an approximately 0.1 μF ceramic capacitor.		

*1: FPT-80P-M05, FPT-80P-M11

*2: FPT-80P-M06

■ I/O CIRCUIT TYPE

www.DataSheet4U.com

Classification	Туре	Remarks		
J 4U.com	P-ch Pout N-ch Nout Hysteresis input CMOS input Analog input control Analog input	 CMOS output Hysteresis input CMOS input (selectable for UART1 data input pin) IoL = 4 mA 		
к	Pout Pout N-ch Nout Hysteresis input Analog input control Analog input	 CMOS output Hysteresis input Analog input IoL = 4 mA 		
L	Pout Pout N-ch Nout Hysteresis input Standby mode control	 CMOS output Hysteresis input IoL = 12 mA 		
М		 Mask ROM / evaluation product Hysteresis input Selectable pull-up resistor : approx. 50 kΩ FLASH product CMOS input No pull-down resistor 		
N		Mask ROM / evaluation product • Hysteresis input FLASH product • CMOS input		

■ HANDLING DEVICES

1. Preventing latch-up

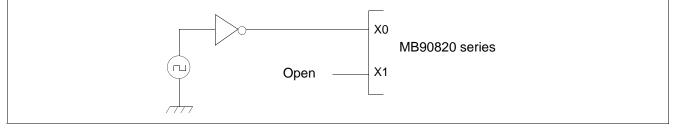
CMOS ICs may cause latch-up in the following situations:

- When a voltage higher than Vcc or lower than Vss is applied to input or output pins.
- When a voltage exceeding the rating is applied between Vcc and Vss.
- When the AVcc power supply is applied before the Vcc voltage.

If latch-up occurs, the power supply current increases rapidly, sometimes resulting in thermal breakdown of the device. Use meticulous care not to exceed the rating.

For the same reason, also be careful not to let the analog power-supply voltage exceed the digital power-supply www.DataSheet4U.voltage.

2. Handling unused pins


Unused input pins left open may cause abnormal operations, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least 2 k Ω resistance.

Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

If any output pins are unused, set them to open.

3. Use of the external clock

To use an external clock, drive only the X0 pin and leave the X1 pin open (See the illustration below).

4. Power supply pins (Vcc/Vss)

In products with multiple V_{cc} or V_{ss} pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to external power supply and a ground lines to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with the Vcc and Vss pins of this device at the low impedance.

It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 μF between Vcc and Vss near this device.

5. Crystal oscillator circuit

Noise near the X0 and X1 pins may cause the device to malfunction. Design the printed circuit board so that X0, X1, the crystal oscillator (or ceramic oscillator) and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended to design the PC board artwork with the X0 and X1 pins surrounded by ground plane because stable operation can be expected with such a layout.

6. Turning-on sequence of power supply to A/D converter and D/A converter

Make sure to turn on the A/D converter and D/A converter power supply (AVcc, AVss, AVR) and analog inputs (AN0 to AN15) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter and D/A converter supply and analog inputs. In this case, make sure that the voltage of AVR does not exceed AV_{cc} (turning on/off the analog and digital power supplies simultaneously is acceptable).

7. Connection of unused pins of A/D converter and D/A converter

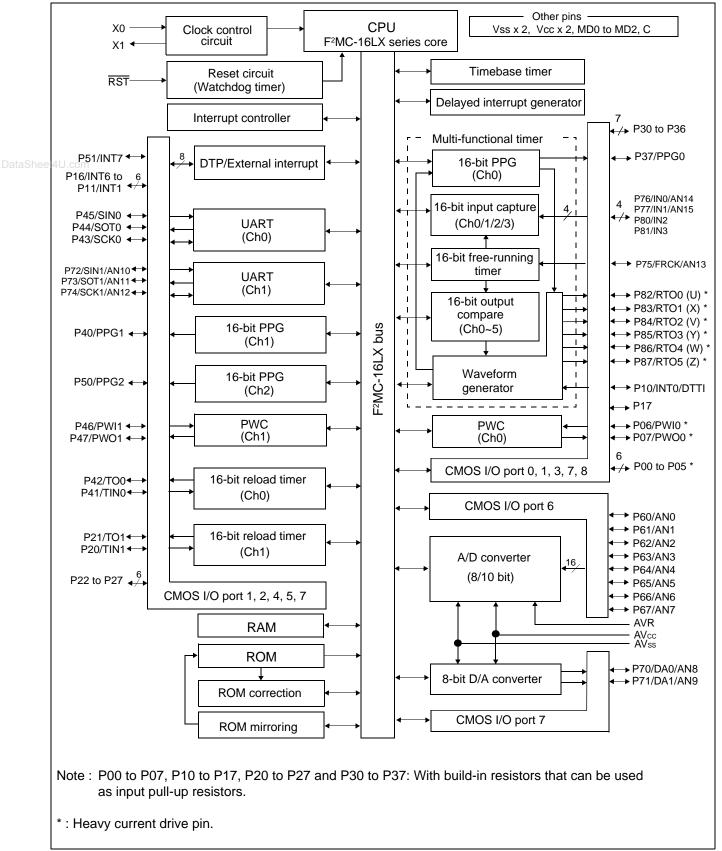
When the A/D converter and D/A converter are not used, connect the pins as follows: AVcc = Vcc, AVss = AVR = Vss.

8. N.C. pin

The N.C. (internally connected) pin must be opened for use.

9. Notes on energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at $50 \ \mu s$ or more.

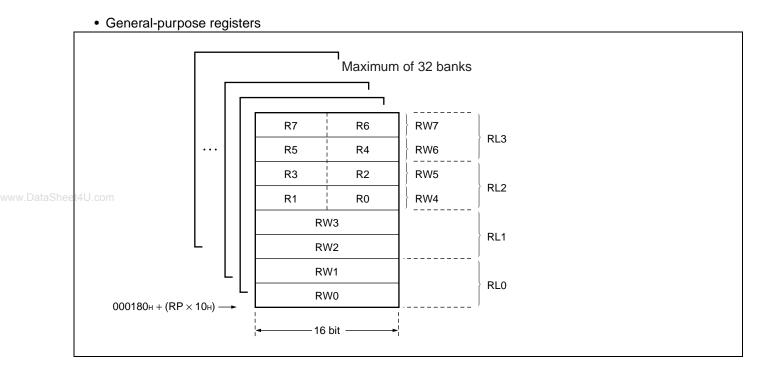

10. Initialization

In the device, there are internal registers which are initialized only by a power-on reset. To initialize these registers turning on the power again.

11. Return from standby state

If the power supply voltage goes below the standby RAM holding voltage in the standby state, the device may fail to return from the standby state. In this case, reset the device via the external reset pin to return to the normal state.

BLOCK DIAGRAM



Note: The ROM data of bank FF is reflected to the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit is assigned to the same address, enabling reference of the table on the ROM without stating "far". For example, if an attempt has been made to access 00C000H, the contents of the ROM at FFC000H are accessed actually. Since the ROM area of the FF bank exceeds 32K bytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF8000H to FFFFFH looks, therefore, as if it were the image for 008000H to 00FFFFH. Thus, it is recommended that the ROM data table be stored in the area of FF8000H to FFFFFH.

■ F²MC-16LX CPU PROGRAMMING MODEL

• Dedicated registers

	АН	AL	: Accumulator (A) Dual 16-bit register used for storing results of calculation etc. The two 16-bit registers can be combined to be used as a sequence of 32-bit register.
		USP	: User stack pointer (USP) The 16-bit pointer indicating the user stack address.
/w.DataSheet4	J.com	SSP	: System stack pointer (SSP) The 16-bit pointer indicating the system stack address.
		PS	: Processor status (PS) The 16-bit register indicating the system status.
		PC	: Program counter (PC) The 16-bit register indicating storing location of the current instruction code.
		DPR	: Direct page register (DPR) The 8-bit register indicating bit 8 through 15 of the operand address in executing of the short direct addressing.
		PCB	: Program bank register (PCB) The 8-bit register indicating the program space.
		DTB	: Data bank register (DTB) The 8-bit register indicating the data space.
		USB	: User stack bank register (USB) The 8-bit register indicating the user stack space.
		SSB	: System stack bank register (SSB) The 8-bit register indicating the system stack space.
		ADB	: Additional data bank register (ADB) The 8-bit register indicating the additional
		← 8 bit →	
	j ⊶ 32	bit —	

• Processor status (PS)

	ILM bit 15 bit 14 bit 13 bit 12 bit 11 ILM2 ILM1 ILM0 B4 B3					RP			CCR							
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PS	ILM2	ILM1	ILMO	B4	В3	B2	B1	В0	—	Т	S	т	Ν	Z	V	с
Initial value	0	0	0	0	0	0	0	0	_	0	1	Х	Х	Х	Х	Х
	: Unuse : Undef															

■ I/O MAP

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value
00000н	PDR0	Port 0 data register	R/W	R/W	Port 0	XXXXXXXXB
000001н	PDR1	Port 1 data register	R/W	R/W	Port 1	XXXXXXXXB
000002н	PDR2	Port 2 data register	R/W	R/W	Port 2	XXXXXXXXB
000003н	PDR3	Port 3 data register	R/W	R/W	Port 3	XXXXXXXXB
000004н	PDR4	Port 4 data register	R/W	R/W	Port 4	XXXXXXXXB
000005н	PDR5	Port 5 data register	R/W	R/W	Port 5	XXXXXXXXB
000006н	PDR6	Port 6 data register	R/W	R/W	Port 6	XXXXXXXXB
000007н	PDR7	Port 7 data register	R/W	R/W	Port 7	XXXXXXXXB
000008н	PDR8	Port 8 data register	R/W	R/W	Port 8	XXXXXXXXB
000009нto 00000Fн		Pro	hibited a	irea		
000010н	DDR0	Port 0 data direction register	R/W	R/W	Port 0	0000000в
000011н	DDR1	Port 1 data direction register	R/W	R/W	Port 1	0000000в
000012н	DDR2	Port 2 data direction register	R/W	R/W	Port 2	0000000в
000013н	DDR3	Port 3 data direction register	R/W	R/W	Port 3	0000000в
000014н	DDR4	Port 4 data direction register	R/W	R/W	Port 4	0000000в
000015н	DDR5	Port 5 data direction register	R/W	R/W	Port 5	XXXXXX00 _B
000016н	DDR6	Port 6 data direction register	R/W	R/W	Port 6	0000000в
000017н	DDR7	Port 7 data direction register	R/W	R/W	Port 7	0000000в
000018н	DDR8	Port 8 data direction register	R/W	R/W	Port 8	0000000в
000019нto 00001Fн		Prc	hibited a	irea		
000020н	SMR0	Serial mode register 0	R/W	R/W		0000000в
000021н	SCR0	Serial control register 0	R/W	R/W		00000100в
000022н	SIDR0 / SODR0	Serial input data register 0 / Serial output data register 0	R/W	R/W	UART0	XXXXXXXXB
000023н	SSR0	Serial status register 0	R/W	R/W		00001000в
000024н	SMR1	Serial mode register 1	R/W	R/W		0000000в
000025н	SCR1	Serial control register 1	R/W	R/W		00000100в
000026н	SIDR1 / SODR1	Serial input data register 1 / Serial output data register 1	R/W	R/W	UART1	XXXXXXXXB
000027н	SSR1	Serial status register 1	R/W	R/W		00001000в
000028н	PWCSL1	PWC control status register	R/W	R/W		0000000в
000029н	PWCSH1	СН1	R/W	R/W		0000000в
00002Ан	DWC				PWC timer (CH1)	XXXXXXXXB
00002Вн	PWC1	PWC data buffer register CH1		R/W		XXXXXXXXB
00002Cн	DIV1	Divide ratio control register CH1	R/W	R/W		XXXXXX00b

Address	Abbrevia- tion	Register	Byte access	Word access	Resource name	Initial value
00002Dн, 00002Eн		Proh	ibited are	a		
00002Fн	PCKCR	PLL clock control register	W	W	PLL	XXXX0000b
000030н	ENIR	DTP / Interrupt enable register		0000000в		
000031н	EIRR	DTP / Interrupt cause register	R/W	R/W		XXXXXXXXB
000032н	ELVRL	Request level setting register (lower byte)	R/W	R/W	DTP/ external interrupt	0000000в
000033н	ELVRH	Request level setting register (higher byte)	R/W	R/W		0000000в
000034н		Proh	ibited are	a		1
000035н	CDCR0	Clock division control register CH0	R/W	R/W	Communication prescaler 0	00ХХХ000в
000036н		Proh	ibited are	a		1
000037н	CDCR1	Clock division control register CH1	R/W	R/W	Communication prescaler 1	00ХХХ000в
000038н						11111111в
000039н	PDCR0	PPG0 down counter register		R		11111111в
00003Ан	PCSR0	DDC0 period actting register		W		XXXXXXXXB
00003Вн	PUSKU	PPG0 period setting register —		vv	16-bit PPG timer	XXXXXXXXB
00003Сн		DDC0 duty actting register		W	(CH0)	XXXXXXXXB
00003Dн	PDUT0	PPG0 duty setting register		vv		XXXXXXXXB
00003Ен	PCNTL0		R/W	R/W		ХХ00000в
00003Fн	PCNTH0	PPG0 control status register	R/W	R/W		0000000в
000040н	PDCR1	PPG1 down counter register		R		11111111в
000041н	PDCKI			ĸ		11111111в
000042н	PCSR1	PPC1 period potting register		W		XXXXXXXXB
000043н	FUSKI	PPG1 period setting register		vv	16-bit PPG timer	XXXXXXXXB
000044н	PDUT1	PPG1 duty setting register		W	(CH1)	XXXXXXXXB
000045н	FDOTT	FFGT duty setting register		vv		XXXXXXXXB
000046н	PCNTL1	PPG1 control status register	R/W	R/W		ХХ00000в
000047н	PCNTH1		R/W	R/W		0000000в
000048н	PDCR2	PPG2 down counter register		R		11111111в
000049н						11111111в
00004Ан	PCSR2	PPG2 period setting register		W		XXXXXXXXB
00004Вн	1 001/2			vv	16-bit PPG timer	XXXXXXXXB
00004Сн	PDUT2	PPG2 duty setting register		W	(CH2)	XXXXXXXXB
00004DH	FDUIZ			vv		XXXXXXXXB
00004Eн	PCNTL2	PPG2 control status register	R/W	R/W		ХХ00000в
00004Fн	PCNTH2		R/W	R/W		0000000в

(Continued) www.DataSheet4ഉദ്ദom

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value
000050н	TMRR0	16-bit timer register 0		R/W		XXXXXXXXB
000051н						XXXXXXXXB
000052н	TMRR1	16 bit timer register 1				XXXXXXXXB
000053н		16-bit timer register 1		R/W		XXXXXXXXB
000054н	TMRR2	16 bit timer register 2		R/W	Wayoform gaparator	XXXXXXXXB
000055н	TIVIKKZ	16-bit timer register 2		R/ VV	Waveform generator	XXXXXXXXB
000056н	DTCR0	16-bit timer control register 0	R/W	R/W		0000000в
000057н	DTCR1	16-bit timer control register 1	R/W	R/W		0000000в
000058н	DTCR2	16-bit timer control register 2	R/W	R/W		0000000в
000059н	SIGCR	Waveform control register	R/W	R/W		0000000в
00005Ан	CPCLRB /	Compare clear buffer register/				11111111в
00005Вн	CPCLR	Compare clear register (lower)		R/W	16-bit free-running timer	11111111в
00005Сн	TODT					0000000в
00005Dн	TCDT	Timer register (lower)		R/W		0000000в
00005Eн	TCCSL	Timer control status register (lower)	R/W	R/W	16-bit free-running	0000000в
00005Fн	TCCSH	Timer control status register (upper)	R/W	R/W	timer	Х000000в
000060н					XXXXXXXX	
000061н	IPCP0	Input capture data register CH0		R		XXXXXXXXB
000062н		la sut conturo doto registor CLIA		D		XXXXXXXXB
000063н	IPCP1	Input capture data register CH1		R		XXXXXXXXB
000064н						XXXXXXXXB
000065н	IPCP2	IPCP2 Input capture data register CH		R		XXXXXXXXB
000066н		la sut conturo doto registor CLI2		Р		XXXXXXXXB
000067н	IPCP3	Input capture data register CH3		R	16-bit input capture	XXXXXXXXB
000068н	PICSL01	Input capture control status register (ch0,1) (lower)	R/W	R/W	(CH0 to CH3)	0000000в
000069н	PICSH01	PPG output control / Input capture control status register (ch0,1) (upper)	R/W	R/W		0000000в
00006Ан	ICSL23	Input capture control status register (ch2, 3) (lower)	R/W	R/W		0000000в
00006Bн	ICSH23	Input capture control status register (ch2, 3) (upper)	R	R		XXXXXX00 _B
00006Сн to 00006Ен		Prof	nibited a	rea		(Continued)

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value
00006Fн	ROMM	ROM mirroring function selection register	W	W	ROM mirroring function	XXXXXXX1B
000070н	OCCPB0 /	Output compare buffer register /		R/W		XXXXXXXXB
000071н	OCCP0	Output compare register 0		R/VV		XXXXXXXXB
000072н	OCCPB1 /	Output compare buffer register /		R/W		XXXXXXXXB
000073н	OCCP1	Output compare register 1				XXXXXXXXB
et 000074 н	OCCPB2 /	Output compare buffer register /		R/W		XXXXXXXXB
000075н	OCCP2	Output compare register 2		r///		XXXXXXXXB
000076н	OCCPB3 /	Output compare buffer register /		R/W		XXXXXXXXB
000077н	OCCP3	Output compare register 3		r///		XXXXXXXXB
000078н	OCCPB4 /	Output compare buffer register /		R/W	Output compare	XXXXXXXXB
000079н	OCCP4	Output compare register 4		r///	(CH0 to CH5)	XXXXXXXXB
00007Ан	OCCPB5 /	Output compare buffer register /		R/W		XXXXXXXXB
00007Вн	OCCP5	Output compare register 5		R/VV		XXXXXXXXB
00007Сн	OCS0	Compare control register CH0	R/W	R/W		0000000в
00007Dн	OCS1	Compare control register CH1	R/W	R/W		Х000000в
00007Ен	OCS2	Compare control register CH2	R/W	R/W		0000000в
00007Fн	OCS3	Compare control register CH3	R/W	R/W		Х000000в
000080н	OCS4	Compare control register CH4	R/W	R/W		0000000в
000081н	OCS5	Compare control register CH5	R/W	R/W		Х000000в
000082н	TMCSRL0	Timer control status register CH0 (lower)	R/W	R/W		0000000в
000083н	TMCSRH0	Timer control status register CH0 (upper)	R/W	R/W	16-bit reload timer (CH0)	ХХХХ0000в
000084н	TMR0 /	16 bit timer register CH0 /		R/W		XXXXXXXXB
000085н	TMRD0	16-bit reload register CH0		r/vv		XXXXXXXXB
000086н	TMCSRL1	Timer control status register CH1 (lower)	R/W	R/W		0000000в
000087н	TMCSRH1	Timer control status register CH1 (upper)	R/W	R/W	16-bit reload timer (CH1)	ХХХХ0000в
000088н	TMR1 /	16 bit timer register CH1 /		R/W		XXXXXXXXB
000089н	TMRD1	16-bit reload register CH1		F\$/ VV		XXXXXXXAB
00008Ан, 00008Вн		Prol	hibited a	rea		
00008Cн	RDR0	Port 0 pull-up resistor setting register	R/W	R/W	Port 0	0000000в
00008Dн	RDR1	Port 1 pull-up resistor setting register	R/W	R/W	Port 1	0000000в

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value
00008E н	RDR2	Port 2 pull-up resistor setting register	R/W	R/W	Port 2	0000000в
00008Fн	RDR3	Port 3 pull-up resistor setting register	R/W	R/W	Port 3	0000000в
000090н to 00009Dн		Prol	hibited a	rea		
t4 00009E н	PACSR	Program address detection control status register	R/W	R/W	Address match detection	0000000в
00009Fн	DIRR	Delayed interrupt cause / clear register	R/W	R/W	Delayed interrupt	XXXXXXX0B
0000А0н	LPMCR	Low-power consumption mode control register	R/W	R/W	Low-power consumption control	00011000в
0000A1 н	CKSCR	Clock selection register	R/W	R/W	register	11111100в
0000A2н to 0000A7н		Pro	hibited a	rea		
0000A8н	WDTC	Watchdog timer control register	R/W	R/W	Watchdog timer	XXXXX111 _B
0000A9н	TBTC	Timebase timer control register	R/W	R/W	Timebase timer	1XX00100в
0000AAнto 0000ADн		Pro	hibited a	rea		
0000AEн	FMCS	Flash memory control status register	R/W	R/W	Flash memory interface circuit	000Х000в
0000AFн		Prol	hibited a	rea		
0000В0н	ICR00	Interrupt control register 00	R/W	R/W		00000111в
0000B1н	ICR01	Interrupt control register 01	R/W	R/W		00000111в
0000В2н	ICR02	Interrupt control register 02	R/W	R/W		00000111в
0000ВЗн	ICR03	Interrupt control register 03	R/W	R/W		00000111в
0000B4н	ICR04	Interrupt control register 04	R/W	R/W		00000111в
0000B5н	ICR05	Interrupt control register 05	R/W	R/W		00000111в
0000В6н	ICR06	Interrupt control register 06	R/W	R/W		00000111в
0000В7 н	ICR07	Interrupt control register 07	R/W	R/W	Interrupt controller	00000111в
0000B8н	ICR08	Interrupt control register 08	R/W	R/W	Interrupt controller	00000111в
0000В9н	ICR09	Interrupt control register 09	R/W	R/W		00000111в
0000BAн	ICR10	Interrupt control register 10	R/W	R/W		00000111в
0000BBн	ICR11	Interrupt control register 11	R/W	R/W		00000111в
0000BCн	ICR12	Interrupt control register 12	R/W	R/W		00000111в
0000BDн	ICR13	Interrupt control register 13	R/W	R/W		00000111в
0000BEн	ICR14	Interrupt control register 14	R/W	R/W		00000111в
0000BFн	ICR15	Interrupt control register 15	R/W	R/W		00000111в

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value
0000С0н	PWCSL0	PWC control status register	R/W	R/W		0000000в
0000C1 н	PWCSH0	СНО	R/W	R/W		0000000в
0000С2н	DWCO	DWC data buffer register CLIC			PWC timer (CH0)	XXXXXXXXB
0000СЗн	PWC0	PWC data buffer register CH0		R/W		XXXXXXXXB
0000С4н	DIV0	Divide ratio control register CH0	R/W	R/W		XXXXXX00 _B
0000С5н	ADER0	A/D input enable register 0	R/W	R/W	Port 6, A/D	11111111в
0000С6н	ADCS0	A/D control status register 0	R/W	R/W		000ХХХХ0в
0000С7н	ADCS1	A/D control status register 1	R/W	R/W		0000000Хв
0000С8н	ADCR0	A/D data register 0	R	R		0000000в
0000С9н	ADCR1	A/D data register 1	R/W	R/W	8/10-bit A/D converter	XXXXXX00 _B
0000САн	ADSR0	A/D setting register 0	R/W	R/W		0000000в
0000СВн	ADSR1	A/D setting register 1	R/W	R/W	-	0000000в
0000ССн	DAT0	D/A data register 0	R/W	R/W		XXXXXXXXB
0000CDн	DAT1	D/A data register 1	R/W	R/W		XXXXXXXXB
0000CEн	DACR0	D/A control register 0	R/W	R/W	8-bit D/A converter	XXXXXXX0 _B
0000CFн	DACR1	D/A control register 1	R/W	R/W	-	XXXXXXX0 _B
0000D0н	ADER1	A/D input enable register 1	R/W	R/W	Port 7, A/D	11111111в
0000D1нto 0000EFн		Prol	hibited a	rea		
0000F0н to 0000FFн		Ex	ternal ar	ea		
001FF0н	PADRL0	Program address detection register 0 (lower)	R/W	R/W		XXXXXXXX
001FF1н	PADRM0	Program address detection register 0 (middle)	R/W	R/W		XXXXXXXX
001FF2⊦	PADRH0	Program address detection register 0 (higher)	R/W	R/W	Address match	XXXXXXXXB
001FF3н	PADRL1	Program address detection register 1 (lower)	R/W	R/W	detection	XXXXXXXX
001FF4н	PADRM1	Program address detection register 1 (middle)	R/W	R/W		XXXXXXXX
001FF5н	PADRH1	Program address detection register 1 (higher)	R/W	R/W		XXXXXXXX

- Meaning of abbreviations used for reading and writing R/W: Read and write enabled
 - R : Read-only
 - W : Write-only
- Explanation of initial values
 - 0 : The bit is initialized to 0.
 - 1 : The bit is initialized to 1.
 - X : The initial value of the bit is undefined.

■ INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

Interrupt cause	El ² OS	h	nterrup	t vector	Interr re	Priority		
	support	Nun	nber	Address	ICR	Address		
Reset	×	#08	08н	FFFFDCH			High	
INT9 instruction	×	#09	09н	FFFFD8н		_		
Exception processing	×	#10	0Ан	FFFFD4н				
A/D converter conversion termination	0	#11	0Вн	FFFFD0H	10000	0000000		
Output compare channel 0 match	0	#12	0Сн	FFFFCC H	ICR00	0000В0н		
End of measurement by PWC timer 0 / PWC timer 0 overflow	0	#13	0DH	FFFFC8H	ICR01	0000B1 н		
16-bit PPG timer 0	0	#14	0Ен	FFFFC4H				
Output compare channel 1 match	0	#15	0F н	FFFFC0H	10000	000000		
16-bit PPG timer 1	0	#16	10н	FFFFBC H	ICR02	0000B2н		
Output compare channel 2 match	0	#17	11н	FFFFB8H	105.00	000050	1	
16-bit reload timer 1 underflow	0	#18	12н	FFFFB4H	ICR03	0000ВЗн		
Output compare channel 3 match	0	#19	13н	FFFFB0H			1	
DTP/ext. interrupt channels 0/1 detection	0				ICR04	0000 B4 н		
DTTI	\triangle	#20	14н	FFFFACH				
Output compare channel 4 match	0	#21	15н	FFFFA8H	ICR05			
DTP/ext. interrupt channels 2/3 detection	0	#22	16 н	FFFFA4H		0000В5н		
Output compare channel 5 match	0	#23	17 н	FFFFA0H		0000В6н		
End of measurement by PWC timer 1 / PWC timer 1 overflow	0	#24	18 _H	FFFF9CH	ICR06			
DTP/ext. interrupt channels 4 detection	0	#25	19 н	FFFF98н	10007	000057		
DTP/ext. interrupt channels 5 detection	0	#26	1Ан	FFFF94H	ICR07	0000В7 н		
DTP/ext. interrupt channels 6 detection	0	#27	1Bн	FFFF90H	10000	000000		
DTP/ext. interrupt channels 7 detection	0	#28	1Сн	FFFF8CH	ICR08	0000B8н		
Waveform generator 16-bit timers 0/1/2 underflow		#29	1Dн	FFFF88⊦	ICR09	0000 В 9н		
16-bit reload timer 0 underflow	0	#30	1Ен	FFFF84н				
16-bit free-running timer zero detect	\bigtriangleup	#31	1Fн	FFFF80H			1	
16-bit PPG timer 2	0	#32	20н	FFFF7CH	ICR10	0000ВАн		
Input capture channels 0/1	0	#33	21н	FFFF78⊦		000000	1	
16-bit free-running timer compare clear	\bigtriangleup	#34	22н	FFFF74н	ICR11	0000ВВн		
Input capture channels 2/3	0	#35	23н	FFFF70н		000050	1	
Timebase timer	\triangle	#36	24н	FFFF6CH	ICR12	0000BCH		
UART1 receive	0	#37	25н	FFFF68H		000000	1	
UART1 send	\triangle	#38	26 н	FFFF64H	ICR13	0000BDн		
UART0 receive	0	#39	27н	FFFF60H	10544	000055	1	
UART0 send	\triangle	#40	28 н	FFFF5CH	ICR14	0000BEн	$ $ \forall	
Flash memory status	\triangle	#41	29н	FFFF58H			1	
Delayed interrupt generator module		#42	2Ан	FFFF54⊦	ICR15	0000BFн	Low	

 \odot : Can be used and support the El²OS stop request.

○ : Can be used and interrupt request flag is cleared by El²OS interrupt clear signal.

 $\times~$: Cannot be used.

 \bigtriangleup : Usable when an interrupt cause that shares the ICR is not used.

PERIPHERAL RESOURCES

1. Low-power Consumption Control Circuit

The MB90820 series has the following CPU operating mode configured by selection of an operating clock and clock operation control.

- Clock mode
 - PLL clock mode : A PLL clock that is a multiple of the oscillation clock (HCLK) frequency is used to operate the CPU and peripheral functions.

Main clock mode : The main clock, with a frequency one-half that of the oscillation clock (HCLK), is used to operate the CPU and peripheral functions. In main clock mode, the PLL divide circuit is inactive.

www.DataSheet4U • CPU intermittent operation mode

CPU intermittent operation mode causes the CPU to operate intermittently, while high-speed clock pulses are supplied to peripheral functions, reducing power consumption. In CPU intermittent operation mode, clock pulses are supplied intermittently to the CPU when it is accessing a register, internal memory, a peripheral function, or an external unit.

- Standby mode
 - In standby mode, the low power consumption control circuit reduces power consumption by stopping;
 - The supply of the clock to CPU (sleep mode)
 - CPU and peripheral functions (timebase timer mode)
 - The oscillation clock itself (stop mode)
- PLL sleep mode

PLL sleep mode is activated to stop the CPU operating clock when the microcontroller enters PLL clock mode; other components continue to operate on the PLL clock.

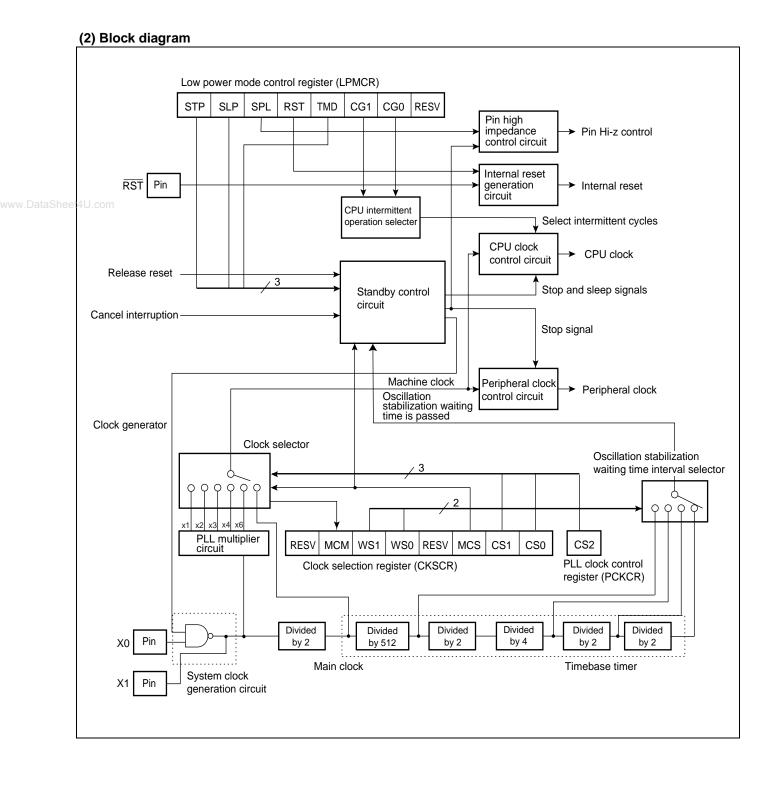
Main sleep mode

Main sleep mode is activated to stop the CPU operating clock when the microcontroller enters main clock mode; other components continue to operate on the main clock.

• PLL timebase timer mode

PLL timebase timer mode causes microcontroller operation, with the exception of the oscillation clock, PLL clock and timebase timer, to stop. All functions other than the timebase timer are deactivated.

Main timebase timer mode


Main timebase timer mode causes microcontroller operation, with the exception of the oscillation clock, main clock and the timebase timer, to stop. All functions other than the timebase timer are deactivated.

Stop mode

Stop mode causes the source oscillation to stop. All functions are deactivated.

(1) Register configuration

Clock Selection Registe	er 15	14	13	12	11	10	9	8 <	⇔ Bit
Address: 00000A1H	Reserved	MCM	WS1	WS0	Reserved	MCS	CS1	CS0	CKSCR
Read/write ⊏> Initial value ⊏>	1 (/ V V	R 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0	R/W 0	_
PLL Clock Control Regis	ter 15	14	13	12	11	10	9	8 <	⇔ Bit
^{4U.co} Äddress: 000002Fн					Reserved	Reserved	Reserved	CS2	PCKCR
Read/write ⊏> Initial value ⊏>		x	x	x	W 0	W 0	W O	W 0	
Low-power Consumption	n Mode C	Control Re	egister						
	7	6	5	4	3	2	1	0 <	<⊐ Bit
Address: 0000A0H	STP	SLP	SPL	RST	TMD	CG1	CG0	Reserve	d LPMCR
Read/write ⊏ Initial value ⊨	••	W 0	R/W 0	W 1	W 1	R/W 0	R/W 0	R/W 0	

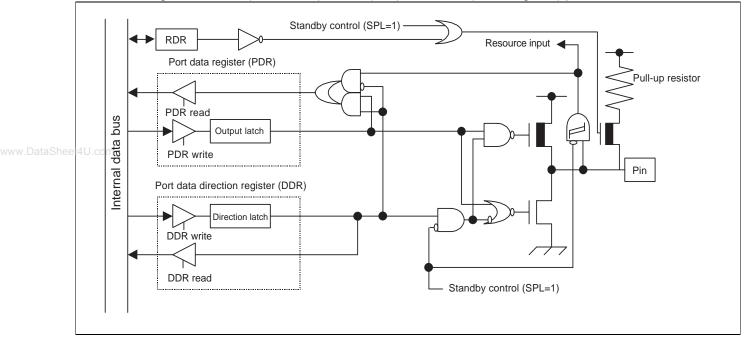
2. I/O Ports

(1) Outline of I/O ports

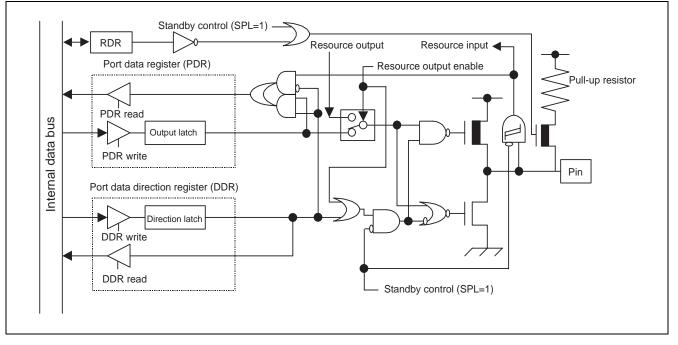
Each I/O port outputs data from CPU to I/O pins or inputs signals from I/O pins to CPU through port data register (PDR). Direction of the data flow (input or output) for each I/O pin can be designated in bit unit by port data direction register (DDR). The function of each port and the resource I/O multiplexed with it are described below:

- Port 0 : General-purpose I/O port/resource (PWC)
- Port 1 : General-purpose I/O port/resources (DTP / Multi-functional timer)
- Port 2 : General-purpose I/O port/resource (16-bit reload timer)
- Port 3 : General-purpose I/O port/resource (16-bit PPG timer)
- Port 4 : General-purpose I/O port/resources (16-bit PPG timer / 16-bit reload timer / UART / PWC)
 - Port 5 : General-purpose I/O port/resources (16-bit PPG timer / DTP)
 - Port 6 : General-purpose I/O port/resource (8/10-bit A/D converter)
 - Port 7 : General-purpose I/O port/resources (8/10-bit A/D converter / 8-bit D/A converter / UART/ 16-bit free-running timer / 16-bit input capture)
 - Port 8 : General-purpose I/O port/resources (16-bit input capture / Multi-functional timer)

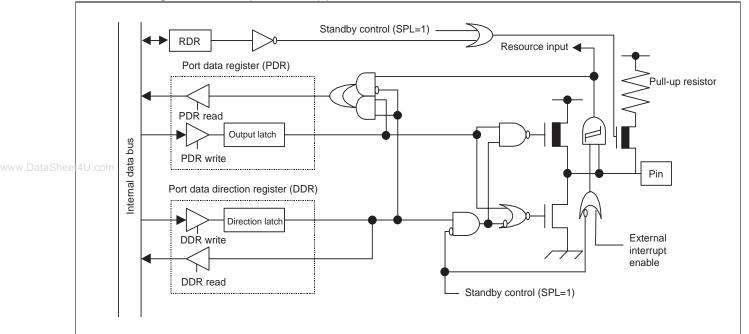
(2) Register configuration

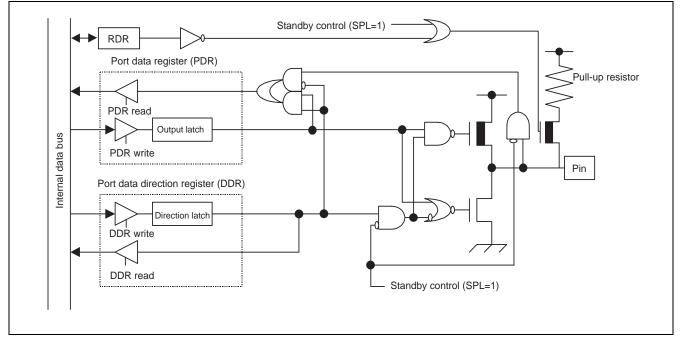

Register	Read/Write	Address	Initial value
Port 0 data register (PDR0)	R/W	00000н	XXXXXXXXB
Port 1 data register (PDR1)	R/W	000001н	XXXXXXXXB
Port 2 data register (PDR2)	R/W	000002н	XXXXXXXXB
Port 3 data register (PDR3)	R/W	000003н	XXXXXXXXB
Port 4 data register (PDR4)	R/W	000004н	XXXXXXXXB
Port 5 data register (PDR5)	R/W	000005н	XXXXXXXXB
Port 6 data register (PDR6)	R/W	000006н	XXXXXXXXB
Port 7 data register (PDR7)	R/W	000007н	XXXXXXXX
Port 8 data register (PDR8)	R/W	000008н	XXXXXXXXAB
Port 0 data direction register (DDR0)	R/W	000010н	0000000в
Port 1 data direction register (DDR1)	R/W	000011н	0000000в
Port 2 data direction register (DDR2)	R/W	000012н	0000000в
Port 3 data direction register (DDR3)	R/W	000013н	0000000в
Port 4 data direction register (DDR4)	R/W	000014н	0000000в
Port 5 data direction register (DDR5)	R/W	000015н	XXXXXX00b
Port 6 data direction register (DDR6)	R/W	000016н	0000000в
Port 7 data direction register (DDR7)	R/W	000017н	0000000в
Port 8 data direction register (DDR8)	R/W	000018н	0000000в
A/D input enable register (ADER0)	R/W	0000C5н	11111111в
A/D input enable register (ADER1)	R/W	0000D0H	11111111в
Port 0 pull-up resistor setting register (RDR0)	R/W	00008Сн	0000000в
Port 1 pull-up resistor setting register (RDR1)	R/W	00008DH	0000000в
Port 2 pull-up resistor setting register (RDR2)	R/W	00008EH	0000000в
Port 3 pull-up resistor setting register (RDR3)	R/W	00008Fн	0000000в

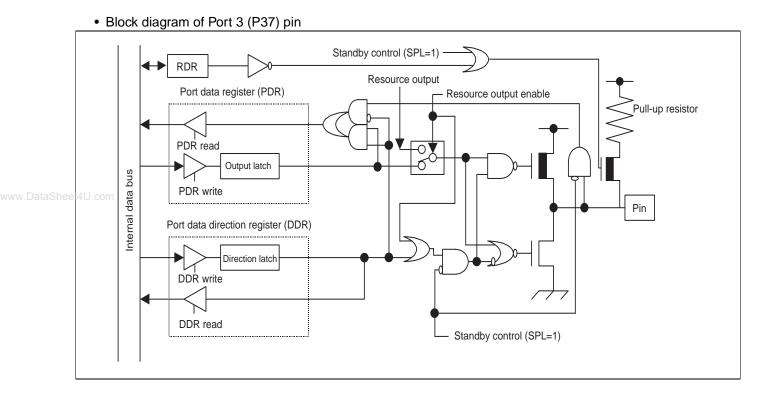
R/W: Read/write enabled


X : Undefined

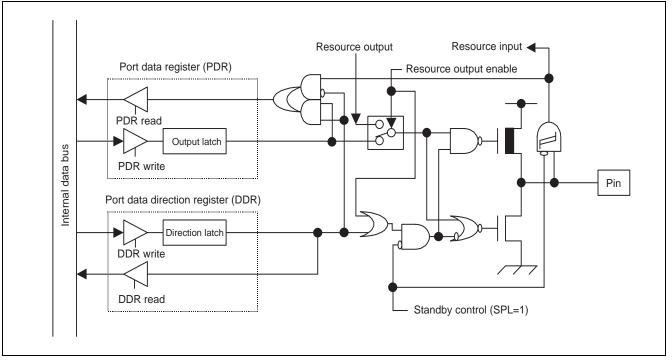
(3) Block diagram


• Block diagram of Port 0 (P00 to P06), Port 1 (P17) and Port 2 (excluding P21) pins

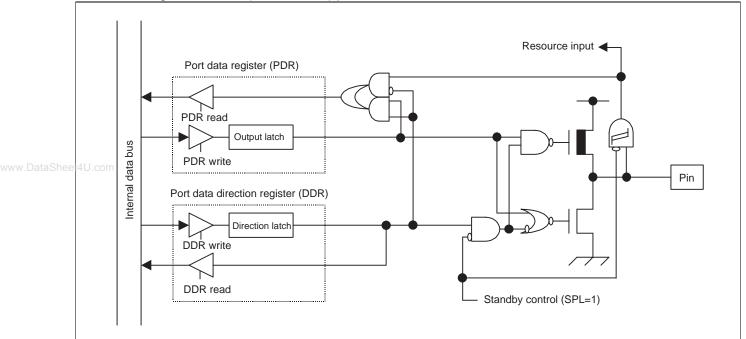

• Block diagram of Port 0 (P07) and Port 2 (P21) pins

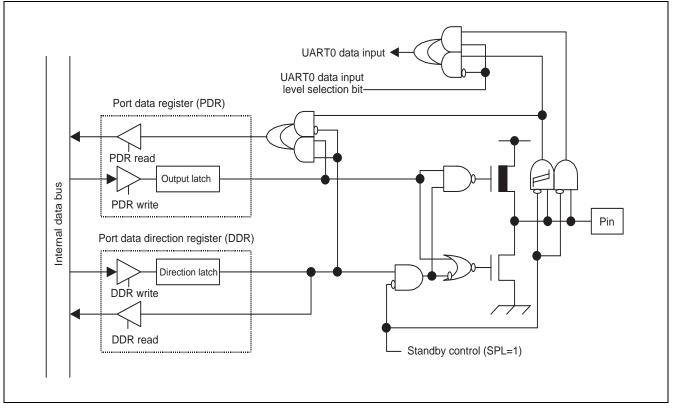


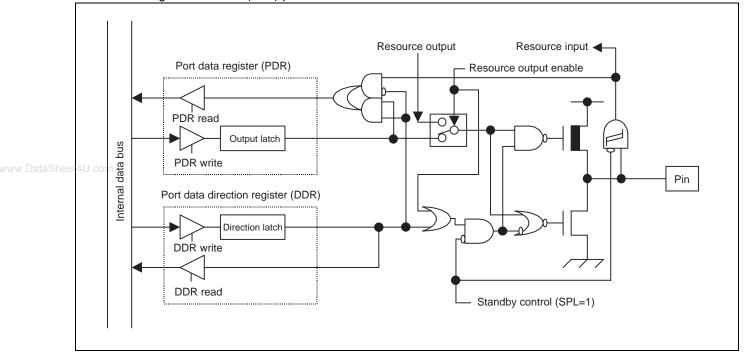
• Block diagram of Port 1 (P10 to P16) pins

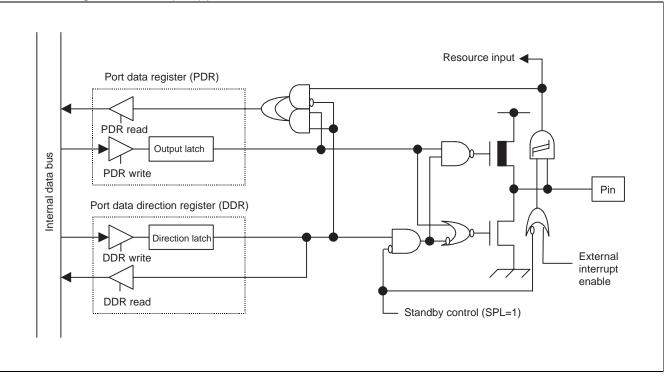


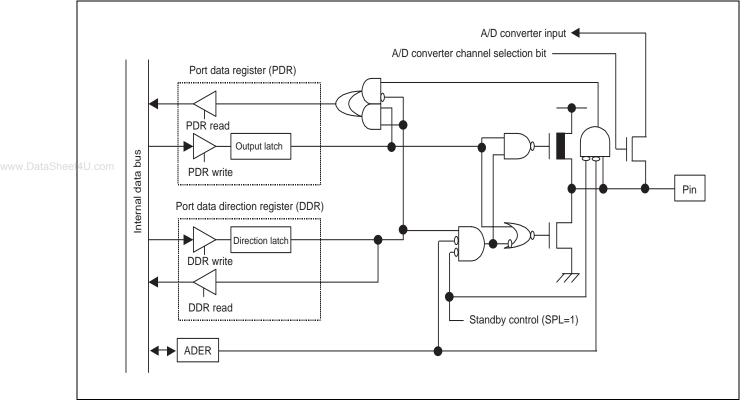
• Block diagram of Port 3 (excluding P37) pins

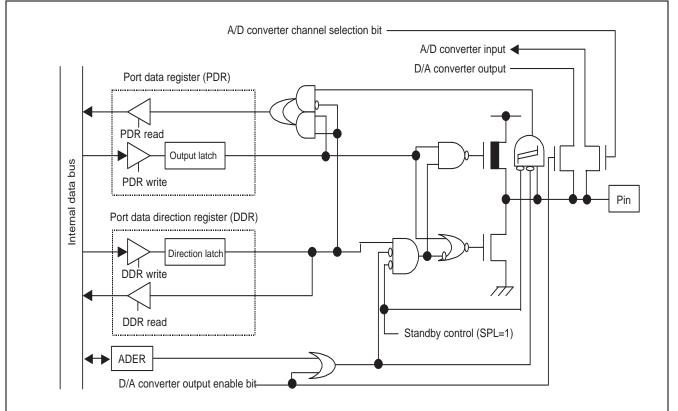


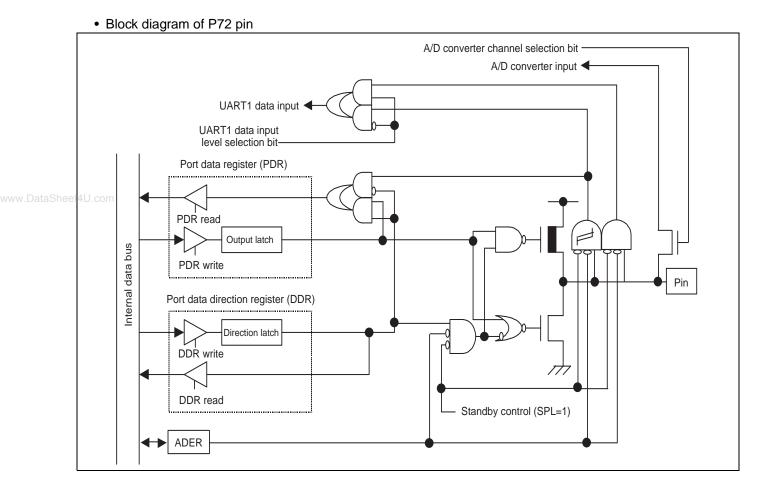

• Block diagram of Port 4 pins (excluding P41, P45 and P46) pins


• Block diagram of Port 4 (P41 and P46) pins

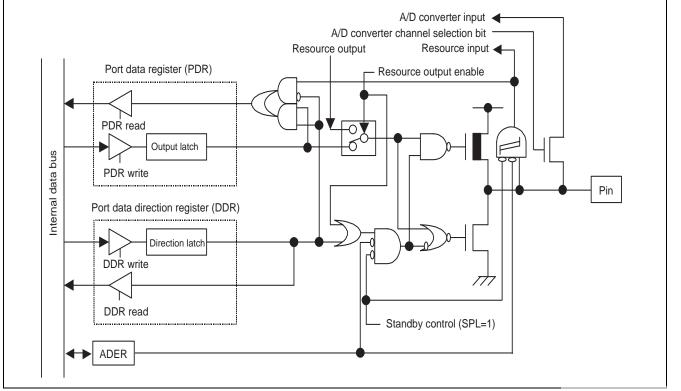

• Block diagram of P45 pin


• Block diagram of Port 5 (P50) pin

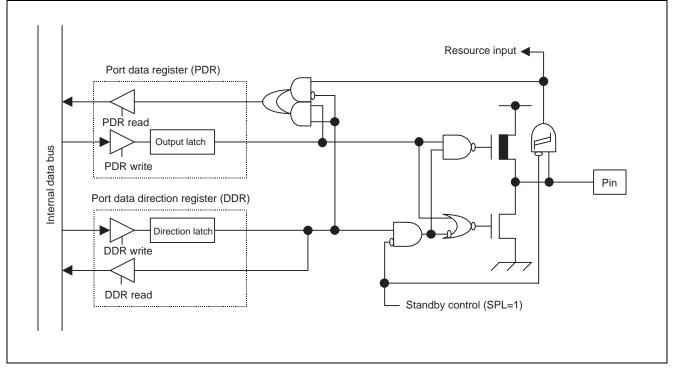

• Block diagram of Port 5 (P51) pin

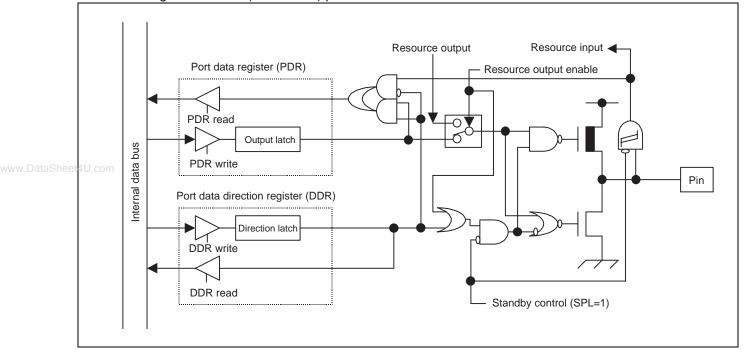


• Block diagram of Port 6 pins



• Block diagram of Port 7 (P70, P71) pins


• Block diagram of Port 7(P73, P74) pins

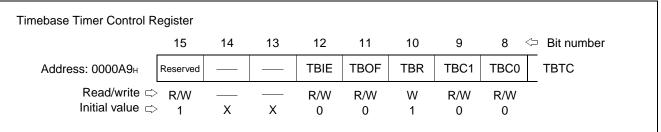

• Block diagram of Port 7 (P75 to P77) pins

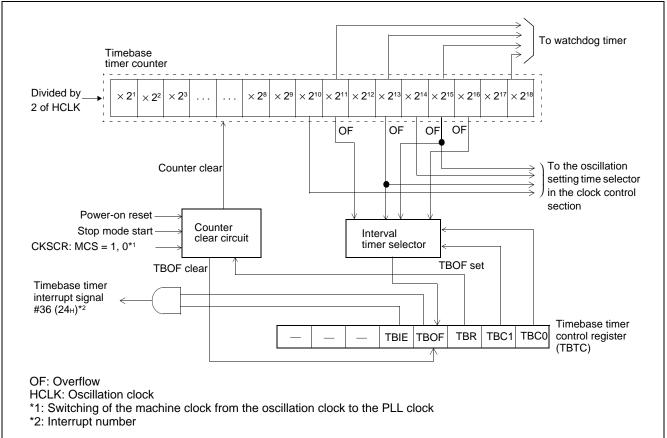
• Block diagram of Port 8 (P80, P81) pins

• Block diagram of Port 8 (P82 to P87) pins

3. Timebase Timer

The timebase timer is an 18-bit free-running counter (timebase counter) that counts up in synchronization with the internal count clock (divided by 1/2 of oscillation clock).

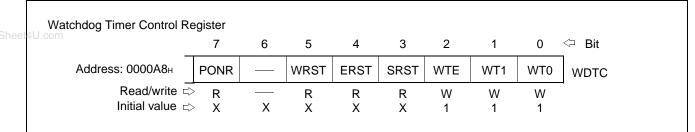

Features of timebase timer :

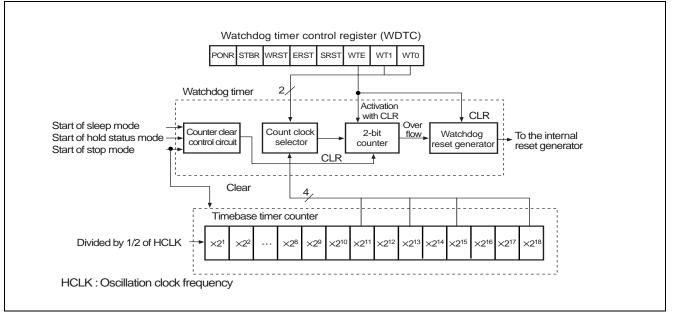

- · Generates the interruption at counter-overflow
- Supports for El²OS
- Interval timer function:

Generates an interrupt at four different time intervals

- Clock supply function:
- www.DataSheet4U.coFour different clock can be selected as watchdog timer's count clock Supply clock for oscillation stabilization

(1) Register configuration



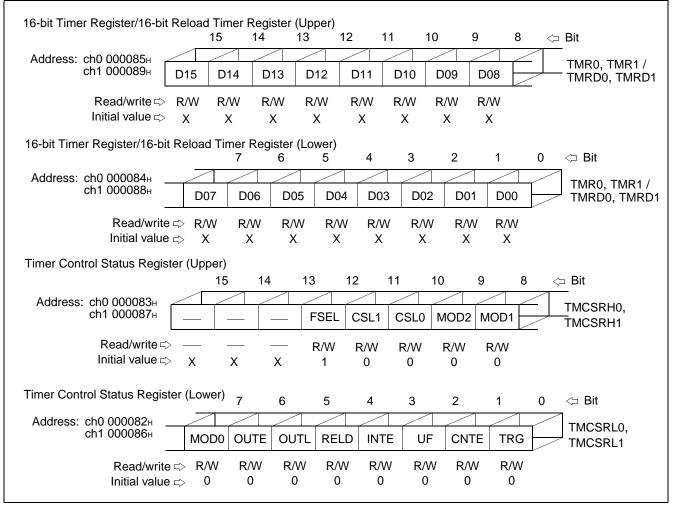

4. Watchdog Timer

The watchdog timer is a 2-bit counter that uses the timebase timer's supply clock as the count clock. After activation, if the watchdog timer is not cleared within a given period, the CPU will be reset.

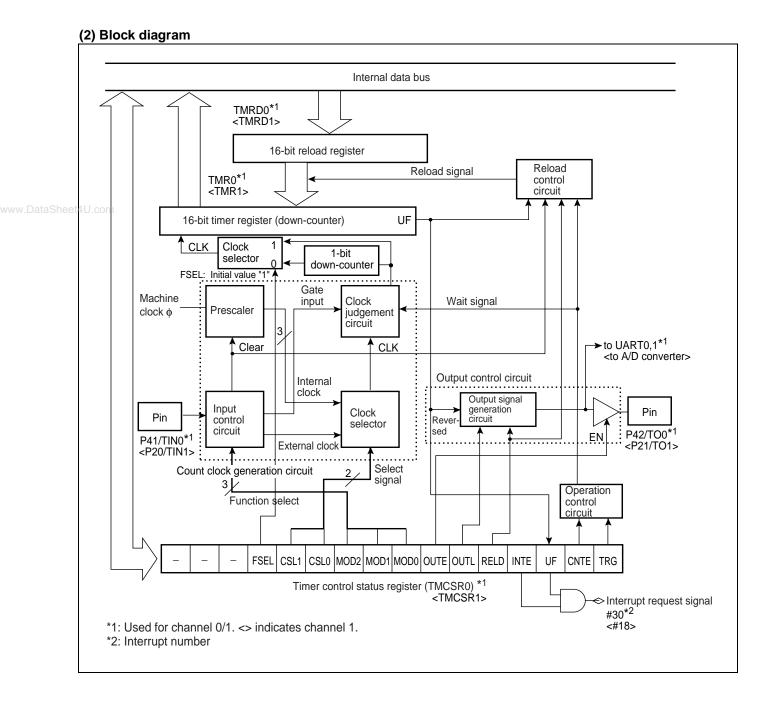
 Features of watchdog timer : Reset CPU at four different time intervals Indicate the reset causes by status bits

(1) Register configuration

5. 16-bit reload timer (x 2)


The 16-bit reload timer provides two operating mode, internal clock mode and event count mode. In each operating mode, the 16-bit down counter can be reloaded (reload mode) or stopped by underflow (one-shot mode).

Output pins TO1 and TO0 are able to output different waveform according to the counter operating mode. TO1 and TO0 toggles when counter underflows if counter is operated as reload mode. TO1 and TO0 output specified level (H or L) during counting if the counter is in one-shot mode.


Features of the 16-bit reload timer :

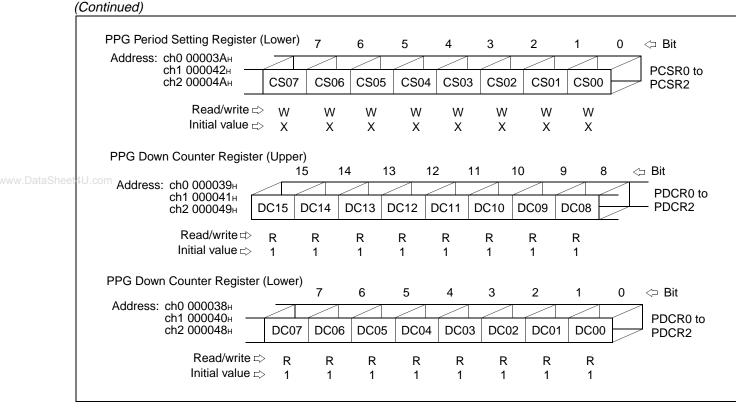
- Interrupt when timer underflows
- Supports for El²OS
- Internal clock operating mode : Three internal count clocks can be selected.
 Counter can be activated by software or external trigger (signal at TIN1 and TIN0 pins).
 Counter can be reloaded or stopped when underflow after activated.
- Event count operating mode : Counter counts down one by one with specified edge at TIN1 and TIN0 pins. Counter can be reloaded or stopped when underflow.

(1) Register configuration

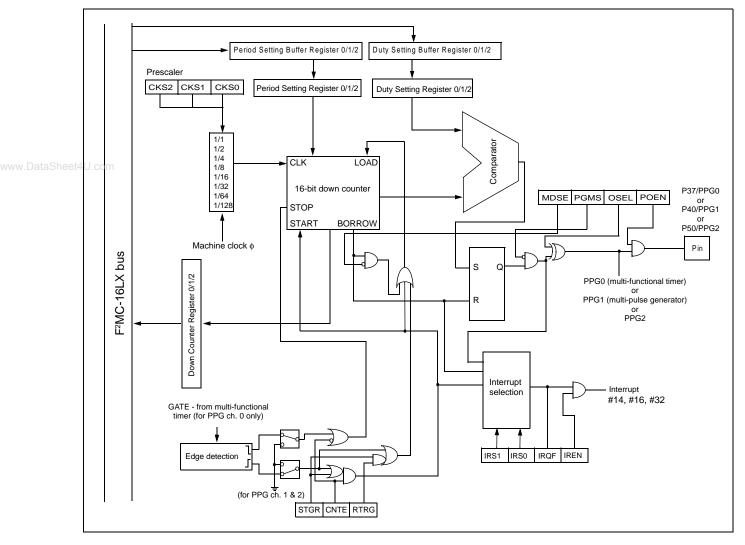
Note : Registers TMR0, TMR1/TMRD0, TMRD1 are word access only.

6. 16-bit PPG Timer (x 3)

The 16-bit PPG timer consists of a 16-bit down counter, prescaler, 16-bit period setting register, 16-bit duty setting register, 16-bit control register and a PPG output pin. This module can be used to output pulses synchronized by software trigger or GATE signal from Multi-functional timer, refer to "7. Multi-functional Timer".


Features of 16-bit PPG timer :

- Two operating mode : PWM and One-shot mode
- 8 types of counter operation clock (ϕ , $\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, $\phi/32$, $\phi/64$, $\phi/128$) can be selected
- Interrupt is generated when trigger signal arrived, or counter borrow, or change of PPG output
- Supports for El²OS


(1) Register configuration

PPG Control Status Register (Upper) 15 14 13 12 11 10 9 8 < Bit
Address: ch0 00003FH ch1 000047H ch2 00004FH CNTE STGR MDSE RTRG CKS2 CKS1 CKS0 PGMS PCNTH0 to PCNTH2
Read/write ⇔ R/W R/W R/W R/W R/W R/W R/W Initial value ⇔ 0 0 0 0 0 0 0 0 0
PPG Control Status Register (Lower)
Address: ch0 00003EH ch1 000046H ch2 00004EH 7 6 5 4 3 2 1 0<<>⇒ Bit PCNTL0 to PCNTL2
Read/writeR/WR/WR/WR/WInitial valueXX0000
PPG Duty Setting Register (Upper) ₁ 5 14 13 12 11 10 9 8 <= Bit
Address: ch0 00003DH ch1 000045H ch2 00004DH DU15 DU14 DU13 DU12 DU11 DU10 DU09 DU08 PDUT2
Read/write \heartsuit W W W W W W Initial value \succ χ χ χ χ χ χ χ χ
PPG Duty Setting Register (Lower) 7 6 5 4 3 2 1 0 <⊐ Bit
Address: ch0 00003CH ch1 000044H ch2 00004CH DU07 DU06 DU05 DU04 DU03 DU02 DU01 DU00 PDUT2
Read/write \Rightarrow WWWWWInitial value \Rightarrow XXXXXX
PPG Period Setting Register (Upper) 15 14 13 12 11 10 9 8 ⊲⊐ Bit
Address: ch0 00003BH ch1 000043H ch2 00004BH CS15 CS14 CS13 CS12 CS11 CS10 CS09 CS08 PCSR2
Read/writeWWWWWWInitial valueXXXXXX

(Continued)

Note : Registers PDCR0 to PDCR2, PDSR0 to PDSR2 and PDUT0 to PDUT2 are word access only.

7. Multi-functional Timer

The 16-bit multi-functional timer module consists of one 16-bit free-running timer, four input capture circuits, six output comparators and one channel of 16-bit PPG timer. This module allows six independent waveforms generated by PPG timer or waveform generator to be outputted. With the 16-bit free-running timer and the input capture circuit, input pulse width and external clock period measurement can be done.

(1) 16-bit free-running timer (1 channel)

- The 16-bit free-running timer consists of a 16-bit up/up-down counter, timer control status register, 16-bit compare clear register (with buffer register) and a prescaler.
- 8 types of counter operation clock (φ, φ/2, φ/4, φ/8, φ/16, φ/32, φ/64, φ/128) can be selected. (φ is the machine
 www.DataSheet4U.coclock.)
 - Two types of interrupt causes :

- Compare clear interrupt is generated when there is a comparing match with compare clear register and 16bit free-running timer.

- Zero detection interrupt is generated while 16-bit free-running timer is detected as zero in count value.
- El²OS supported.
- Compare-clear register buffer provided : The selectable buffer enables the 16-bit free-running timer update its compare-clear register automatically without stop the timer operation. User can read the next compare-clear value to the compare-clear register when the timer is running. The compare-clear register will be updated when the timer value is "0000H"
- Reset, software clear, compare match with compare clear register in up-count mode will reset the counter value to "0000H".
- Supply clock to output compare module : The prescaler output is acted as the count clock of the output compare.

(2) Output compare module (6 channels)

- The output compare module consists of six 16-bit output compare registers (with selectable buffer register), compare output latch and compare control registers. An interrupt is generated and output level is inverted when the value of 16-bit free-running timer and output compare register are matched.
- 6 output compare registers can be operated independently.
- Output pins and interrupt flag are corresponding to each output compare register.
- 2 output compare registers can be paired to control the output pins.
- Inverts output pins by using 2 output compare registers together.
- Setting the initial value for each output pin is possible.
- Interrupt is generated when there is a comparing match with output compare register and 16-bit free-running timer.
- El²OS supported.

(3) Input capture module (4 channels)

Input capture consists of 4 independent external input pins, the corresponding input capture data register and input capture control status register. By detecting any edge of the input signal from the external pin, the value of the 16-bit free-running timer can be stored in the capture register and an interrupt is generated simultaneously.

- Operations synchronized with the 16-bit free-running timer's count clock.
- 3 types of trigger edge (rising edge, falling edge and both edge) of the external input signal can be selected and there is indication bit to show the trigger edge is rising or falling.
- 4 input captures can be operated independently.
- Two independent interrupts are generated when detecting a valid edge from external input.
- El²OS supported.

(4) 16-bit PPG timer (1 channel)

The 16-bit PPG timer 0 is used to provide a PPG signal for waveform generator. (See section "6. 16-bit PPG Timer".)

(5) Waveform generator module

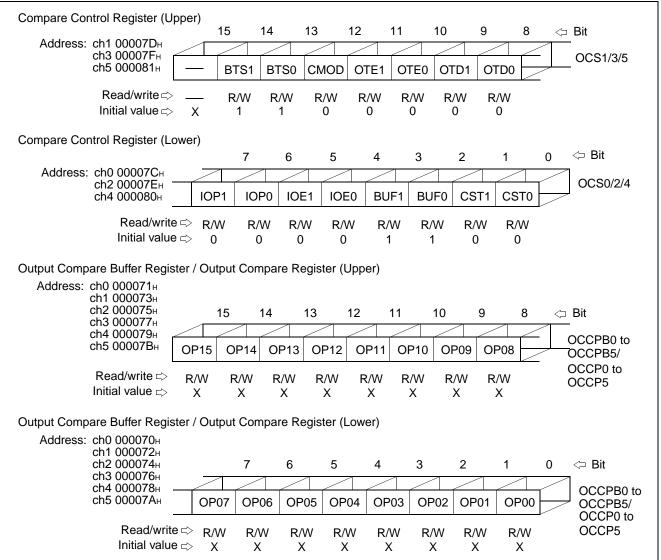
The waveform generator consists of three 16-bit timer registers, three 16-bit timer control registers and a waveform control register.

With waveform generator, it is possible to generate real time output, 16-bit PPG waveform output, non-overlap 3-phase waveform output for inverter control and DC chopper waveform output.

- It is possible to generate a non-overlap waveform output based on dead-time of 16-bit timer. (Dead-time timer offunction)
- It is possible to generate a non-overlap waveform output when realtime output is operated in 2-channel mode. (Dead-time timer function)
- By detecting realtime output compare match, GATE signal of the PPG timer operation will be generated to start or stop PPG timer operation. (GATE function)
- When a match is detected by real time output compare, the 16-bit timer is activated. The PPG timer can be started or stopped easily by generating a GATE signal for PPG operation until the 16-bit timer stops. (GATE function)
- Force to stop output waveform using DTTI pin input.
- Interrupt is generated when DTTI active or 16-bit timer underflow.
- El²OS is supported.

(6) Register configuration

• 16-bit free-running timer registers


Timer Control Status Regis	ter (Upp	er)							
_	15	14	13	12	11	10	9	8	<⊐ Bit
Address: 00005F _H	ECKE	IRQZF	IRQZE	MSI2	MSI1	MSI0	ICLR	ICRE	TCCSH
Read/write ⇔ Initial value ⇔	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
Timer Control Status Regis	ter (Low 7	er) 6	5	4	3	2	1	0	<⊐ Bit
– Address: 00005Ен		BFE	STOP	MODE	SCLR	CLK2	CLK1	CLK0	TCCSL
Read/write		R/W 0	R/W 1	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	-
Timer Data Register (Uppe	r) 15	14	13	12	11	10	9	8	⇔ Bit
Address: 00005DH	T15	T14	T13	T12	T11	T10	T09	T08	TCDT
Read/write ⊏> Initial value ⊏>	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
Timer Data Register (Lowe	r) 7	6	5	4	3	2	1	0	<⊐ Bit
Address: 00005Cн	T07	T06	T05	T04	T03	T02	T01	Т00	TCDT
 Read/write ⊏ Initial value ⇔	1 1/ 1/	R/W	-						
	0	0	0	0	0	0	0	0	

(Continued)

50	pare Clear Buffer Reg		•	0		,	10	•	•	1- D'(
		15	14	13	12	11	10	9	8 <	⊐ Bit
	Address: 00005Bн	CL15	CL14	CL13	CL12	CL11	CL10	CL09	CL08	CPCLRB/CPCLR
	Read/write ⊏>	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	Initial value 🖘	1	1	1	1	1	1	1	1	
Com	pare Clear Buffer Reg	ister / Co	mpare C	lear Regi	ster (Lov	ver)				
		7	6	5	4	3	2	1	0	<p bit<="" td=""></p>
	Address: 00005AH	CL07	CL06	CL05	CL04	CL03	CL02	CL01	CL00	CPCLRB/CPCLR
	Address: 00005A⊢ Read/write ⊏ Initial value ⊏	> R/W	CL06 R/W	CL05 R/W	CL04 R/W	CL03 R/W	CL02 R/W	CL01 R/W	CL00 R/W	CPCLRB/CPCLR

Note : Registers TCDT, CPCLRB/CPCLR are word access only.

• Output compare registers

Note : Register OCCPB0 to OCCPB5/OCCP0 to OCCP5 are word access only.

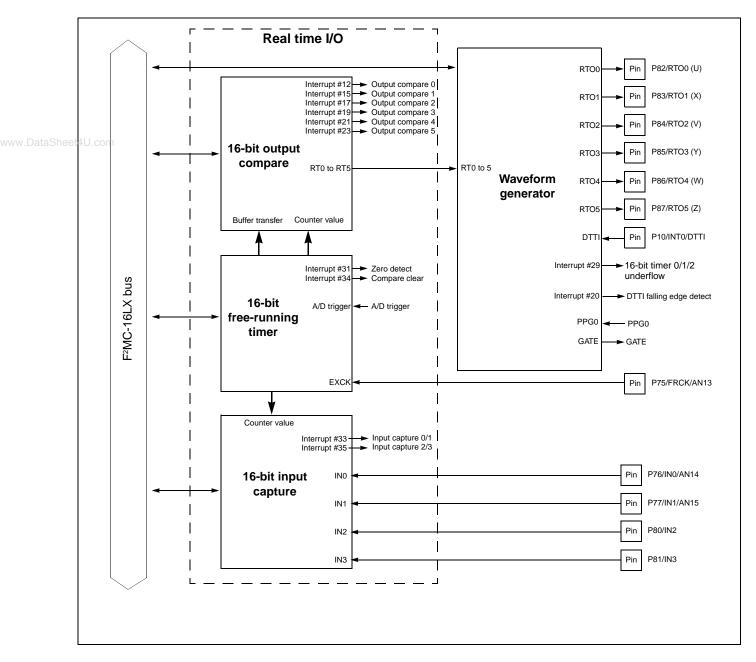
• Input capture registers

Г

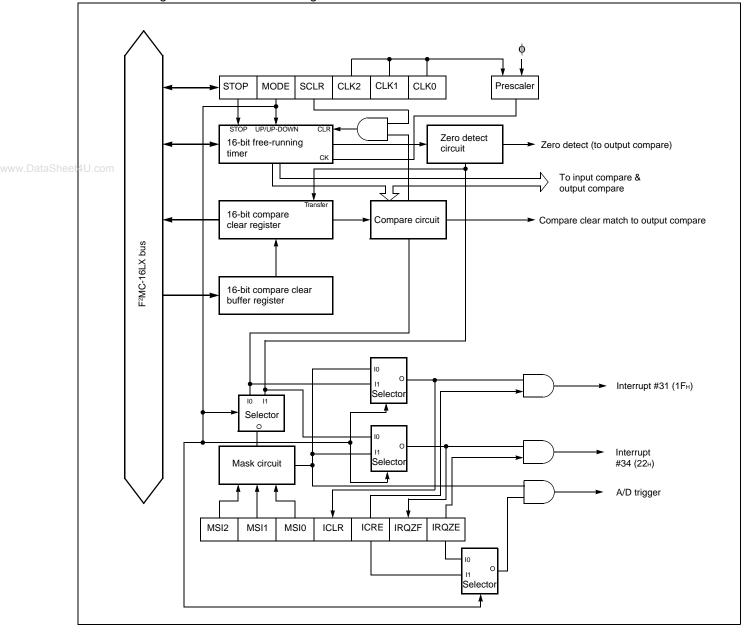
Input Capture Control Statu	us Registe	er (2/3) (Upper)						
	15	14	13	12	11	10	9	8 <	⊐ Bit
Address: 00006B⊦							IEI3	IEI2	ICSH23
Read/write ⇔ Initial value ⇔	x	x	x	x	x	x	R 0	R 0	_
Input Capture Control Statu	us Registe	er (2/3) (Lower)						
	7	6	5	4	3	2	1	0	<⊐ Bit
Address: 00006AH	ICP3	ICP2	ICE3	ICE2	EG31	EG30	EG21	EG20	ICSL23
Read/write ⇔ Initial value ⇒	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
PPG output control/ Input C	Capture C 15	ontrol St 14	tatus Re 13	gister (0/ 12	1) (Upper 11	r) 10	9	8 <	⊐ Bit
Address: 000069⊦	PGEN5	PGEN4	PGEN3	PGEN2	PGEN1	PGEN0	IEI1	IEI0	PICSH01
Read/write ⊏ Initial value ⊏		R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R 0	R 0	
Input Capture Control Statu	us Registe	er (0/1) (Lower)						
_	7	6	5	4	3	2	1	0	<⊐ Bit
Address: 000068н	ICP1	ICP0	ICE1	ICE0	EG11	EG10	EG01	EG00	PICSL01
Read/write ⊏ Initial value ⊏	1.0, 4, 4	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
Input Capture Data Registe	er (Upper))							
Address: ch0 000061н ch1 000063н ch2 000065н ch3 000067н	CP15	15 CP14	14 CP13	13		11 1 CP10	0 9 CP09	0 8 CP08	<>⇒ Bit IPCP0 to IPCP3
Read/write ⊏ Initial value ⊏		R X	R X	R X	R X	R X	R X	R X	
Input Capture Data Registe	er (Lower)								
Address: ch0 000060н ch1 000062н ch2 000064н ch3 000066н		7 P07 CI	6 P06 CF	5 P05 CP	4 04 CP	3 03 CP0	2 02 CP0 ⁻	1 1 CP00	0 <⊐ Bit IPCP0 to IPCP3
Read/w Initial va				RF X>				R X	

Note : Registers IPCP0 to IPCP3 are word access only.

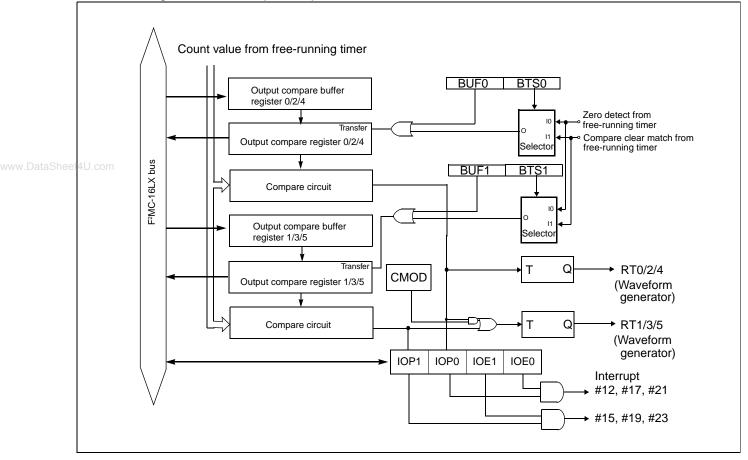
٦

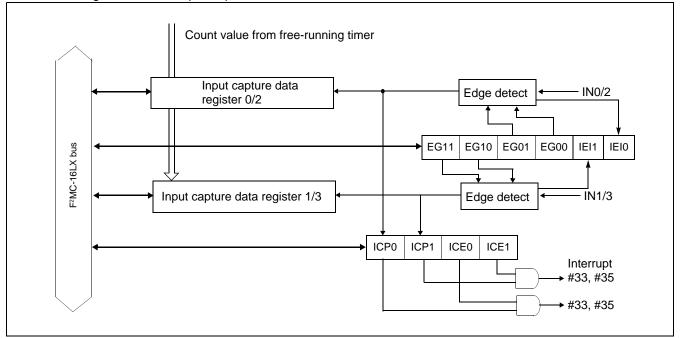

• Waveform generator registers

	Waveform Control Regis	ter 15	14	13	12	11	10	9	8 <	⇔ Bit
	Address: 000059н	DTIE	DTIF	NRSL	DCK2	DCK1	DCK0	NWS1	NWS0	– SIGCR
	Read/write ⇔ Initial value ⇒	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	_
	16-bit Timer Control Reg	ister	7	6	5	4	3	2	1 0	⇔ Bit
www.DataSheet4	U. Address: ch0 000056н ch2 000058н	DMC	D GTEN	N1 GTEN	0 TMIF	TMIE	TMD2	TMD1	TMD0	DTCR0, DTCR2
	Read/write ⊟ Initial value ⊟		/ R/W 0	/ R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
	16-bit Timer Control Rec	jister 15	14	13	12	11	10	9	8	<⊐ Bit
	Address: ch1 000057 _H	DMOD	GTEN1	GTEN0	TMIF	TMIE	TMD2	TMD1 T	MD0	DTCR1
	Read/write ⊏ Initial value ⊏	1.0,	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
	16-bit Timer Register (Up	oper)	15	14	13	12	11	10	9	8 <⊐ Bit
	Address: ch0 000051н ch1 000053н ch2 000055н	TF	17	14 TR	1/					TMRR0 to TMRR2
	Read/wri Initial valu	1.		/W R/\ X X				V R/W X	R/W X	
	16-bit Timer Register (Lo	wer)	7	6	5	4	3	2	1	0 <⊐ Bit
	Address: ch0 000050н ch1 000052н ch2 000054н		R07 TI	R06 TR	1/	04 TR	1/		1 TR00	TMRR0 to TMRR2
	Read/wi Initial val				W R/ K X				/ R/W X	


Note : Registers TMRR0 to TMRR2 are word access only.

(7) Block diagram


• Block diagram of Multi-functional timer


• Block diagram of 16-bit free-running timer

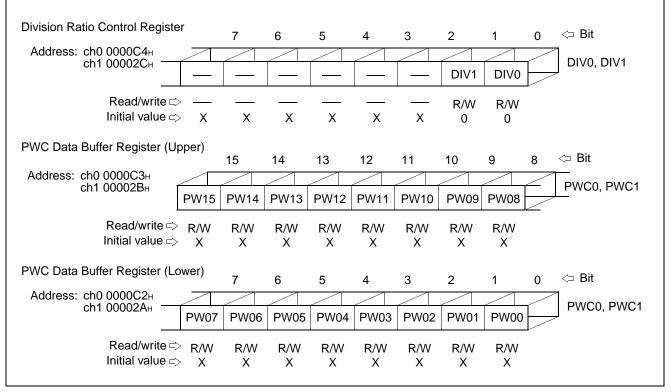
• Block diagram of 16-bit output compare

• Block diagram of 16-bit input capture

· Block diagram of waveform generator

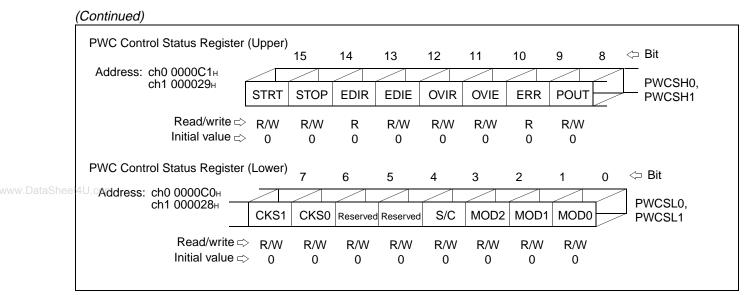
8. PWC Timer (x 2)

The PWC (pulse width count) timer is a 16-bit multi-functional up counter with reload timer functions and input signal pulse width count functions.

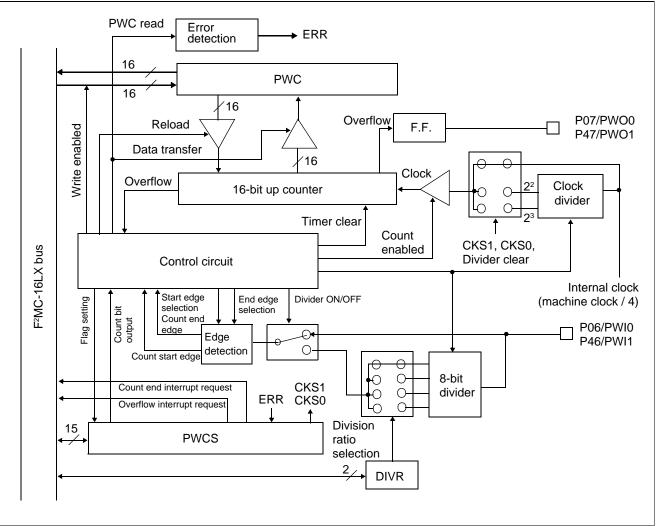

The PWC timer consists of a 16-bit counter, an input pulse divider, a division ratio control register, a count input pin, a pulse output pin, and a 16-bit control register.

The PWC timer has the following features:

- Interruption is generated when timer overflow or end of PWC measurement.
- El²OS is supported.
- Timer functions :
- www.DataSheet4U.comGenerates an interrupt request at set time intervals.
 - Outputs pulse signals synchronized with the timer cycle.
 - Selects the counter clock from three internal clocks.
 - Pulse-width count functions:
 - Counts the time between external pulse input events.
 - Selects the counter clock from three internal clocks.
 - Count mode:
 - H pulse width (rising edge to falling edge) / L pulse width (falling edge to rising edge)
 - Rising-edge cycle (rising edge to falling edge) / Falling-edge cycle (falling edge to rising edge)
 - Count between edges (rising or falling edge to falling or rising edge)


Capable of counting cycles by dividing input pulses by 2², 2⁴, 2⁶, 2⁸ using an 8-bit input divider. Generates an interrupt request upon the completion of count operation. Selects single or consecutive count operation.

(1) Register configuration


Note : Registers PWC0 to PWC1 are word access only.

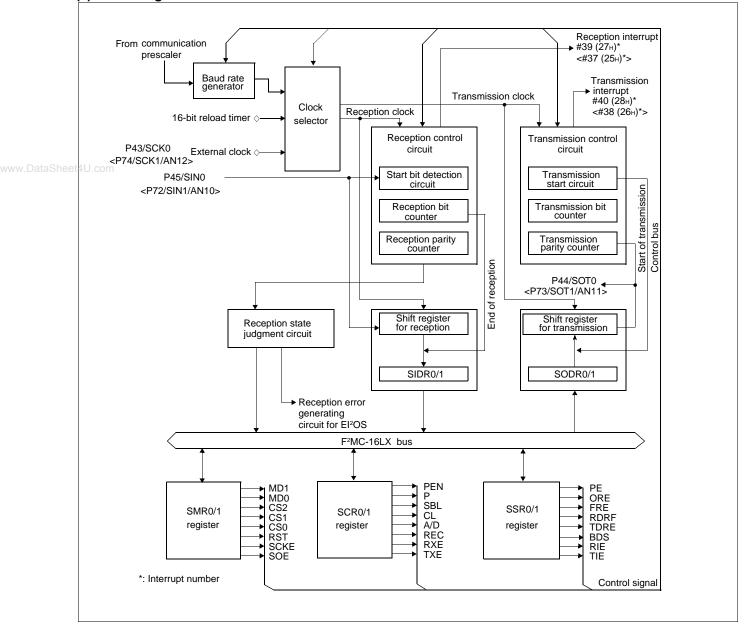
(Continued)

Note : Registers PWC0 to PWC1 are word access only.

9. UART (x 2)

The UART is a serial I/O port for asynchronous (start-stop) communication or clock-synchronous communication. The UART has the following features :

- Full-duplex double buffering
- Capable of asynchronous (start-stop bit) and CLK-synchronous communications
- Support for the multiprocessor mode
- Various method of baud rate generation :
 - External clock input possible
 - Internal clock (a clock supplied from 16-bit reload timer can be used.)
 - Embedded dedicated baud rate generator

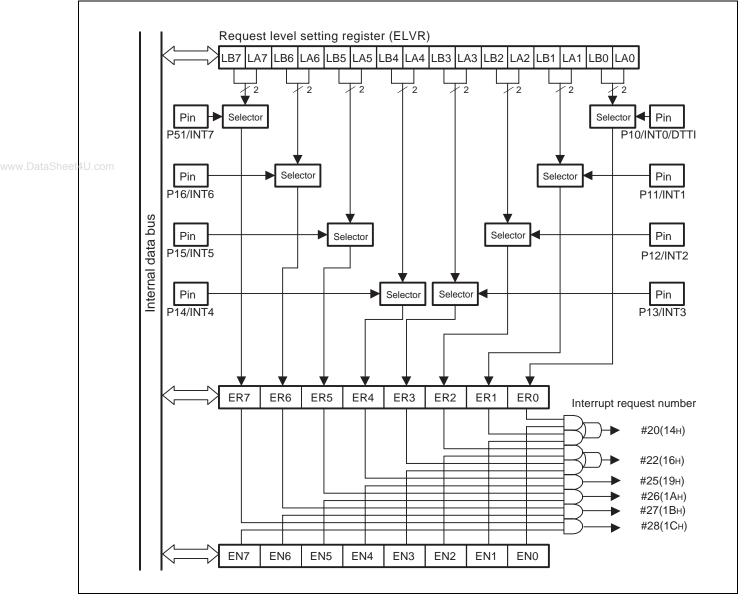

Operation	Baud rate
Asynchronous	31250/9615/4808/2404/1202 bps
CLK synchronous	2 M/1 M/500 K/250 K/125 K/62.5K bps

Note : Assuming internal machine clock frequencies of 6 MHz, 8 MHz, 10 MHz, 12 MHz, and 16 MHz.

- Error detection functions (parity, framing, overrun)
- NRZ (Non Return to Zero) signal format
- Interrupt request :
 - Receive interrupt (receive complete, receive error detection)
 - Transmit interrupt (transmission complete)
 - Transmit / receive conforms to extended intelligent I/O service (EI²OS).

(1) Register configuration

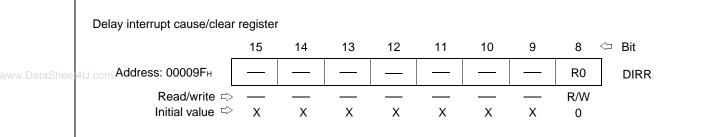
10. DTP/External Interrupts

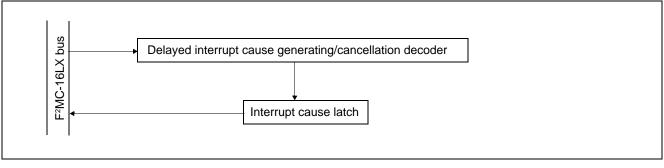

The DTP/external interrupt circuit is activated by the signal supplied to a DTP/external interrupt pin. The CPU accepts the signal using the same procedure it uses for normal hardware interrupts and generates external interrupts or activates the extended intelligent I/O service (EI²OS).

Features of DTP/External Interrupt :

- Total 8 external interrupt channels.
- Two request levels ("H" and "L") are provided for the intelligent I/O service.
- Four request levels (rising edge, falling edge, "H" level and "L" level) are provided for external interrupt requests.

(1) Register configuration


	ter 15	14	13	12	11	10	9	8 <	⊐ Bit
Address: 0000031н	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0	EIRR
 Read/write ⊨> Initial value ⊨>	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	_
TP/Interrupt Enable Regis	ter 7	6	5	4	3	2	1	0 <	⊐ Bit
Address: 000030н	, EN7	EN6	EN5	EN4	EN3	EN2	EN1	ENO	ENIR
⊥_ Read/write ⊏> Initial value ⊏>	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0]
equest Level Setting Regi	ster (Up	per)							
	15	14	13	12	11	10	9	8 <	⇔ Bit
Address: 0000033н	LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4	ELVRH
Read/write ⊨> Initial value ⊨>	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
equest Level Setting Regi	ster (Lov	wer)							
	7	6	5	4	3	2	1	0 <	⊐ Bit
Address: 000032H	LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0	ELVRL
Read/write ⊏>	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-



11. Delayed Interrupt Generation Module

The delayed interrupt generation module is used to generate a task switching interrupt. Interrupt requests to the $F^2MC-16LX$ CPU can be generated and cleared by software using this module.

(1) Register configuration

12. A/D Converter

The A/D converter converts the analog voltage input (input voltage) to an analog input pin to a digital value. It has the following features :

- The minimum conversion time is 3 μs (for a machine clock of 24 MHz; including sampling time).
- The converter uses the RC-type successive approximation conversion method with a sample and hold circuit.
- A resolution of 10 bits or 8 bits can be set.
- Up to 16 channels for analog input pins can be selected by a program.
- Various conversion mode :
 - Single conversion mode : Selectively convert one channel.
- -Scan conversion mode : Continuously convert multiple channels. Maximum of 16 selectable channels.
 - Continuous conversion mode : Repeatedly convert specified channels.
 - Stop conversion mode : Convert one channel then halt until the next activation (enables synchronization of the conversion start timing).
 - At the end of A/D conversion, an interrupt request can be generated and El²OS can be activated.
 - In the interrupt-enabled state, the conversion data protection function prevents any part of the data from being lost through continuous conversion.
 - The conversion can be activated by software, 16-bit reload timer 1 (rising edge) and 16-bit free-running timer zero detection edge.

(1) Register configuration

A/D Control Status Regist	er (uppe	r)							
	15	14	13	12	11	10	9	8 <	⊐ Bit
Address: 00000C7H	BUSY	INT	INTE	PAUS	STS1	STS0	STRT		ADCS1
Read/write ⊨> Initial value ⊨>	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	W 0	x	_
A/D Control Status Regist	er (lowei	-)							
_	7	6	5	4	3	2	1	0 <	⊐ Bit
Address: 0000C6н	MD1	MD0	S10					Reserved	ADCS0
Read/write ⊏ Initial value ⊏	1.7.4.4	R/W 0	R/W 0	x	X	x	x	0	
A/D Data Register (upper)	15	14	13	12	11	10	9	8	<⊐ Bit
Address: 00000C9H							D9	D8	ADCR1
Read/write ⊏ Initial value ⊏		X	x	X	X	X	R X	R X	-
A/D Data Register (lower)	7	6	5	4	3	2	1	0 <	⇔ Bit
Address: 0000C8H	D7	D6	D5	D4	D3	D2	D1	D0	ADCR0
Read/write □ Initial value □	1.	R X	R X	R X	R X	R X	R X	R X	_

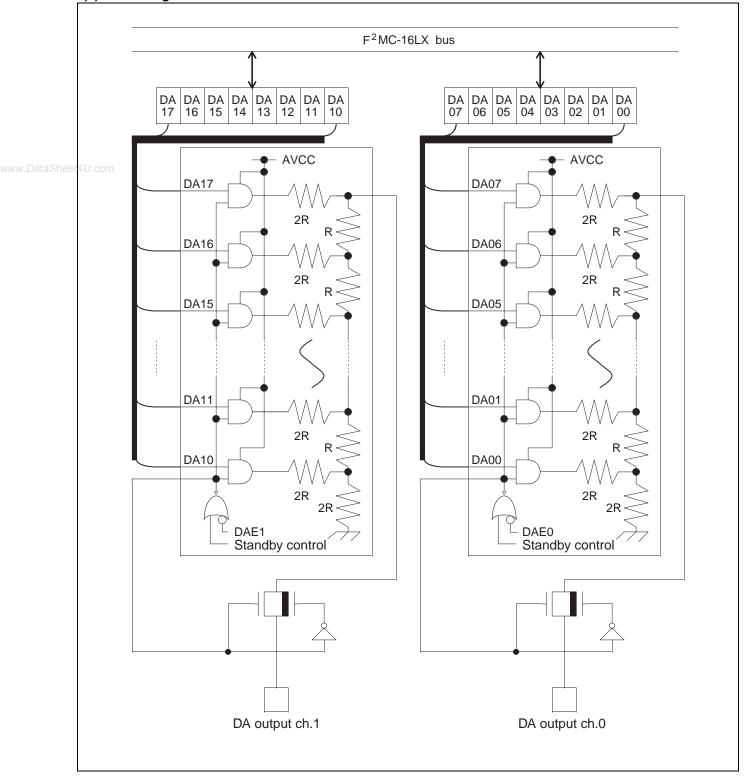
A/D Setting Register (upper	r)								
	15	14	13	12	11	10	9	8 🗢	Bit
Address: 00000CBH	ST2	ST1	ST0	CT2	CT1	СТО	Reserved	ANS3	ADSR1
 Read/write ⊨> Initial value ⊨>	R/W 0								
A/D Setting Register (lower)								
	7	6	5	4	3	2	1	0 <¬	Bit
Address: 0000CAH	ANS2	ANS1	ANS0	Reserved	ANE3	ANE2	ANE1	ANE0	ADSR0
Read/write ⇔ Initial value ⇔	R/W 0								
A/D Input Enable Register	15	14	13	12	11	10	9	8 <	⊐ Bit
Address: 00000C5н	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	ADER0
Read/write ⇔ Initial value ⇔	R/W 1	_							
A/D Input Enable Register	7	6	5	4	3	2	1	0 <=	Bit
Address: 0000D0H	ADE15	ADE14	ADE13	ADE12	ADE11	ADE10	ADE9	ADE8	ADER1
L Read/write ⇔ Initial value ⇔		R/W 1							

13. D/A Converter

The D/A converter is used to generate an analog output from an 8-bit digital input. By setting the enable bit in the D/A control register (DACR) to 1, it will enable the corresponding D/A output channel. Hence, setting this bit to 0 will disable that channel.

If D/A output is disabled, the analog switch inserted to the output of each D/A converter channel in series is turned off. In the D/A converter, the bit is cleared to 0 and the direct-current path is shut off. The above is also true in the stop mode.

The output voltage of the D/A converter ranges from 0 V to $255/256 \times AV_{cc}$. To change the output voltage range, adjust the AV_{cc} voltage externally.


The D/A converter output does not have the internal buffer amplifier. The analog switch (= 100 Ω) is inserted to the output in series. To apply load to the output externally, estimate a sufficient stabilization time.

Value written to DA07 to DA00 and DA17 to DA10	Theoretical value of output voltage
00н	0/256 × AVcc (= 0 V)
01н	1/256 × AVcc
02н	2/256 × AVcc
:	:
FDн	253/256 × AVcc
FE _H	254/256 × AVcc
FFH	255/256 × AVcc

Table below lists the theoretical values of output voltage of the D/A converter.

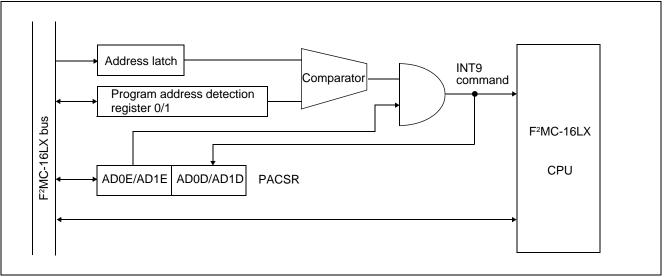
(1) Register configuration

D/A data register 1									
Bit	15	14	13	12	11	10	9	8	I
Address:0000CDH	DA17	DA16	DA15	DA14	DA13	DA12	DA11	DA10	DAT1
Read/write		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value \rightarrow	. Х	Х	Х	Х	Х	Х	Х	Х	
J.com D/A data register 0									
Bit	7	6	5	4	3	2	1	0	
Address:0000CCн	DA07	DA06	DA05	DA04	DA03	DA02	DA01	DA00	DAT0
Read/write \rightarrow	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value \rightarrow	X	Х	Х	Х	Х	Х	Х	Х	
D/A control register 1									
	15	14	13	12	11	10	9	8	
D/A control register 1			13	12	11	10	9		DACR1
D/A control register 1 Bit	15	14						8	DACR1
D/A control register 1 Bit Address:0000CFн	15 - -	14			-	-	-	8 DAE1	DACR1
D/A control register 1 Bit Address:0000CFн [Read/write →	15 - -	14 - -	-	-	-	-	-	8 DAE1 R/W	DACR1
D/A control register 1 Bit Address:0000CF _H [Read/write → Initial value →	15 - -	14 - -	-	-	-	-	-	8 DAE1 R/W	DACR1
D/A control register 1 Bit Address:0000CF _H [Read/write → Initial value → D/A control register 0	15 - - X	14 - - X	- - X	- - X	- - X	- - X	- - X	8 DAE1 R/W 0	
D/A control register 1 Bit Address:0000CF _H [Read/write → Initial value → D/A control register 0 Bit	15 - X 7 -	14 - - X 6	- - X 5	- - X 4	- - X 3	- - X 2	- - X 1	8 DAE1 R/W 0	

14. ROM Correction Function

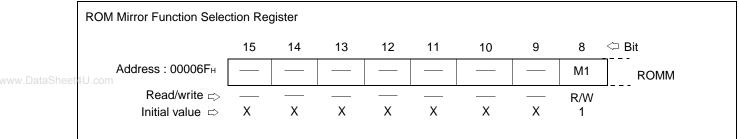
When the corresponding address matches the value set in the address detection register, the instruction code to be loaded into the CPU is forced to be replaced with the INT9 instruction code (01_{H}). When executing a set instruction, the CPU executes the INT9 instruction. The address detection function is implemented by processing using the INT9 instruction routine.

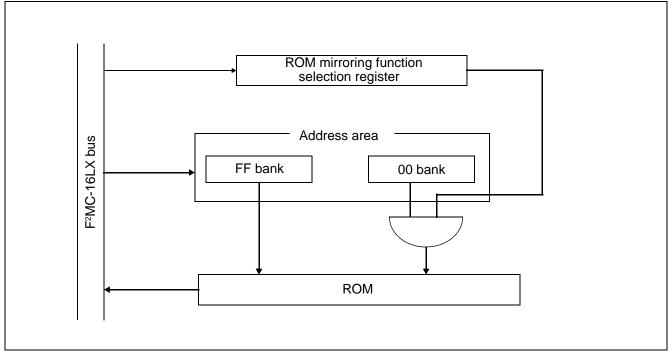
The device contains two address detection registers, each provided with a compare enable bit. When the value set in the address detection register matches an address and the interrupt enable bit is "1", the instruction code to be loaded into the CPU is forced to be replaced with the INT9 instruction code.


Sheet (1) Register configuration

	7	6	5	4	3	2	1	0	<⊐ Bit
Address: 00009Eн					AD1E	AD1D	AD0E	AD0D	PADCSR
Read/write 🖘					R/W	R/W	R/W	R/W	•
Initial value 🖒	Х	Х	Х	Х	0	0	0	0	
Program Address Dete	ction Reg	gister 0 (l	Jpper By	te)					
	7	6	5	4	3	2	1	0	<⊐ Bit
Address: 001FF2 _H									PADRH0
Read/write ⊨>		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value 🖒	Х	Х	Х	Х	Х	Х	Х	Х	
Program Address Dete	ction Re 15	gister 0 (14	Middle B	yte) 12	11	10	9	8	<⊐ Bit
Address: 001FF1н									PADRM0
Read/write □	⇒ R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value		Х	Х	Х	Х	Х	Х	Х	
Program Address Dete	otion Bo	aistor 0	l owor P	vto)					
Program Address Dete	7	gister 0 6	Lower B	yte) 4	3	2	1	0	<⊐ Bit
_	, T	0	5	4	3	2	1	0	~ bii T
Address: 001FF0H									PADRL0
Read/write ⊏		R/W	R/W	R/W	R/W	R/W	R/W	R/W	_
Initial value ∟	> X	Х	Х	Х	Х	Х	Х	Х	
Program Address Dete	ection Re	gister 1 (Upper B	yte)					
·		4.4	13	12	11	10	9	8	<⊐ Bit
-	15	14	13	12					
Address: 001FF5н	15	14	13	12					PADRH1

Program Address Dete		6		4	3	2	1	0	<⊐ Bit
	7	0	5	4	3	2	1	0	
Address: 001FF4 _H									PADRM1
Read/write		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value 🖒	X	Х	Х	Х	Х	Х	Х	Х	
rogram Address Detec	ction Reg 15	gister 1 (L 14	₋ower By 13	te) 12	11	10	9	8	⇔ Bit —
- Г			-	-	11	10	9	8	Bit
rogram Address Deted Address: 001FF3н Read/write ⇔			-	-	11 R/W	10 R/W	9 R/W	8 R/W	T


(2) Block diagram


15. ROM Mirroring Function Selection Module

The ROM mirror function selection module sets the data in ROM assigned to FF bank so that the data is read by access to 00 bank.

(1) Register configuration

(2) Block diagram

16. 512/1024 Kbit Flash Memory

The 512K bits flash memory is allocated in the FFH banks on the CPU memory map.

The 1024K bits flash memory is allocated in the FE_H and FF_H banks on the CPU memory map.

Like MaskROM, flash memory is read-accessible and program-accessible to the CPU using the flash memory interface circuit. The flash memory can be programmed/erased by the instruction from the CPU via the flash memory interface circuit. The flash memory can therefore be reprogrammed (updated) while still on the circuit board under integrated CPU control, allowing program code and data to be improved efficiently. Note that sector operations such as "enable sector protect" cannot be used.

Features of 512/1024K bits flash memory

- 64K x 8 bits/32K x 16 bits (32K + 8K x 2 + 16K) sector configuration for 512K bits flash memory
- 128K x 8 bits/64K x 16 bits (64K + 32K + 8K x 2 + 16K) sector configuration for 1024K bits flash memory
- Automatic program algorithm (same as the Embedded Algorithm* : MBM29F400TA)
- · Installation of the deletion temporary stop/delete restart function
- · Write/delete completion detected by the data polling or toggle bit
- Write/delete completion detected by the CPU interrupt
- · Compatibility with the JEDEC standard-type command
- Each sector deletion can be executed (sectors can be freely combined)
- Flash security function
- Number of write/delete operations are guaranteed 10,000 times.
- * : Embedded Algorithm is a trademark of Advanced Micro Devices, Inc.

(1) Register configuration

	7	6	5	4	3	2	1	0 <=	Bit number
Address: 0000AEH	INTE	RDYINT	WE	RDY	Reserved	Reserved	Reserved	Reserved	FMCS
Read/write ⊨>	R/W	R/W	R/W	R	·	·	·	I	
Initial value 🗠	0	0	0	Х	0	0	0	0	

(2) Sector configuration of flash memory

The flash memory has the sector configuration illustrated below. The addresses in the illustration are the upper and lower addresses of each sector.

Flash memory	CPU address	*Writer address
	FFFFF _H	7FFFF _H
SA3 (16K bytes)	FFC000 _H	7C000 _H
	FFBFFF _H	7BFFF _H
SA2 (8K bytes)	FFA000H	7A000 _H
SA1 (8K bytes)	FF9FFF _H	79FFF _H
SAT (or bytes)	FF8000 _H	<u>78000н</u>
SA0 (32K bytes)	FF7FFF _H	77FFF _H
	FF0000 _H	70000 _Н

When 512K bits flash memory is accessed from the CPU, SA0 to SA3 are allocated in the FF bank.

When 1024K bits flash memory is accessed from the CPU, SA0 to SA4 are allocated in the FE and FF bank.

Flash memory	CPU address	*Writer address
	FFFFFH	7FFFF _H
SA4 (16K bytes)	FFC000H	7C000н
SA3 (8K bytes)	FFBFFF _H	7BFFF _H
OAS (OR Dytes)	FFA000 _H	7А000 _Н
SA2 (8K bytes)	FF9FFF _H	79FFF _H
	FF8000 _H	78000 _H
SA1 (32K bytes)	FF7FFF _H	77FFF _H
	FF0000 _H	70000н
SA0 (64K bytes)	FE7FFF _H	6FFFF _H
SAU (04R bytes)	FE0000 _H	60000 _Н

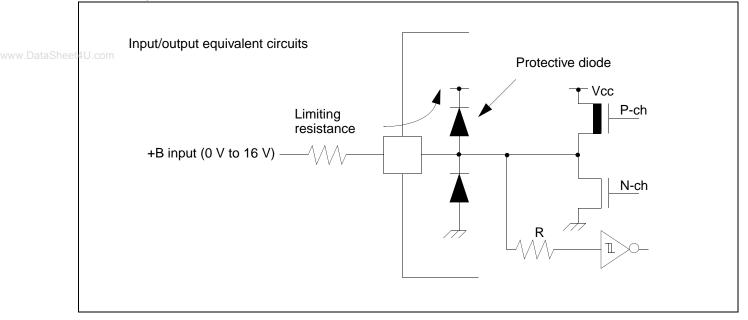
*: The writer address is the address to use instead of the CPU address when writing data from a parallel flash memory writer. Use the writer address when programming or erasing using a general-purpose parallel writer.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Devemeter	Symbol	Rat	ting	Unit	Remarks
Parameter	Symbol	Min	Max	Unit	Remarks
	Vcc	Vss - 0.3	Vss + 6.0	V	
Power supply voltage*1	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc *2
	AVR	Vss - 0.3	Vss + 6.0	V	$AV_{CC} \ge AVR, AVR \ge AV_{ss}$
Input voltage*1	Vı	Vss - 0.3	Vss + 6.0	V	*3
Output voltage*1	Vo	Vss - 0.3	Vss + 6.0	V	*3
Maximum clamp current	CLAMP	- 2.0	+ 2.0	mA	*5
Total maximum clamp current	$\Sigma \mid$ Iclamp \mid		20	mA	*5
"L" level maximum output current	lol		15	mA	*4
"L" level average output current	OLAV1	—	4	mA	Except for P00 to P07, P82 to P87
L level average output current	OLAV2		12	mA	P00 to P07, P82 to P87
"L" level total maximum output current	ΣΙοι		100	mA	
"L" level total average output current	Σ Iolav		50	mA	
"H" level maximum output current	Іон		-15	mA	*4
"H" level average output current	ОНАУ	—	-4	mA	
"H" level total maximum output current	ΣІон		-100	mA	
"H" level total average output current	ΣΙοήαν		-50	mA	
Power consumption	PD		430	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

*1 : This parameter is based on $V_{SS} = AV_{SS} = 0.0 V$.

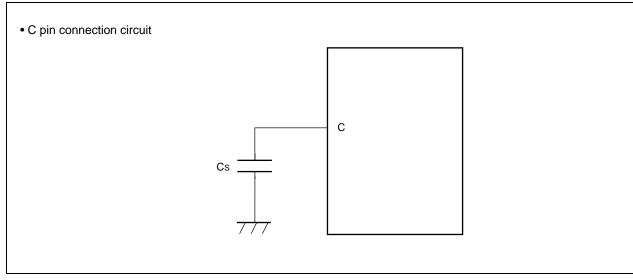

*2 : AVcc must never exceed Vcc when the power is turned on.

*3 : VI and Vo must never exceed Vcc + 0.3 V. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating.

*4 : The maximum output current is a peak value for a corresponding pin.

- *5 : Applicable to pins: P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50, P51, P80 to P87.
 - Use within recommended operating conditions.
 - Use at DC voltage (current).
 - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.

- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins (LCD drive pins and comparator input pins, etc.) other than the A/D input pins cannot accept +B input.
- Sample recommended circuits:



WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(Vss = AVss = 0.0 V)

	Parameter	Symbol	Value		Unit	Remarks
	Parameter	Symbol	Min	Max	Unit	Reliarks
			4.5	5.5	V	Normal operation
	Power supply Vcc		4.0	5.5	V	Normal operation when D/A converter is not used
	voltage		3.5	5.5	V	Normal operation when A/D converter and D/A converter are not used
Shee	el4U.com		3.0	5.5	V	Maintains state in stop operation
	Smoothing capacitor	Cs	0.1	1.0	μF	Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor to be connected to the V_{CC} pin must have a capacitance value higher than Cs.
	Operating temperature	TA	-40	+85	°C	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

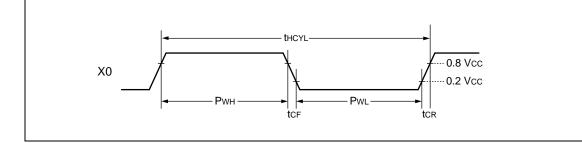
Dama	.	Dia			Value	, -,) °C to +85 °C
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
"H" level output voltage	Vон	All output pins	Vcc = 4.5 V, Іон = -4.0 mA	Vcc-0.5			V	
"L" level output	V _{OL1}	All pins except P00 to P07 P82 to P87	$V_{CC} = 4.5 \text{ V},$ $I_{OL1} = 4.0 \text{ mA}$	—		0.4	V	
voltage 4U.com	Vol2	P00 to P07 P82 to P87	Vcc = 4.5 V, lo _{L2} = 12.0 mA	—		0.4	V	
	Vін	P30 to P37 P60 to P67		0.7 Vcc		Vcc+0.3	V	CMOS input pin
"H" level input voltage	Vінs	P00 to P07 P10 to P17 P20 to P27 P40 to P47 *1 P50 to P51 P70 to P77 *1 P80 to P87 RST		0.8 Vcc		Vcc + 0.3	V	CMOS hysteresis input pin
1	VIHM	MD0 to MD2	$V_{cc} = 4.5 V \text{ to } 5.5 V$	Vcc-0.3		Vcc + 0.3	V	MD input pin
"L" level input voltage	VIL	P30 to P37 P60 to P67	VCC - 4.3 V 10 3.3 V	Vss - 0.3		0.3 Vcc	V	CMOS input pin
	Vils	P00 to P07 P10 to P17 P20 to P27 P40 to P47 *1 P50 to P51 P70 to P77 *1 P80 to P87 RST		Vss - 0.3		0.2 Vcc	V	CMOS hysteresis input pin
	Vilm	MD0 to MD2		$V_{\text{SS}}-0.3$		Vss + 0.3	V	MD input pin
Input leakage current	Iı∟	All input pins	Vcc = 5.5 V, Vss < VI< Vcc	-5		5	μA	
Pull-up resistance	Rup	P00 to P07 P10 to P17 P20 to P27 P30 to P37 RST		25	50	100	kΩ	
Pull-down resistance	Rdown	MD2		25	50	100	kΩ	Not available in MB90F822/ MB90F823

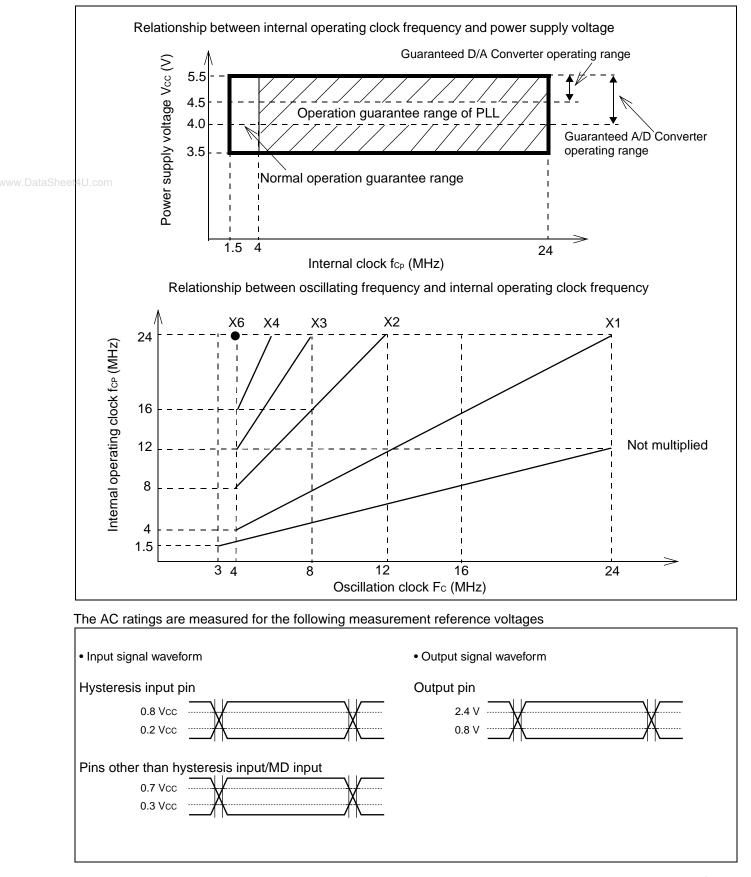
(Continued)

(Continued)

$(Vcc = 5.0 V \pm 10\%)$	Vss = AVss = 0.0 V	$T_{A} = -40 \ ^{\circ}C \ \text{to} \ +85 \ ^{\circ}C)$
--------------------------	--------------------	--

]	Parameter	Symbol Pin name Condition			Value		Unit	Remarks			
	Farameter	Symbol	Fin hame	Condition	Min	Тур	Max	Unit	Remarks		
				Vcc = 5.0 V,		35	50	mΑ	MB90822		
				Internal frequency: 24 MHz, At normal operation	_	45	60	mA	MB90F822/F823		
	w.DataSheet	Vcc = 5.0 V, 50 65	65	mΑ	MB90822						
w.Data		lcc		Internal frequency: 24 MHz, At writing in flash memory	rnal frequency: MHz, vriting in flash — 60 75 mA MB90F	MB90F822/F823					
				Vcc = 5.0 V, 55 70 mA MB90822	MB90822						
				Internal frequency: 24 MHz, At erasing memory	_	65	80	mA			
	Power supply		1/	$V_{cc} = 5.0 V,$				mA	MB90822		
	current*	lccs	VCC	Internal frequency: 24 MHz, At sleep mode		15	25	mA	MB90822 MB90F822/F823		
				Vcc = 5.0 V,				mA			
		Істѕ		Internal frequency: 2 MHz, At main timer mode		0.3	0.8	mA			
				Vcc = 5.0 V,				mA	MB90822		
		Ісст		Internal frequency:	7	μΑ	MB90F822/F823				
		Іссн		In stop mode,		5	20	mA	MB90822		
		ICCH		T _A = +25 °C		5	20	μA	MB90F822/F823		
	Input capacitance	CIN	Except AVcc, AVss, AVR, C, Vcc and Vss	_		5	15	pF			

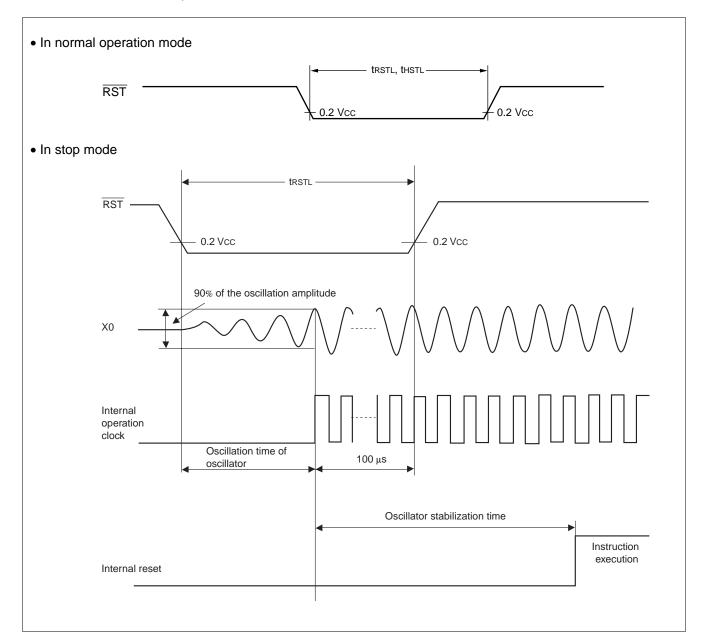

*1 : UART0, UART1 data input pins P45/SIN0, P72/SIN1 can be selected as CMOS input by user program.


*2 : Current values are tentative. They may be subject to change for enhanced characteristics without previous notice. The power supply current is measured with an external clock.

4. AC Characteristics

(1) Clock Timings

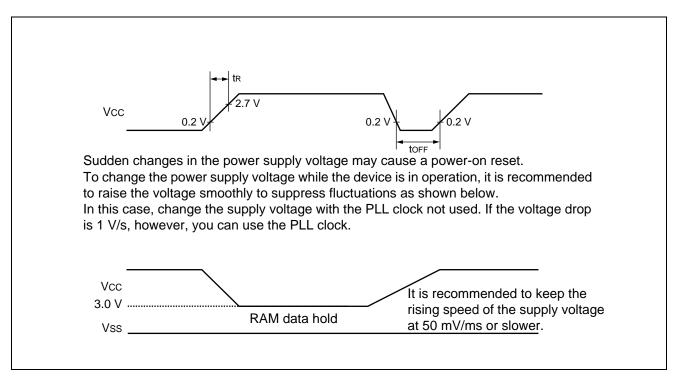
	$(V_{cc} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C})$										
Parameter	Symbol	Pin name		Value		Unit	Remarks				
Faranielei	Symbol		Min	Тур	Мах	Omt	Remarks				
Clock frequency	Fc	X0, X1	3		16	MHz	Crystal oscillator				
Clock frequency	FC	Λ0, Λ1	3		24	MHz	External clock				
Clock cycle time	t HCYL	X0, X1	62.5		333	ns	Crystal oscillator				
	LHCYL	λο, λτ	41.67	—	333	ns	External clock				
Input clock pulse width	Р _{WH} Pwl	X0	10		_	ns	Recommend duty ratio of 30% to 70%				
Input clock rise/fall time	tcr tcr	X0	_		5	ns	External clock operation				
Internal operating clock frequency	fср	—	1.5		24	MHz					
Internal operating clock cycle time	t _{CP}		41.67		666	ns					



(2) Reset Input Timing

$(V_{cc} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -4$										
Parameter	Symbol	Symbol Pin name Value			Unit	Remarks				
Farameter	Symbol	Fin name	Min	Min Max						
Reset input time			500		ns	Normal operation				
	t RSTL	RST	Oscillation time of oscillator* + 100		μs	Stop mode				
			100		μs	Timebase timer mode				

*: Oscillation time of oscillator is the time to reach to 90% of the oscillation amplitude from stand still. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In FAR/ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.

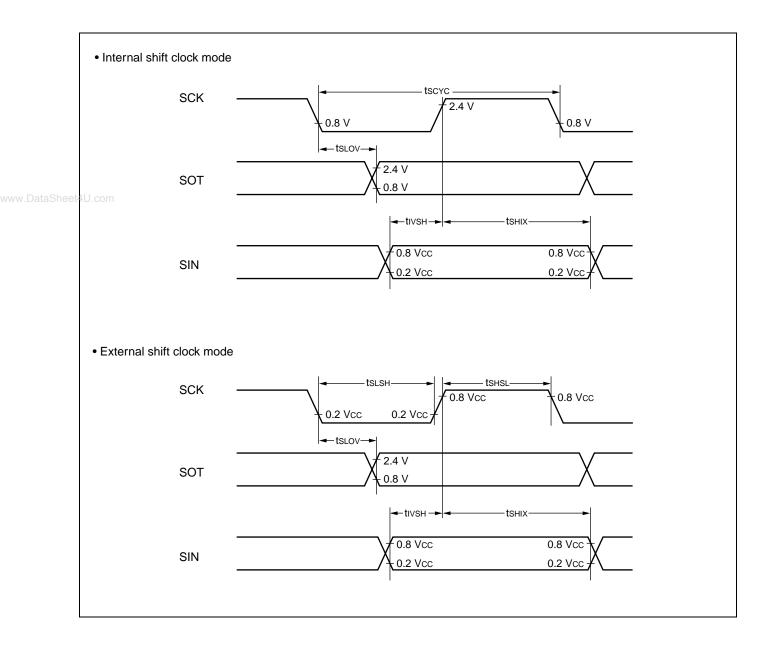


(3) Power-on Reset

	∕ss = AVss	$s = 0.0 V$, $T_A = -40 \circ C$ to $+85 \circ C$)						
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
Farameter	Symbol		Condition	Min	Max	Unit	Remarks	
Power supply rising time	tR	Vcc		0.05	30	ms		
Power supply cut-off time	toff	Vcc		1		ms	Due to repeated operations	

Notes : • Vcc must be kept lower than 0.2 V before power-on.

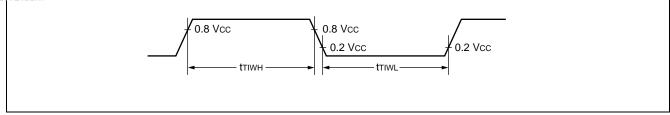
- The above values are used for causing a power-on reset.
 - Some registers in the device are initialized only upon a power-on reset. To initialize these registers, turn the power supply using the above values.


(4) UART0 to UART1

		(Vcc =	5.0 V±10%, Vss = AVs	s = 0.0	V, T _A = -	–40 °C	c to +85 °C)
Parameter	Symbol Pin name		Condition	Value		Unit	Remarks
Falanetei			Condition	Min	Max	onit	Kellia Ko
Serial clock cycle time	tscyc	SCK0 to SCK1		8 tcp		ns	
$SCK \downarrow \to SOT$ delay time	t slov	SCK0 to SCK1 SOT0 to SOT1	C∟ = 80 pF + 1 TTL for an output pin of	-80	80	ns	
Valid SIN → SCK ↑	t ivsh	SCK0 to SCK1 SIN0 to SIN1	internal shift clock	100	—	ns	
$SCK \uparrow \to valid SIN hold time$	tsнıx	SCK0 to SCK1 SIN0 to SIN1		60	_	ns	
Serial clock "H" pulse width	t s∺s∟	SCK0 to SCK1		4 t cp	—	ns	
Serial clock "L" pulse width	t s∟sн	SCK0 to SCK1		4 t cp		ns	
SCK $\downarrow \rightarrow$ SOT delay time	t slov	SCK0 to SCK1 SOT0 to SOT1	$C_{L} = 80 \text{ pF} + 1 \text{ TTL}$ for an output pin of		150	ns	
Valid SIN $ ightarrow$ SCK \uparrow	tıvsн	SCK0 to SCK1 SIN0 to SIN1	external shift clock mode	60		ns	
$SCK \uparrow \to valid SIN hold time$	tsнıx	SCK0 to SCK1 SIN0 to SIN1		60		ns	

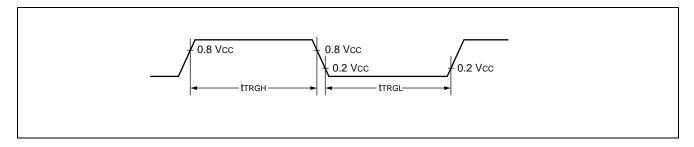
Notes : • These are AC ratings in the CLK synchronous mode.

• CL is the load capacitance value connected to pins while testing.


• tcp is machine cycle time (unit : ns).

(5) Resources Input Timing

		(V	cc = 5.0 V±10%	b, Vss = AVss	= 0.0 V, T _A =	-40 °C	C to +85 °C)
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Farameter	Symbol	Fill lidille	Condition	Min	Max	Onit	
Input pulse width	t⊤iwн t⊤iw∟	IN0 to IN3, TIN0 to TIN1, PWI0 to PWI1, DTTI	_	4 tcp		ns	

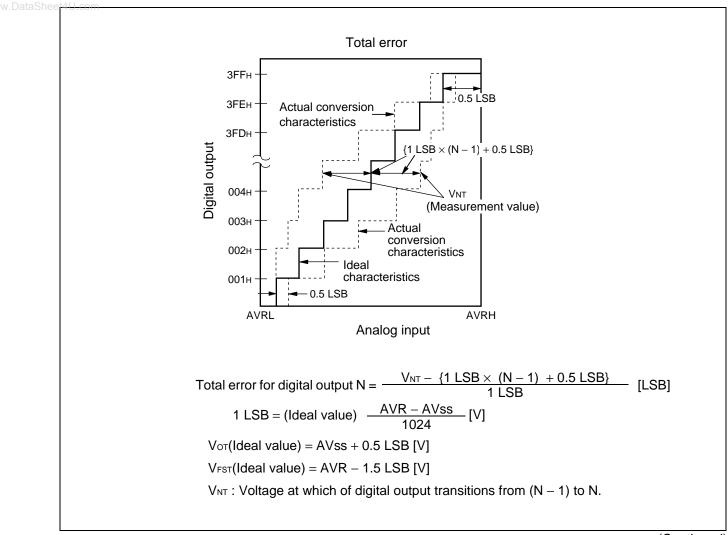

www.DataSheet4U.com

(6) Trigger Input Timing

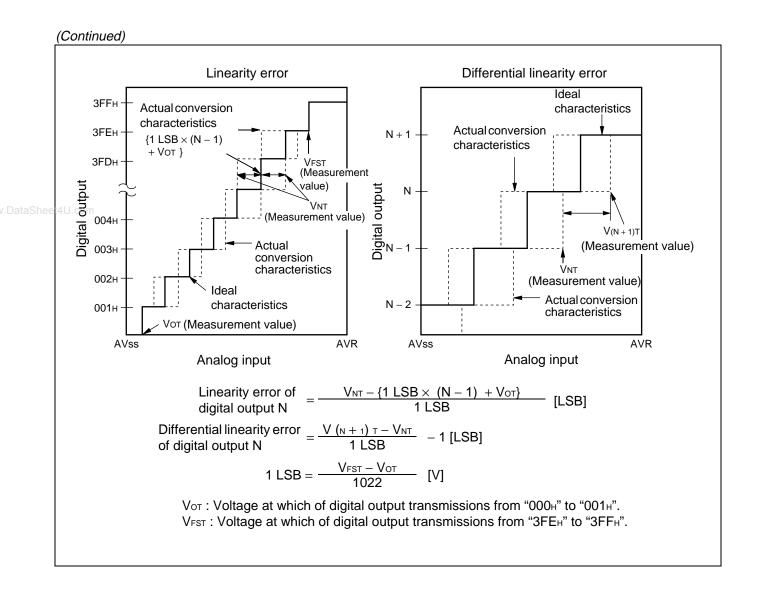
 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ } T_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Falanetei	Symbol	Finname	Condition	Min	Max	Unit	itemaiks
Input pulse width	t trgh t trgl	INT0 to INT7		5 tc₽		ns	

Parameter	Symbol	Symbol Pin		Value	Unit	Remarks	
Farameter	Symbol	name	Min	Тур	Max		Reliidiks
Resolution		_	—	10		bit	
Total error			—		±3.0	LSB	
Non-linearity error			—		±2.5	LSB	
Differential linearity error					±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN15	AVss – 1.5 LSB	AVss + 0.5 LSB	AV _{SS} + 2.5 LSB	mV	
Full-scale transition voltage	Vfst	AN0 to AN15	AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	mV	
Compare time			1.0	_	—	μs	4.5 V ≤ AVcc ≤ 5.5 V
			2.0		_	μs	4.0 V <u><</u> AVcc < 4.5 V
Sampling time			0.5			μs	4.5 V <u><</u> AVcc <u><</u> 5.5 V
			1.2			μs	4.0 V <u><</u> AVcc < 4.5 V
Analog port input current	Iain	AN0 to AN15	- 0.3		+ 0.3	μA	
Analog input voltage	VAIN	AN0 to AN15	AVss		AVR	V	
Reference voltage		AVR	AVss + 2.7		AVcc	V	
Power supply	la	AVcc		2.4	4.7	mA	
current	Іан	AVCC			5	μΑ	*
Reference voltage	Ir	AVR	—	600	900	μΑ	
supply current	Irh		—		5	μΑ	*
Offset between channels	_	AN0 to AN15			4	LSB	

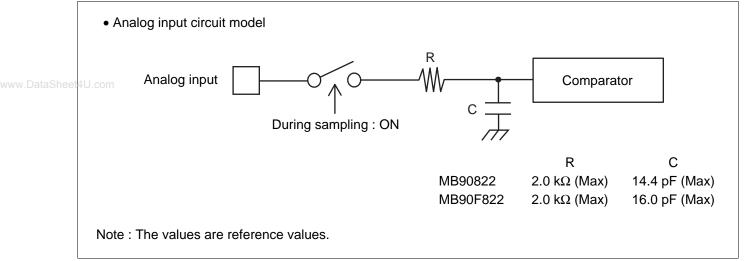

5. A/D Converter Electrical Characteristics $(3.0.) \le A/B = A/co = A/co$

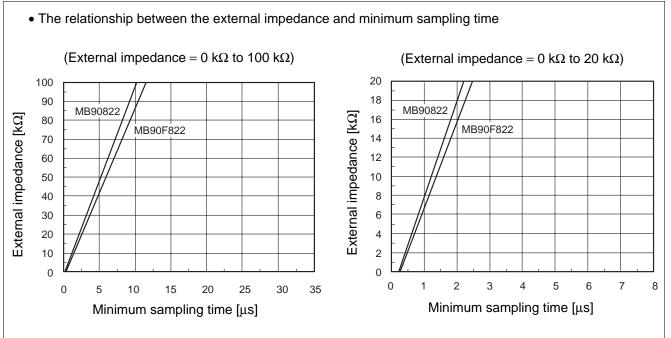
* : The current when the A/D converter is not operating or the CPU is in stop mode (for $V_{CC} = AV_{CC} = AVR = 5.0 V$)


Note : The error increases proportionally as |AVR - AVss| decreases.

6. A/D Converter Glossary

Resolution	: Analog variation that is recognized by an A/D converter. : Deviation between a line across zero-transition line ("00 0000 0000" \leftrightarrow
Non linearity error	"00 0000 0001") and full-scale transition line ("11 1111 1110"↔"11 1111 1111") and actual conversion characteristics.
Differential linearity err	or : Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value
Total error	: Difference between an actual value and an ideal value. Atotal error includes zero transition error, full-scale transition error, and linear error.


(Continued)


7. Notes on Using A/D Converter

• About the external impedance of the analog input and its sampling time

• A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.

• To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.

• If the sampling time cannot be sufficient, connect a capacitor of about 0.1 μ F to the analog input pin.

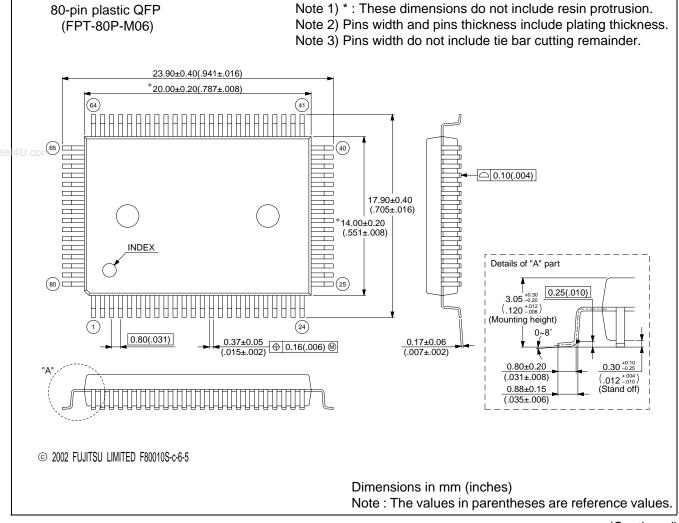
• About the error

The accuracy gets worse as | AVR-AVss | becomes smaller.

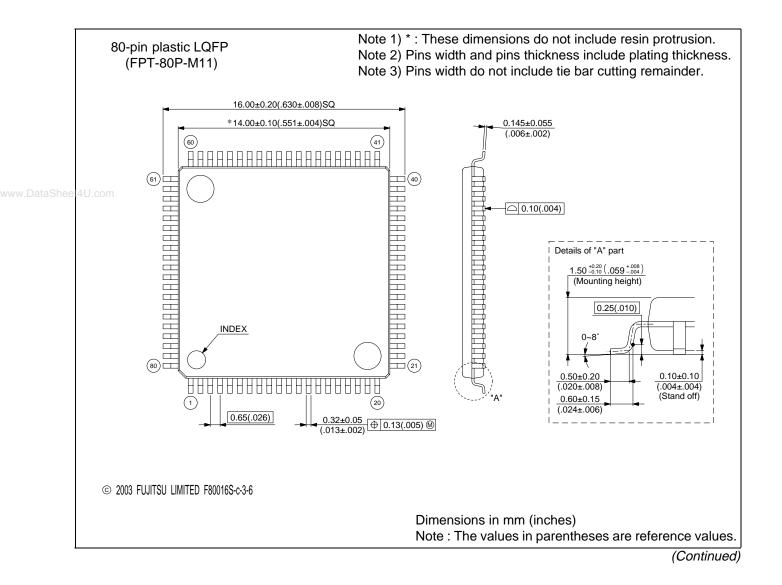
8. Electrical Characteristics of D/A convertor ($Vcc = AVcc = 4.5 V to 5.5 V$, $Vss = AVss = 0.0 V$, $T_A = -40 °C to +85 °C$)								
Parameter	Symbol	Din nomo	Condition		Value	Value		Remarks
Parameter	Symbol	Pin name		Min	Тур	Max	– Unit	Remarks
Resolution					8	_	bit	
Differential linearity error						±0.5	LSB	
Conversion time					0.45		μs	*
Analog output impedance				_	2.9	3.8	kΩ	
el4U.com	DVR	AVcc		_	160	920	μA	
Power supply current	DVRS				0.1		μA	D/A stops

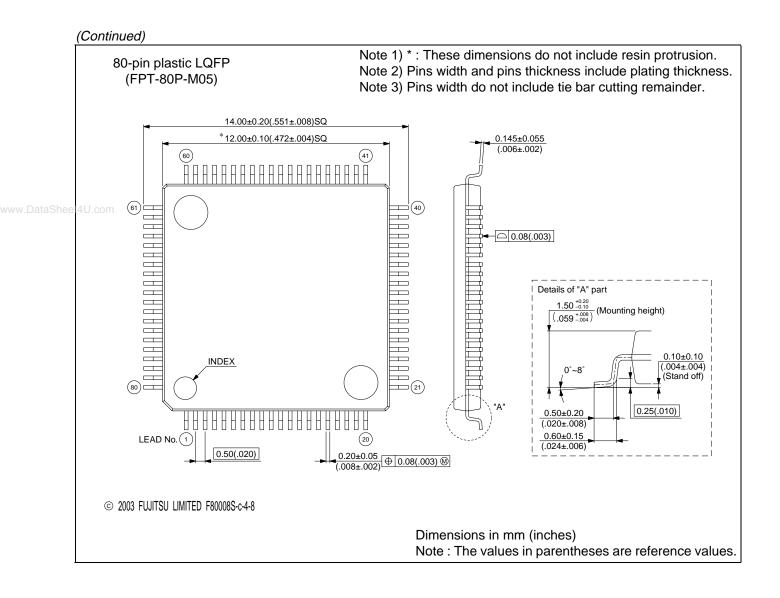
* : With load capacitance 20 pF.

Parameter	Condition		Value		Unit	Remarks
Falameter	Condition	Min	Тур	Max	Unit	Remarks
Sector erase time			1	15	S	Excludes programming prior to erasure
Chip erase time	T _A = +25 °C Vcc = 5.0 V		9		S	Excludes programming prior to erasure
Word (16 bit width) programing time			16	3,600	μs	Except for the overhead time of the system
Program/Erase cycle		10,000	_	—	cycle	
Flash data retention time	Average T _A = +85 °C	20			Year	*


9. Flash Memory Program/Erase Characteristics

* : This value comes from the technorogy qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C).


■ ORDERING INFORMATION


Part number	Package	Remarks
MB90F823PFV MB90F822PFV MB90822PFV	80-pin Plastic LQFP (FPT-80P-M05)	
MB90F823PFM MB90F822PFM MB90822PFM	80-pin Plastic LQFP (FPT-80P-M11)	
MB90F823PF MB90F822PF MB90822PF	80-pin Plastic QFP (FPT-80P-M06)	

■ PACKAGE DIMENSIONS

(Continued)

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0410 © 2004 FUJITSU LIMITED Printed in Japan