10.7Gbps Linear Transimpedance Amplifier with Output Offset Adjust

General Description

The MAX3910 is a 10.7 Gbps transimpedance amplifier designed for SONET OC-192/SDH STM-64, DWDM, and 10Gbps systems employing optical amplifiers. Operating from a single +5 V or -5.2 V supply, it converts a photodiode current into a measurable differential voltage. This product has a linear gain for an input current up to $950 \mu A P-P$, and a soft-limiting feature that provides an increasing output swing for an input current up to the 3.5 mAp -p overload. An offset adjust circuit and out-put-level monitors allow for system threshold adjustment. Additional features include back-terminated 50Ω outputs and an integrated 200Ω filter resistor to bias the photodiode.
The MAX3910 has a small-signal bandwidth of 9.1 GHz and a small-signal transimpedance of $1.65 \mathrm{k} \Omega$. The part achieves an input sensitivity of $15.5 \mu \mathrm{Ap}-\mathrm{p}$ for a BER of 10^{-12}, translating to an optical sensitivity of 19.3 dBm for a PIN ($r=0.9, r_{e}=6.6$) photo detector and 28.8 dBm for an APD ($\mathrm{M}=8, \rho=0.9$, $\mathrm{re}=10$) photo detector.
The MAX3910 is fabricated in Maxim's in-house SiGe process and is available in die form.

Applications

DWDM Systems
OC-192/STM-64 Transmission Systems
10Gbps Systems Using Optical Amplifiers
10Gbps Optical Receivers

Features

- 950μ Ap-p Linear Range
- 15.5μ Ap-p Sensitivity
- 3.5mAp-p Overload
- 1.65k Ω Transimpedance
- 9.1 GHz Bandwidth
- 110mA Supply Current
- Output Offset Adjustment
- Soft-Limiting Beyond Linear Input Range
- Single +5 V or -5.2 V Power Supply
- ESD Protection

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3910U/D	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Dice *

*Dice are designed to operate over a $0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ junction temperature $\left(T_{J}\right)$ range, but are tested and guaranteed at $T_{A}=$ $+25^{\circ} \mathrm{C}$.

10.7Gbps Linear Transimpedance Amplifier with Output Offset Adjust

ABSOLUTE MAXIMUM RATINGS

Power-Supply Voltage ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$)-0.5V to +6.0 V
Continuous Input Current (IN)... \qquad .4 .2 mA
Continuous Input Current (FILT)
9.8 mA

Continuous Output Current (OUT+, OUT-) .35 mA
Voltage at CHF, FILT, MON+, MON-,
MONIN, OSADJ \qquad ..(VEE -0.5 V) to the lower of +6.0 V and $(\mathrm{VCC}+0.5 \mathrm{~V})$

Storage Ambient Temperature Range (TSTG) $\ldots-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Die Attach Temperature ... $+400^{\circ} \mathrm{C}$ Operating Temperature Range
(Junction Temperature Range)
....................$-20^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.75 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{TJ}=0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	IEE	$V_{\text {EE } 2}$ open (Note 3), Figure 1		95	138	mA
Supply Current	IEE	$V_{E E} 2$ connected to negative supply (Note 3), Figure 1		110	158	mA
Power-Supply Noise Rejection	PSNR	$\mathrm{IIN} \leq 450 \mu$ AP-P, $\mathrm{f} \leq 1 \mathrm{MHz}$		23		dB
		$\mathrm{I} \mathrm{IN} \leq 450 \mu \mathrm{AP}_{\text {-P, }} \mathrm{f} \leq 10 \mathrm{MHz}$ (Note 4)		22		
Input Bias Voltage				$\begin{gathered} V_{E E}+ \\ 0.95 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 1.1 \end{gathered}$	V
Transimpedance (Note 5)	ZF	$\mathrm{IIN} \leq 450 \mu \mathrm{AP}_{-\mathrm{P}}$	1.40	1.65	1.87	$k \Omega$
		$\mathrm{I} / \mathrm{N}=1.0 \mathrm{mAP-P}$		1.37		
		$1 \mathrm{IN}=2.0 \mathrm{mAP-P}$		0.84		
Linear Input Current Range	ILIN	(Note 5)	450	950		μ AP-P
Low-Frequency Cutoff		CHF open, $\mathrm{IIN}^{\text {S }} 450 \mu$ Ap-P		6	25	kHz
		CHF $=0.1 \mu \mathrm{~F}, \mathrm{l} \mathrm{I}^{\mathrm{N}} \leq 450 \mu$ AP-P		0.5		
Photodiode Filter Resistor	RFILT		165	200	240	Ω
Output Monitor Resistance		To OUT+ or OUT-		10		$\mathrm{k} \Omega$
Single-Ended Output Resistance		To VCC	42	50	59	Ω
Maximum Differential Output Swing	Vod	(Note 6)	1.45	1.75	1.90	VP-P
Single-Ended Output Range	Vos	Outputs DC-coupled to 50Ω to V_{CC} (Note 6)	-1.3		0	V
Output DC Offset		$\mathrm{I} \mathrm{N}=7.5 \mu \mathrm{~A} \mathrm{DC}$	-7		+7	mV
		$\mathrm{I}_{\mathrm{IN}}=1.4 \mathrm{~mA} \mathrm{DC}$	-10		+10	
OSADJ Input Resistance			15	20		$\mathrm{k} \Omega$
OSADJ Input Range	VosADJ		-2.1		-0.4	V
OSADJ Voltage for Zero Offset			-1.375	-1.25	-1.125	V
Minimum Differential Output Offset		VOSADJ $=-0.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{C C}$		-320	-250	mV

10.7Gbps Linear Transimpedance Amplifier with Output Offset Adjust

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}-V_{E E}=4.75 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Maximum Output Offset		$\mathrm{V}_{\text {OSADJ }}=-2.1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ to $\mathrm{V}_{C C}$	250	320		mV
OSADJ Voltage Control Factor: OUT+		(\triangle VOSADJ)/ $/$ V OUT+	-3	-2		V/V
OSADJ Voltage Control Factor: OUT-		($\Delta \mathrm{V}_{\text {OSADJ }}$)/ $/ \mathrm{V}_{\text {OUT- }}$		2	3	V/V

AC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.75 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{TJ}=0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Bandwidth	BW3dB	$\mathrm{I}_{\text {IN }} \leq 450 \mu$ Ap-P $($ Notes 2, 11)	8.2	9.1		GHz
Input-Referred Noise	IN	(Notes 2, 7)		1.1	1.62	μ ARMS
Input Sensitivity		(Notes 2, 8)		15.5		μ AP-P
Input Overload	IOL	AC component (Note 9)	2.5	3.5		mAP-P
		DC component (Note 9)	1.4	1.8		mA
Gain Flatness		$100 \mathrm{MHz}-4 \mathrm{GHz}, \mathrm{l}$ IN $\leq 450 \mu A p-\mathrm{P}$ (Note 2)		± 0.75		dB
Gain Ripple		4 GHz - BW $3 \mathrm{~dB}, \mathrm{l}$ IN $\leq 450 \mu A P-\mathrm{P}$ (Note 2)		1.5		dB
Deterministic Jitter (Notes 2, 10)		$\mathrm{IIN} \leq 450 \mu$ AP-P		6.2	10.7	PSP-P
		$450 \mu \mathrm{AP}_{-\mathrm{P}} \leq \mathrm{I}_{\mathrm{IN}} \leq 2.5 \mathrm{mAP-P}$		7.5	14.6	
Single-Ended Output Return Loss (Note 2)		$\leq 7.5 \mathrm{GHz}$		10		dB

Note 1: Default test conditions: $V_{E E 2}$ and $C H F=$ open (see Figure 1), $R L=50 \Omega$ to $V_{C C}$, $D C$-coupled at each output, unless otherwise noted. AC characteristics are guaranteed by design and characterization.
Note 2: Source capacitance $=0.25 \mathrm{pF}$, source series resistance $=20 \Omega$, and source series inductance $=0.6 \mathrm{nH}$. Output series inductance $=0.5 \mathrm{nH}$ at each of the differential outputs.
Note 3: Supply current increases as average signal level increases. Maximum supply current is specified for $\mathrm{I}_{\mathrm{N}}=1.4 \mathrm{~mA}$ average current. Typical supply current is specified for $\mathrm{I}_{\mathrm{N}} \leq 225 \mu \mathrm{~A}$ average current.
Note 4: PSNR is measured by detecting the differential output voltage $\Delta \mathrm{V}_{\text {OUT }}$ while applying $\Delta \mathrm{V}_{\mathrm{EE}}=55 \mathrm{mV}$ P-P signal on $\mathrm{V}_{\mathrm{EE}} 1$. PSNR $=20 \log \left(\Delta V_{E E} / \Delta V_{O U T}\right)$. Output offset adjust feature disabled.
Note 5: Transimpedance is defined as $V_{O U T(P-P)} / \operatorname{lin}(P-P)$ at 10 MHz . Linear range is defined as the input signal level where the transimpedance deviates from the small-signal transimpedance value by no more than 10\%. See Figure 2.
Note 6: Input current $\leq 2.5 \mathrm{mAp}-\mathrm{p}$ and $\leq 1.4 \mathrm{~mA} \mathrm{DC}$.
Note 7: Measured with a 4th-order Bessel-Thompson filter with a cutoff frequency of 8GHz.
Note 8: Input sensitivity calculated from $\mathrm{S} / \mathrm{N} \geq 14.1$ ($\mathrm{BER} \leq 10^{-12}$).
Note 9: For input signal less than or equal to the input overload, deterministic jitter is guaranteed to be within specifications.
Note 10: Deterministic jitter is characterized with $2^{7}-1$ PRBS + eighty $0 s+$ eighty 1 s at 10.7 Gbps .
Note 11: Bandwidth is measured in an electrical environment and corrected to match the conditions of Note 2.

10.7Gbps Linear Transimpedance Amplifier with Output Offset Adjust

10.7Gbps Linear Transimpedance Amplifier with Output Offset Adjust

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Pad Description

PAD	NAME	FUNCTION
$1,8-16,31$, 32,33	VEE1 $^{\prime 2}$	Main Negative Power-Supply Voltage*

[^0]
10.7Gbps Linear Transimpedance Amplifier with Output Offset Adjust

Figure 1. Functional Diagram

Detailed Description

Figure 1 is a functional diagram of the MAX3910 linear transimpedance amplifier. It comprises a transimpedance amplifier stage, a gain stage, an output buffer, and a DC-cancellation circuit. An output offset adjust circuit is implemented to perform threshold adjust for systems using optical amplifiers.

Transimpedance Amplifier

The photodiode current flows into the summing node of a high-gain amplifier and a shunt feedback resistor. A DC-cancellation circuit removes the average current, and the AC component is linearly converted into a voltage over a wide input range.

DC-Cancellation Loop

The DC-cancellation circuit uses low-frequency feedback to remove the DC component of the input signal. This feature centers the input signal within the transimpedance amplifier's linear range, thereby reducing pulse-width distortion (PWD) on large input signals. The DC-cancellation circuit has a built-in capacitor to achieve a low-frequency cutoff of 25 kHz , and an external capaci-
tor bonded between CHF and VCC can be used to further reduce the cutoff frequency. This circuit minimizes PWD for data sequences that exhibit a 50% duty cycle and mark density. A duty cycle or mark density significantly different from 50\% causes the MAX3910 to generate PWD.

Voltage Amplifier

The single-ended signal from the transimpedance amplifier stage is converted to a differential signal and further amplified.

Output Buffer

 In addition to having a wide linear range, the MAX3910 has a soft-limiting feature. For inputs less than $950 \mu A p-p$, the MAX3910 operates linearly. Beyond this range, a soft-limiting feature is implemented so that the differential output swing is proportional to the input current, as shown in Figure 2. The output buffer is back-terminated with 50Ω on-chip resistors and can drive either a DCcoupled 50Ω load to $V_{C C}$, or a 50Ω AC-coupled load.
10.7Gbps Linear Transimpedance Amplifier with Output Offset Adjust

Figure 2. Linear Range of the MAX3910
Offset Adjust Circuit
Connecting $\mathrm{V}_{\mathrm{EE}} 2$ to the negative supply enables the offset adjust circuit. The circuit compares the external voltage applied to the OSADJ pad to an internal (Vcc 1.25 V) reference to introduce a DC offset at the differential outputs (Figure 3). This function is useful in systems that need threshold adjust. For AC-coupled loads, the circuit must be disabled.
The input network of the offset adjust circuit creates a lowpass filter with a cutoff frequency of approximately 85 MHz . If the pad is left unconnected, an internal vol-tage-divider sets the voltage at the pad to (Vcc 1.25 V). The input impedance is approximately $20 \mathrm{k} \Omega$.

Figure 3. Plot of Offset Adjust Circuit Behavior

MONIN Pad

The voltage at MONIN (VMONIN) serves as a received signal strength indicator (RSSI). The transimpedance gain of the average input current (IINAVE) to $\mathrm{V}_{\text {MONIN }}$ is typically:

$$
\frac{\Delta V_{\text {MONIN }}}{\Delta l_{\text {INAVE }}}=1000(\mathrm{~V} / \mathrm{A})
$$

Design Procedure

Power Supply
The MAX3910 requires wideband power-supply decoupling. Power-supply bypassing should provide low impedance between $\mathrm{V}_{\text {EE }} 1$ and V_{CC} for frequencies up to 10 GHz . If the offset-adjust circuit is enabled, it is recommended that the same filtering be applied to $\mathrm{V}_{E E} 2$.

Photodiode Filter

Supply-voltage noise at the cathode of the photodiode produces a noise current $\mathrm{I}=\mathrm{CPD} \Delta \mathrm{V} / \Delta \mathrm{t}$, which reduces the receiver sensitivity (CPD is the photodiode capacitance). The MAX3910 contains an internal 200Ω resistor between the FILT pad and Vcc. Combining this resistor with an external capacitor connected between the FILT pad and VEE1 creates a lowpass filter, which reduces photodiode noise current and improves receiver sensitivity. Current generated by supply-noise voltage is divided between the external capacitance and the photodiode capacitance. Assuming the filter capacitance is much larger than the photodiode capacitance, the input noise current due to supply noise is:

$$
I_{\text {NOISE }}=\frac{V_{\text {NOISE }} \times \text { C }_{\text {PD }}}{R_{\text {FILT }} \times \text { C FILT }}
$$

where CFILT is the external capacitance. If the amount of tolerable noise is known, the filter capacitance can be selected easily.

Wire Bonding

For high-current density and reliable operation, the MAX3910 uses gold metalization. Connections to the die should be made with gold wire only. Aluminum bonding is not recommended. Die thickness is typically 8 mils. Bondwire inductance between the photodiode and the IN pad can be optimized to obtain best performance. Higher inductance improves bandwidth, while lower bondwire inductance reduces time domain ringing. Bondwires on all other pads should be kept as short as possible to optimize performance. The backside of the MAX3910 die is fully insulated and can be connected to VCC or VEE.

10.7Gbps Linear Transimpedance Amplifier with Output Offset Adjust

Input Capacitance

Noise and bandwidth are adversely affected by capacitance on the MAX3910's input node. Use any techniques available to minimize input capacitance.

Output-Coupling Capacitors

The outputs of the MAX3910 can be AC- or DC-coupled. For more information on selecting AC-coupling capacitors, visit Maxim's website and follow the links to HFAN01.1: Choosing AC-Coupling Capacitors.

Applications Information

Optical Power Relations
Many MAX3910 specifications relate to the input signal amplitude. When working with fiber optic receivers, the input sometimes is expressed in terms of average optical power and extinction ratio.
Optical power relations are shown in Table 1 for an average mark density of 50% and an average duty cycle of 50%.

Optical Sensitivity Calculation

The MAX3910 input-referred RMS noise current (IN) generally determines the receiver sensitivity. To obtain a system bit-error rate of 10^{-12}, the signal-to-noise ratio must be 14.1 or better. The input sensitivity, expressed in average power, can be estimated as:

$$
\text { Sensitivity }=10 \log \left(\frac{14.1 \times I_{N} \times\left(r_{e}+1\right)}{2 \times \rho \times\left(r_{e}-1\right)} \times 1000\right) \mathrm{dBm}
$$

where ρ is the photodiode responsivity in A / W and I_{N} is measured in amperes.

Input Optical Overload

The overload is the largest input that the MAX3910 accepts while meeting specifications. Optical overload can be estimated in terms of average power with the following equation:

$$
\text { Overload }=10 \log \left(\frac{\mathrm{l}}{\mathrm{OL} \times\left(r_{\mathrm{e}}+1\right)} 22 \times \rho\left(r_{\mathrm{e}}-1\right)\right) \mathrm{dBm}
$$

where IOL(mAp-p) is the DC overload for the MAX3910.

Optical Linear Range
The MAX3910 has high gain and operates in a linear range for inputs not exceeding:

$$
\text { Linear range }=10 \log \left(\frac{\operatorname{lLIN} \times\left(r_{e}+1\right)}{2 \times \rho\left(r_{e}-1\right)}\right) \mathrm{dBm}
$$

where $\operatorname{lLIN}($ mAP-P $)$ is the peak-to-peak linear range.
Table 1. Optical Power Relations*

PARAMETER	SYMBOL	PIN-PACKAGE
Average	PAVG	PAVG $=(\mathrm{PO}+\mathrm{P} 1) / 2$
Extinction	re	$\mathrm{r}_{\mathrm{e}}=\mathrm{P} 1 / \mathrm{P} 0$
Optical Power of a 1	P1	$\mathrm{P} 1=2 \mathrm{PAVG}_{\mathrm{AV}} \frac{r_{\mathrm{e}}}{r_{\mathrm{e}}+1}$
Optical Power of a 0	P0	$\mathrm{PO}=2 \mathrm{PAVG} /\left(\mathrm{re}_{\mathrm{e}}+1\right)$
Optical Modulation Amplitude	Pin	$\mathrm{PIN}=\mathrm{P} 1-\mathrm{PO}=2 \mathrm{PAVG} \frac{\mathrm{r}_{\mathrm{e}}-1}{r_{e}+1}$

*Assuming a 50\% average mark density.

Figure 4. Optical Power Relations

10.7Gbps Linear Transimpedance Amplifier with Output Offset Adjust

Pad Coordinates

PAD	NAME	COORDINATES ($\mu \mathrm{m}$)	
		X	Y
1	VEE1	38	1259
2	MONIN	43	1034
3	N.C.	43	908
4	N.C.	43	782
5	IN	43	656
6	FILT	43	530
7	N.C.	50	282
8	VEE1	47	47
9	VEE 1	173	47
10	VEE1	299	47
11	VEE1	425	47
12	VEE1	551	47
13	$V_{\text {EE }} 1$	677	47
14	$\mathrm{V}_{\text {EE }} 1$	803	47
15	VEE1	929	47
16	VEE1	1055	47
17	$\mathrm{V}_{\text {EE }} 1$	1181	47
18	VCC	1255	267
19	VCC	1255	393
20	OUT-	1255	519
21	VCC	1255	645
22	OUT+	1255	771
23	VCC	1255	897
24	Vcc	1255	1055
25	CHF	1172	1259
26	VCC	1046	1259
27	MON-	920	1259
28	$\mathrm{MON+}$	794	1259
29	OSADJ	668	1259
30	VCC	542	1259
31	VEE1	416	1259
32	VEE1	290	1259
33	VEE1	164	1259

Coordinates are in $\mu \mathrm{m}$ from the lower left corner of the circuit die to the center of the pad. For more information, refer to HFAN-08.0.1: Understanding Bonding Coordinates and Physical Die Size.

Chip Information
TRANSISTOR COUNT: 1291
PROCESS: BiPOLAR SiGe, SOI
Die Size: $1.6 \mathrm{~mm} \times 1.6 \mathrm{~mm}$

[^0]: *The MAX3910 can operate with a positive supply $\left(V_{E E}=G N D\right)$ or a negative supply $\left(V_{C C}=G N D\right) .4 .75 V \leq\left(V_{C C}-V_{E E}\right) \leq 5.5 \mathrm{~V}$.

