Hot-Swappable, Dual I²C Isolators, 5 kV

Data Sheet

FEATURES

Bidirectional $I^{2} \mathrm{C}$ communication

Open-drain interfaces
Suitable for hot-swap applications
30 mA current sink capability
1000 kHz operation
3.0 V to 5.5 V supply/logic levels

16-lead SOIC wide body package version (RW-16)
16-lead SOIC wide body enhanced creepage version (RI-16)
High temperature operation: $105^{\circ} \mathrm{C}$
Safety and regulatory approvals (RI-16 package)
UL recognition: 5000 V rms for 1 minute per

UL 1577

CSA Component Acceptance Notice \#5A
IEC 60601-1: 250 V rms (reinforced)
IEC 60950-1: 400 V rms (reinforced)
VDE Certificate of Conformity
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12
$V_{\text {IORM }}=846$ V peak

APPLICATIONS

Isolated $I^{2} C$, SMBus, or PMBus Interfaces
Multilevel $I^{2} C$ interfaces
Power supplies
Networking
Power-over-Ethernet

GENERAL DESCRIPTION

The ADuM2250/ADuM2251 ${ }^{1}$ are hot-swappable digital isolators with nonlatching bidirectional communication channels that are compatible with $\mathrm{I}^{2} \mathrm{C}^{\ominus}$ interfaces. This eliminates the need for splitting $\mathrm{I}^{2} \mathrm{C}$ signals into separate transmit and receive signals for use with standalone optocouplers.

The ADuM2250 provides two bidirectional channels supporting a complete isolated $\mathrm{I}^{2} \mathrm{C}$ interface. The ADuM2251 provides one bidirectional channel and one unidirectional channel for those applications where a bidirectional clock is not required.

The ADuM2250/ADuM2251 contain hot-swap circuitry to prevent data glitches when an unpowered card is inserted onto an active bus.

These isolators are based on iCoupler ${ }^{\circledR}$ chip-scale transformer technology from Analog Devices, Inc. iCoupler is a magnetic isolation technology with performance, size, power consumption, and functional advantages compared to optocouplers. The ADuM2250/ADuM2251 integrate iCoupler channels with semiconductor circuitry to enable a complete, isolated $I^{2} \mathrm{C}$ interface in a small form-factor package.
${ }^{1}$ Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329; other patents pending.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1. ADuM2250 Functional Block Diagram

Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com Fax: 781.461.3113 ©2007-2011 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagrams. 1
Revision History 2
Specifications 3
Electrical Characteristics 3
Test Conditions 5
Package Characteristics 6
Regulatory Information 6
Insulation and Safety-Related Specifications 6
REVISION HISTORY
9/11-Rev. 0 to Rev. A
Added 16-Lead SOIC Universal
Changes to Features Section and Endnote 1 1
Changes to Table 4 and Table 5. 6
Changes to Endnote 1 in Table 7 7
Changes to Functional Description Section and Figure 7 10
Updated Outline Dimensions 13
Changes to Ordering Guide 13
4/07-Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

DC Specifications

All voltages are relative to their respective ground. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$, unless otherwise noted.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
ADuM2250 Input Supply Current, Side 1, 5 V Input Supply Current, Side 2, 5 V Input Supply Current, Side 1,3.3 V Input Supply Current, Side 2, 3.3 V	$\mathrm{I}_{\mathrm{DD} 1}$ IDD2 $\mathrm{I}_{\mathrm{DD} 1}$ loD2		$\begin{aligned} & 2.8 \\ & 2.7 \\ & 1.9 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	mA mA mA mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD} 2}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD} 1}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD} 2}=3.3 \mathrm{~V} \end{aligned}$
ADuM2251 Input Supply Current, Side 1, 5 V Input Supply Current, Side 2, 5 V Input Supply Current, Side 1, 3.3 V Input Supply Current, Side 2, 3.3 V	IDD1 IDD2 IDD1 lod2		$\begin{aligned} & 2.8 \\ & 2.5 \\ & 1.8 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.7 \\ & 3.0 \\ & 2.8 \end{aligned}$	mA mA mA mA	$\begin{aligned} & V_{\mathrm{DD} 1}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD} 2}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D} 1}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD} 2}=3.3 \mathrm{~V} \end{aligned}$
LEAKAGE CURRENTS	$\mathrm{I}_{\text {SSA1, }}$, ISDA2, $\mathrm{I}_{\text {ISCL1, }}$, ISCL2		0.01	10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SDA} 1}=\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{SDA} 2}=\mathrm{V}_{\mathrm{DD} 2}, \\ & \mathrm{~V}_{\mathrm{SCl} 1}=\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{SCL} 2}=\mathrm{V}_{\mathrm{DD} 2} \end{aligned}$
SIDE 1 LOGIC LEVELS Logic Input Threshold ${ }^{1}$ Logic Low Output Voltages Input/Output Logic Low Level Difference ${ }^{2}$	$V_{\text {SDAIIL, }} V_{\text {SCLIIL }}$ $\mathrm{V}_{\text {SDA } 10 L}, \mathrm{~V}_{\text {SCL10L }}$ $\Delta \mathrm{V}_{\text {SDA } 1}, \Delta \mathrm{~V}_{\text {SCL1 }}$	$\begin{aligned} & 500 \\ & 600 \\ & 600 \\ & 50 \end{aligned}$		$\begin{aligned} & 700 \\ & 900 \\ & 850 \end{aligned}$	mV mV mV mV	$\begin{aligned} & \mathrm{I}_{\mathrm{SDA} 1}=\mathrm{I}_{\mathrm{SCL} 1}=3.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SDA} 1}=\mathrm{I}_{\mathrm{SCL} 1}=0.5 \mathrm{~mA} \end{aligned}$
SIDE 2 LOGIC LEVELS Logic Low Input Voltage Logic High Input Voltage Logic Low Output Voltage	$\mathrm{V}_{\text {SDA2LL }} \mathrm{V}_{\text {SCLIIL }}$ $\mathrm{V}_{\text {SDAZ2IH }}, \mathrm{V}_{\text {scl2IH }}$ $\mathrm{V}_{\text {SDA2OL }} \mathrm{V}_{\text {scl2ol }}$	$0.7 \times \mathrm{V}_{\mathrm{DD} 2}$		$\begin{aligned} & 0.3 \times \mathrm{V}_{\mathrm{DD} 2} \\ & 400 \end{aligned}$	V V mV	$\mathrm{IsDA2}=\mathrm{I}_{\mathrm{scl2}}=30 \mathrm{~mA}$

${ }^{1} \mathrm{~V}_{\mathrm{IL}}<0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}>0.7 \mathrm{~V}$.
${ }^{2} \Delta V_{S I L}=\mathrm{V}_{S 10 L}-\mathrm{V}_{S 11 L}$. This is the minimum difference between the output logic low level and the input logic low threshold within a given component. This ensures that there is no possibility of the part latching up the bus to which it is connected.

ADuM2250/ADuM2251

AC Specifications

All voltages are relative to their respective ground. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$, unless otherwise noted. See Figure 3 for a timing test diagram.

Table 2.

[^0]
TEST CONDITIONS

ADuM2250/ADuM2251

PACKAGE CHARACTERISTICS

Table 3.

Parameter	Symbol	Min	Typ	Max	Unit
Resistance (Input to Output) $)^{1}$	$\mathrm{R}_{\mathrm{L}-\mathrm{O}}$		Test Conditions		
Capacitance (Input to Output)		10^{12}	Ω		
Input Capacitance	$\mathrm{C}_{1-\mathrm{O}}$	2.2	pF	$\mathrm{f}=1 \mathrm{MHz}$	
IC Junction-to-Ambient Thermal Resistance	C_{I}	θ_{JA}	4.0	pF	

${ }^{1}$ The device is considered a 2-terminal device; Pin 1 to Pin 8 are shorted together, and Pin 9 to Pin 16 are shorted together.

REGULATORY INFORMATION

The ADuM2250/ADuM2251 is approved by the following organizations.
Table 4.

UL	CSA	VDE
Recognized under 1577 Component Recognition Program	Approved under CSA Component Acceptance Notice \#5A	Certified according to DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12²
Single Protection 5000 V rms Isolation Voltage	Basic insulation per CSA 60950-1-07 and IEC 60950-1, 600 V rms (848 V peak) maximum working voltage RW-16 package. Reinforced insulation per CSA 60950-1-07 and IEC 60950-1, 380 V rms (537 V peak) maximum working voltage; reinforced insulation per IEC 60601-1 125 V rms (176 V peak) maximum working voltage RI-16 package Reinforced insulation per CSA 60950-1-07 and IEC 60950-1, 400 V rms (565 V peak) maximum working voltage; reinforced insulation per IEC 60601-1 250 V rms (353 V peak) maximum working voltage.	Reinforced insulation, 846 V peak
File 205078		

${ }^{1}$ In accordance with UL1577, each ADuM $225 x$ is proof tested by applying an insulation test voltage $\geq 6000 \mathrm{Vrms}$ for 1 second (current leakage detection limit $=10 \mu \mathrm{~A}$).
${ }^{2}$ In accordance with DIN V VDE V 0884-10, each ADuM $225 x$ is proof tested by applying an insulation test voltage ≥ 1590 V peak for 1 sec (partial discharge detection limit $=5 \mathrm{pC}$). The * marking branded on the component designates DIN V VDE V 0884-10 approval.

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 5.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage		5000	V rms	1-minute duration
Minimum External Air Gap	L(101)	8.0 min	mm	Distance measured from input terminals to output terminals, shortest distance through air along the PCB mounting plane, as an aid to PC board layout
Minimum External Tracking (Creepage) RW-16 Package	L(102)	7.7 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum External Tracking (Creepage) RI-16 Package	L(102)	8.3 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Gap (Internal Clearance)		0.017 min	mm	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index)	CTI	>175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa		Material Group (DIN VDE 0110, 1/89, Table 1)

DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

Note that the * marking on the package denotes DIN V VDE V 0884-10 approval for a 848 V peak working voltage. This isolator is suitable for reinforced isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits.

Table 6.

Description	Conditions	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage $\leq 300 \mathrm{~V}$ rms			I to IV	
For Rated Mains Voltage $\leq 450 \mathrm{~V}$ rms			I to II	
For Rated Mains Voltage $\leq 600 \mathrm{~V}$ rms			I to II	
Climatic Classification			40/105/21	
Pollution Degree (DIN VDE 0110, Table 1)			2	
Maximum Working Insulation Voltage		Viorm	846	\checkmark peak
Input-to-Output Test Voltage, Method b1	$\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {PR, }}, 100 \%$ production test, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1590	\checkmark peak
Input-to-Output Test Voltage, Method a		$V_{\text {PR }}$		
After Environmental Tests Subgroup 1	$\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$		1375	\checkmark peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$		1018	\checkmark peak
Highest Allowable Overvoltage	Transient overvoltage, $\mathrm{t}_{\text {TR }}=10$ seconds	$V_{\text {TR }}$	6000	\checkmark peak
Safety-Limiting Values	Maximum value allowed in the event of a failure; see Figure 4			
Case Temperature		Ts	150	${ }^{\circ} \mathrm{C}$
Supply Current	$\mathrm{I}_{\mathrm{DD} 1}+\mathrm{l}_{\text {DD2 }}$	Is	555	mA
Insulation Resistance at T_{s}	$\mathrm{V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

Figure 4. Thermal Derating Curve, Dependence of Safety-Limiting Values on Case Temperature, per DIN V VDE V 0884-10

RECOMMENDED OPERATING CONDITIONS

Table 7.

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T_{A}	-40	+105	${ }^{\circ} \mathrm{C}$
Supply Voltages ${ }^{1}$	$\mathrm{~V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$	3.0	5.5	V
Input/Output Signal Voltage	$\mathrm{V}_{\mathrm{SDA} 1}, \mathrm{~V}_{\mathrm{SCL} 1}$,		5.5	V
	$\mathrm{~V}_{\mathrm{SDA} 2}, \mathrm{~V}_{\mathrm{SCL2}}$			
Capacitive Load, Side 1	$\mathrm{C}_{\mathrm{L} 1}$		40	pF
Capacitive Load, Side 2	$\mathrm{C}_{\mathrm{L} 2}$		400	pF
Static Output Loading, Side 1	$\mathrm{I}_{\mathrm{SDA} 1,}, \mathrm{I}_{\mathrm{SCL}}$	0.5	3	mA
Static Output Loading, Side 2	$\mathrm{I}_{\mathrm{SDA} 2,} \mathrm{I}_{\mathrm{SCL}}$	0.5	30	mA

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 8.

Parameter	Symbol	Min	Max	Unit
Storage Temperature	Tst	-65	+150	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature	$\mathrm{T}_{\text {A }}$	-40	+105	${ }^{\circ} \mathrm{C}$
Supply Voltages ${ }^{1}$	$V_{D D 1}, V_{\text {DD2 }}$	-0.5	+7.0	V
Input/Output Voltage, ${ }^{1}$ Side 1	$\mathrm{V}_{\text {SDA } 1, ~} \mathrm{~V}_{\text {SCL1 }}$	-0.5	$\mathrm{V}_{\mathrm{DD} 1}+0.5$	V
Input/Output Voltage, ${ }^{1}$ Side 2	$\mathrm{V}_{\text {SDA } 2,} \mathrm{~V}_{\text {SCL2 }}$	-0.5	$\mathrm{V}_{\mathrm{DD} 2}+0.5$	V
Average Output Current, per Pin 2	lo 1	-18	+18	mA
Average Output Current, per Pin 2	l_{02}	-100	+100	mA
Common-Mode Transients ${ }^{3}$		-100	+100	kV/ $\mu \mathrm{s}$

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2}$ See Figure 4 for maximum rated current values for various temperatures.
${ }^{3}$ Refers to common-mode transients across the insulation barrier. Commonmode transients exceeding the absolute maximum rating may cause latchup or permanent damage.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

	-	
$\mathrm{GND}_{1} * 1$		$16 \mathrm{GND}_{2}{ }^{*}$
NC 2		15 NC
$\mathrm{V}_{\mathrm{DD} 1} 3$	ADuM2250/ADuM2251	$14 \mathrm{~V} \mathrm{VD}^{2}$
NC 4		13 NC
$\mathrm{SDA}_{1} 5$	TOP VIEW	12 SDA 2
$\mathrm{SCL}_{1}{ }^{6}$	(Not to Scale)	$11 \mathrm{SCL} L_{2}$
$\mathrm{GND}_{1} * 7$		10 NC
NC 8		$9 \mathrm{GND}_{2}{ }^{*}$

*PIN 1 AND PIN 7 ARE INTERNALLY CONNECTED. CONNECTING BOTH TO GND_{1} IS RECOMMENDED. PIN 9 AND PIN 16 ARE INTERNALLY CONNECTED. ờ CONNECTING BOTH TO GND 2 IS RECOMMENDED.

Figure 5. Pin Configuration
Table 9. ADuM2250 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
2	NC	No Connect.
3	$\mathrm{~V}_{\mathrm{DD} 1}$	Supply Voltage, 3.0 V to 5.5 V.
4	NC	No Connect.
5	SDA_{1}	Data Input/Output, Side 1.
6	SCL_{1}	Clock Input/Output, Side 1.
7	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
8	NC	No Connect.
9	GND	
10	NC	Ground 2. Isolated ground reference for Isolator Side 2.
11	SCL	No Connect.
12	SDA	Clock Input/Output, Side 2.
13	NC	Data Input/Output, Side 2.
14	$\mathrm{~V}_{\mathrm{DD} 2}$	No Connect.
15	NC	Supply Voltage, 3.0 V to 5.5 V.
16	GND_{2}	No Connect.

Table 10. ADuM2251 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
2	NC	No Connect.
3	VDD1	Supply Voltage, 3.0 V to 5.5 V .
4	NC	No Connect.
5	SDA ${ }_{1}$	Data Input/Output, Side 1.
6	SCL ${ }_{1}$	Clock Input, Side 1.
7	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
8	NC	No Connect.
9	GND_{2}	Ground 2. Isolated ground reference for Isolator Side 2.
10	NC	No Connect.
11	SCL2	Clock Output, Side 2.
12	SDA ${ }_{2}$	Data Input/Output, Side 2.
13	NC	No Connect.
14	$\mathrm{V}_{\mathrm{DD} 2}$	Supply Voltage, 3.0 V to 5.5 V.
15	NC	No Connect.
16	GND_{2}	Ground 2. Isolated ground reference for Isolator Side 2.

APPLICATIONS INFORMATION

FUNCTIONAL DESCRIPTION

The ADuM2250/ADuM2251 interface on each side to $\mathrm{I}^{2} \mathrm{C}$ signals. Internally, the bidirectional $\mathrm{I}^{2} \mathrm{C}$ signals are split into two unidirectional channels communicating in opposite directions via dedicated i Coupler isolation channels. One channel of each pair (the Side 1 input of each I/O pin in Figure 6) implements a special input buffer and output driver that can differentiate between externally generated inputs and its own output signals. It only transfers externally generated input signals to the corresponding Side 2 data or clock pin.
Both the Side 1 and the Side $2 \mathrm{I}^{2} \mathrm{C}$ pins are designed to interface to an $\mathrm{I}^{2} \mathrm{C}$ bus operating in the 3.0 V to 5.5 V range. A logic low on either side causes the corresponding I/O pin across the coupler to be pulled low enough to comply with the logic low threshold requirements of other $\mathrm{I}^{2} \mathrm{C}$ devices on the bus. Bus contention and latch-up is avoided by guaranteeing that the input low threshold at SDA_{1} or SCL_{1} is at least 50 mV less than the output low signal at the same pin. This prevents an output logic low at Side 1 being transmitted back to Side 2 and pulling down the $\mathrm{I}^{2} \mathrm{C}$ bus by latching the state.
Because the Side 2 logic levels/thresholds and drive capabilities comply fully with standard $\mathrm{I}^{2} \mathrm{C}$ values, multiple ADuM2250/ ADuM2251 devices connected to a bus by their Side 2 pins can communicate with each other and with other devices having $\mathrm{I}^{2} \mathrm{C}$ compatibility as shown in Figure 7. Note the distinction between $\mathrm{I}^{2} \mathrm{C}$ compatibility and $\mathrm{I}^{2} \mathrm{C}$ compliance. $\mathrm{I}^{2} \mathrm{C}$ compatibility refers to situations in which the logic levels or drive capability of a component do not necessarily meet the requirements of the $\mathrm{I}^{2} \mathrm{C}$ specification but still allow the component to communicate with an $\mathrm{I}^{2} \mathrm{C}$-compliant device. $\mathrm{I}^{2} \mathrm{C}$ compliance refers to situations in which the logic levels and drive capability of a component fully meet the requirements of the $I^{2} C$ specification.
Because the Side 1 pin has a modified output level/input threshold, Side 1 of the ADuM2250/ADuM2251 can only communicate with devices fully compliant with the $\mathrm{I}^{2} \mathrm{C}$ standard. In other words, Side 2 of the $\mathrm{ADuM} 2250 / \mathrm{ADuM} 2251$ is $\mathrm{I}^{2} \mathrm{C}$-compliant while Side 1 is only $\mathrm{I}^{2} \mathrm{C}$-compatible.
The Side 1 I/O pins must not be connected to other $\mathrm{I}^{2} \mathrm{C}$ buffers that implement a similar scheme of dual I/O threshold detection. This latch-up prevention scheme is implemented in several popular $\mathrm{I}^{2} \mathrm{C}$ level shifting and bus extension products currently available from Analog Devices and other manufacturers. Care should be taken to review the data sheet of potential $\mathrm{I}^{2} \mathrm{C}$ bus buffering products to ensure that only one buffer on a bus segment implements a dual threshold scheme. A bus segment is a portion of the $\mathrm{I}^{2} \mathrm{C}$ bus that is isolated from
other portions of the bus by galvanic isolation, bus extenders, or level shifting buffers. Table 11 shows how multiple ADuM2250/ ADuM2251 components can coexist on a bus as long as two Side 1 buffers are not connected to the same bus segment.

Table 11. ADuM225x Buffer Compatibility

	Side 1	Side 2
Side 1	No	Yes
Side 2	Yes	Yes

The output logic low levels are independent of the $V_{\text {DDI }}$ and $\mathrm{V}_{\mathrm{DD} 2}$ voltages. The input logic low threshold at Side 1 is also independent of $\mathrm{V}_{\text {DDI }}$. However, the input logic low threshold at Side 2 is designed to be at $0.3 \mathrm{~V}_{\mathrm{DD} 2}$, consistent with $\mathrm{I}^{2} \mathrm{C}$ requirements. The Side 1 and Side 2 I/O pins have open-collector outputs whose high levels are set via pull-up resistors to their respective supply voltages.

Figure 6. ADuM2250 Block Diagram
Figure 7 shows a typical application circuit including the pull-up resistors required for both Side 1 and Side 2 busses. Bypass capacitors of between 0.1 pF and 0.01 pF are required between $\mathrm{V}_{\mathrm{DD} 1}$ to GND_{1} and $\mathrm{V}_{\mathrm{DD} 2}$ to GND_{2}. The 200Ω resistor shown in Figure 7 is required for latch-up immunity if the ambient temperature can be between $105^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$.

Figure 7. Typical Isolated ${ }^{2}$ ² Interface Using ADuM2250

STARTUP

Both the $V_{D D 1}$ and $V_{D D 2}$ supplies have an under voltage lockout feature that prevents the signal channels from operating unless certain criteria is met. This feature is to avoid the possibility of input logic low signals from pulling down the $\mathrm{I}^{2} \mathrm{C}$ bus inadvertently during power-up/power-down.
Criteria that must be met for the signal channels to be enabled are as follows:

- Both supplies must be at least 2.5 V .
- At least $40 \mu \mathrm{~s}$ must elapse after both supplies exceed the internal start-up threshold of 2.0 V .
Until both of these criteria are met for both supplies, the ADuM2250/ADuM2251 outputs are pulled high thereby ensuring a startup that avoids any disturbances on the bus. Figure 8 and Figure 9 illustrate the supply conditions for fast and slow input supply slew rates.

Figure 8. Start-Up Condition, Supply Slew Rate $<12.5 \mathrm{~V} / \mathrm{ms}$

Figure 9. Start-Up Condition, Supply Slew Rate $>12.5 \mathrm{~V} / \mathrm{ms}$

MAGNETIC FIELD IMMUNITY

The ADuM2250/ADuM2251 are extremely immune to external magnetic fields. The limitation on the magnetic field immunity of the ADuM2250/ADuM2251 is set by the condition in which induced voltage in the receiving coil of the transformer is sufficiently large to either falsely set or reset the decoder. The following analysis defines the conditions under which this may occur. The 3 V operating condition of the ADuM2250/ADuM2251 is examined because it represents the most susceptible mode of operation.

The pulses at the transformer output have an amplitude greater than 1.0 V . The decoder has a sensing threshold at about 0.5 V , therefore establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

$$
V=(-d \beta / d t) \sum \Pi r_{n}^{2} ; n=1,2, \ldots N
$$

where:
β is the magnetic flux density (gauss).
r_{n} is the radius of the nth turn in the receiving coil (cm). N is the number of turns in the receiving coil.

Given the geometry of the receiving coil in the ADuM2250/ ADuM2251 and an imposed requirement that the induced voltage be at most 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated, as shown in Figure 10.

Figure 10. Maximum Allowable External Magnetic Flux Density
For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event were to occur during a transmitted pulse (and had the worst-case polarity), it would reduce the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V (still well above the 0.5 V sensing threshold of the decoder).

The preceding magnetic flux density values correspond to specific current magnitudes at given distances away from the ADuM2250/ADuM2251 transformers. Figure 11 expresses these allowable current magnitudes as a function of frequency for selected distances. As seen, the ADuM2250/ADuM2251 is extremely immune and can be affected only by extremely large currents operated at high frequency and very close to the component. For the 1 MHz example, place a 0.5 kA current 5 mm away from the ADuM2250/ADuM2251 to affect the operation of the component.
Note that at combinations of strong magnetic fields and high frequencies, any loops formed by printed circuit board traces could induce sufficiently large error voltages to trigger the threshold of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

Figure 11. Maximum Allowable Current for Various Current-to-ADuM2250/ADuM2251 Spacings

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-013-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 12. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-16)
Dimensions shown in millimeters (inches)

Figure 13. 16-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC] Wide Body (RI-16-1) Dimension shown in millimeters and (inches)

ORDERING GUIDE

$\left.\begin{array}{l|l|l|l|l|l|l}\hline & \begin{array}{l}\text { Number of } \\ \text { Inputs, } \mathbf{V D D}_{\text {D }} \text { Side }\end{array} & \begin{array}{l}\text { Number of } \\ \text { Inputs, } \mathbf{V}_{\text {DD2 }} \text { Side }\end{array} & \begin{array}{l}\text { Maximum } \\ \text { Data Rate } \\ \text { (Mbps) }\end{array} & \begin{array}{l}\text { Temperature } \\ \text { Range }\end{array} & \text { Package Description }\end{array} \begin{array}{l}\text { Package } \\ \text { Option }\end{array}\right]$

[^1]
NOTES

NOTES

NOTES

[^0]: ${ }^{1} \mathrm{t}_{\mathrm{PLH} 12}$ propagation delay is measured from the Side 1 input logic threshold to an output value of $0.7 \mathrm{~V}_{\mathrm{DD} 2}$.
 ${ }^{2} \mathrm{t}_{\text {PHL12 }}$ propagation delay is measured from the Side 1 input logic threshold to an output value of 0.4 V .
 ${ }^{3} \mathrm{t}_{\text {PLH21 }}$ propagation delay is measured from the Side 2 input logic threshold to an output value of $0.7 \mathrm{~V}_{\mathrm{DD1}}$.
 ${ }^{4}{ }^{\text {tPHLL21 }}$ propagation delay is measured from the Side 2 input logic threshold to an output value of 0.9 V .
 ${ }^{5} \mathrm{CM}_{\mathrm{H}}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.

[^1]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

