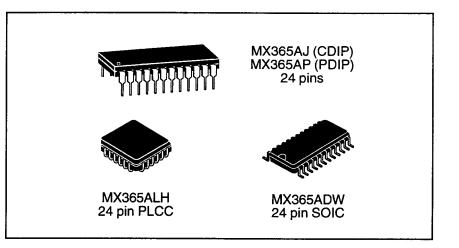


MX-COM, INC. MiXed Signal ICs

MX365A

CTCSS Encoder/Decoder with Tx/Rx Audio Filters

FEATURES

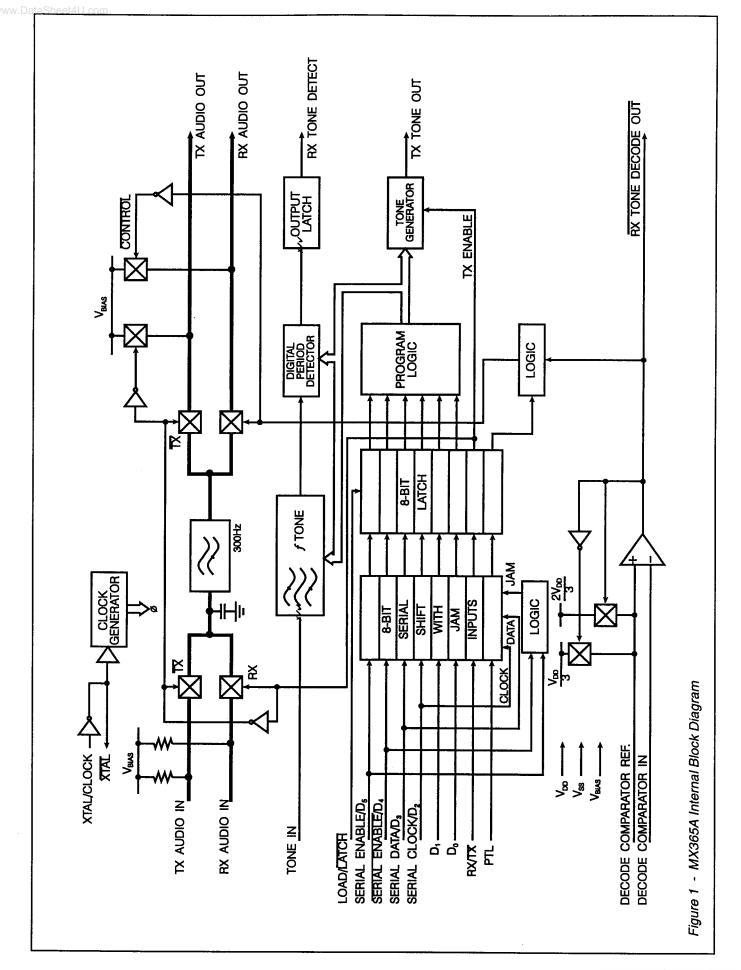

- 39 CTCSS Tones + Notone
- TX/RX Audio Filters
- TX Tone Phase Reversals
- Serial or Parallel Programming
- Low Voltage: 4.5 to 5.5 V

BENEFITS

- Scanning of any Channel
- Improved Sinad
- Squelch Tail Elimination
- Easy µP Interface

APPLICATIONS

- Mobile Radio Channel Sharing
- Wireless Intercom
- TIA/EIA-603 37 Tone Plus 97.4Hz & 69.3Hz


Description

Voice on shared radio channels is multiplexed with a subaudible CTCSS tone as a means of directing messages among user groups sharing the same RF frequency. Continuous Tone Controlled Squelch System (CTCSS) modulates the transmitter with a discrete tone, taken from a field of 39 in the range of 67 to 250 Hz, according to TIA/ EIA-603 Standard plus 69.3Hz and 97.4Hz. Groups of radio receivers, segregated by common interest and assigned tone, demodulate the voice/tone mixture for voice messages to be heard.

The MX365A CTCSS Encoder/Decoder enhances voice/ tone multiplexing with an on-chip filter that attenuates TX speech 36dB at 250Hz, while passing signals >300Hz with only \pm 1dB of ripple. Early CTCSS designs did not filter TX speech, depending instead on the host transmitter's pre-emphasis network. At only 6dB/octave, their attenuation of speech components at the higher CTCSS tones was only a few dB, which resulted in "talk-off" (low frequency voice components unsquelching the receiver audio).

The MX365A features TX/RX selection and a LOAD/ LATCH pin. A Notone program code has been included to permit scanning channels without CTCSS. A choice of serial or parallel tone programming is offered. Operation of the PTL signal during TX reverses the phase of the transmitted CTCSS tone by 180°. This is used in some radios to eliminate squelch tails.

The MX365A requires a single 5-volt supply and a 1MHz clock or crystal.

۰.

© 1996 MX+COM, INC.

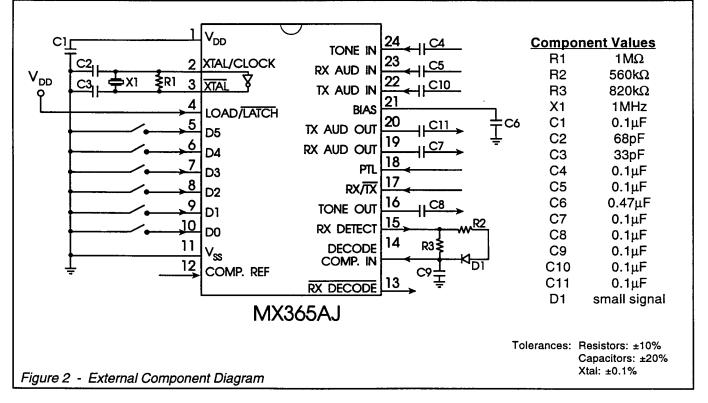
CTCSS Encoder/Decoder with Tx/Rx Audio Filters

www.DataSheet4U.com

۰.

.

PIN FUNCTION TABLE


Pin	Function
MX165A MX365A	
1	V _{pp} : Positive Supply.
2	Xtal/Clock: Input to the on-chip inverter used with a 1 MHz Xtal or external clock source.
3	Xtal: Output of the on-chip inverter (clock output).
4	Load/Latch: Controls 8 on-chip latches and is used to latch RX/TX, PTL, and D0-D5. This pin is internally pulled to V_{DD} . A logic "1" applied to this input puts the 8 latches in "transparent" mode. A logic "0" applied to this input puts the 8 latches in the "latched" mode. In parallel mode data is loaded and latched by a logic 1-0 transition (see Fig. 3). In serial mode data is loaded and latched by a 0-1-0 strobe pulse on this pin (see Fig. 4).
5	D5/Serial Enable 1: Data input D5 (in parallel mode). A logic "1" applied to this input together with a logic "0" applied to D4/Serial Enable 2 will put the device in serial mode (see Fig. 4). This pin is internally pulled to V _{pp} .
6	D4/Serial Enable 2: Data input D4 (in parallel mode). A logic "0" applied to this input together with a logic "1" on pin 5 will place the device in serial mode (see Fig. 5). This pin is internally pulled to V _{DD} .
7	D3/Serial Data Input: Data input D3 (in parallel mode). In serial mode this pin becomes the serial data input for D5-D0, RX/TX and PTL (see Fig. 4). D5 is clocked first and PTL last. This pin is internally pulled to V_{pp} .
8	D2/Serial Clock: Data input D2 (in parallel mode). In serial mode this pin becomes the serial clock input. Data is clocked on the positive going edge (see Fig. 4). This pin is internally pulled to V _{DD} .
9	D1: Data input D1 (in parallel mode). This pin is internally pulled to V_{DD} .
10	D0: Data input D0 (in parallel mode). This pin is internally pulled to V_{DD} .
11	V _{ss} : Negative supply.
12	Decode Comparator Ref.: This pin is internally biased to $V_{pp}/3$ or $2V_{pp}/3$ via 1M resistors depending on the logical state of the RX Tone Decode Out pin. RX Tone Decode Out = 1 will bias this input $2V_{pp}/3$; a logic "0" will bias this input $V_{pp}/3$. This input provides the decode comparator reference voltage, and switching of bias voltages provides hysteresis to reduce "chatter" under marginal conditions.
13	RX Tone Decode Out: This is the gated output of the decode comparator. This output is used to gate the RX Audio path. A logic "0" on this pin indicates a successful decode and that the Decode Comparator Input pin is more positive than the Decode Comparator Ref. input (see Table 1).
14	Decode Comparator Input: This is the inverting input of the decode comparator. This pin is normally connected to the integrated output of the RX Tone Detect line.
15	RX Tone Detect: In RX mode this output will go to logic "1" during a successful decode. It must be externally integrated to control response and deresponse times (see Table 1).
16	TX Tone Out: The CTCSS sinewave output appears on this pin under control of the RX/TX pin. This pin, when not transmitting a tone, may be biased to V_{pp} -0.7V or O/C (see Table 1). This pin is an emitter follower output with high impedance load, requiring capacitive coupling or a low impedance (<1k Ω) load to ground.

3

www.DataSheet4U.com

PIN FUNCTION TABLE

Pin	Function
17	RX/TX: This input (in parallel mode) selects RX or TX modes (see Fig. 2). In serial mode this function is serially loaded. This pin is internally pulled to V_{DD} via a 1M Ω resistor.
18	PTL: In parallel RX mode this pin operates as a "Push To Listen" function by enabling the RX audio path, thus overriding the tone squelch function. In parallel TX mode this pin reverses the phase of the transmitted CTCSS tone (used for squelch tail elimination). In serial mode this function is serially loaded (see Fig. 2).
19	RX Audio Out: This is the high pass filtered receive audio output pin. This pin outputs audio when RX Tone Decode = 0, or PTL = 1, or when Notone is programmed (see Table 2). In TX mode this pin is biased to $V_{DD}/2$.
20	TX Audio Out: This is the high pass filtered transmit audio output pin. In TX mode this pin outputs audio present at the TX Audio Input pin. In RX mode this pin is biased to $V_{DD}/2$.
21	Bias: This pin is the output of an internally generated $V_{pp}/2$ bias level and would normally be externally decoupled to V_{ss} via capacitor C7.
22	TX Audio In: This is the TX Audio input pin. In TX mode it may be prefiltered, using the TX audio path, thus helping to aviod talkoff due to intermodulation of speech frequencies with the transmitted CTCSS tone. This pin is internally biased to $V_{pp}/2$.
23	RX Audio In: This is the input to the audio high pass filter in RX mode. It is internally biased to $V_{DD}/2$.
24	Tone Input: This is the input to the CTCSS tone detector. It is internally biased to $V_{DD}/2$.
	NOTE: Pins labeled "N/C" (no connect) may have internal connections. Do Not Use.

www.DataSheet4U.com

I/O CONDITIONS

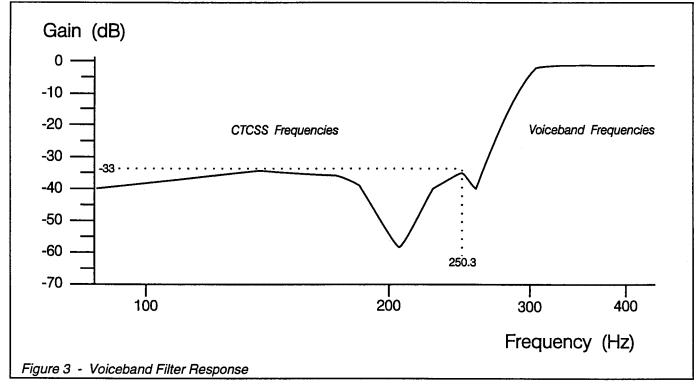
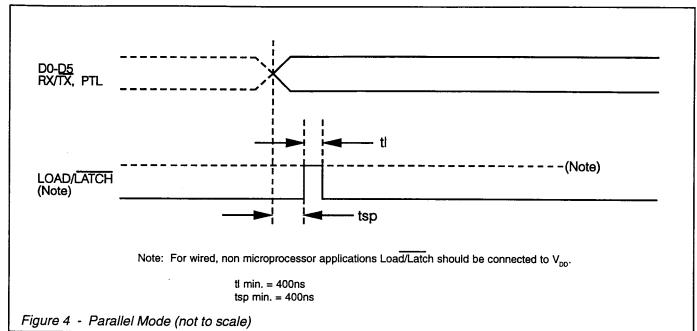
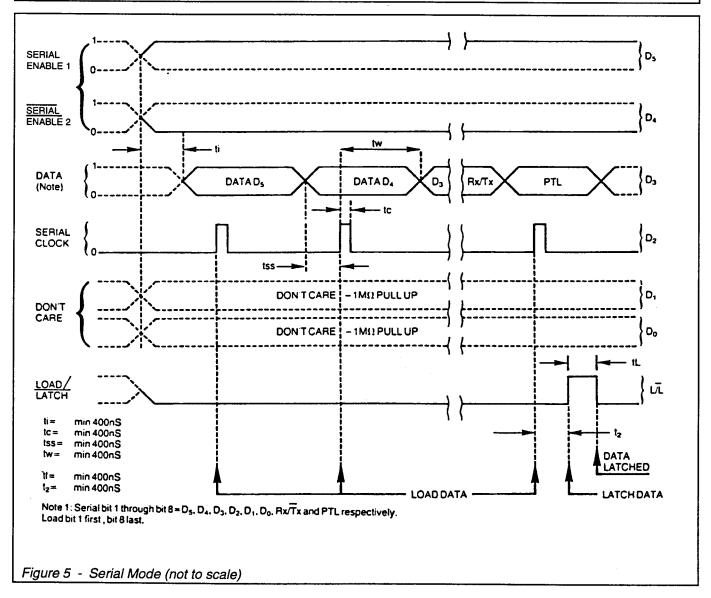

D0-D5	INPUT PIN OUTPUT PIN CONDITION CONDITION					RESULT/FUNCTION							
	RX/TX	PTL	Decode Comp. Input	RX Tone Detect	Tone Decode	Tone Transmitter Enabled	TX Tone Phase Reversed	TX Audio Path Enabled	Tone Decoder Enabled	RX Audio Path Enabled	Notes		
Tone	0	0	x	0	1	Yes	No	Yes	No	No (bias)	1a		
Tone	0	1	x	0	1	Yes	Yes	Yes	No	No (bias)	1b		
No tone	0	х	x	0	1	No (bias)	х	Yes	No	No (bias)	2		
Tone	1	0	0	0	1	No (o/c)	x	No	Yes	No (bias)	3a		
Tone	1	1	0	0	1	No (o/c)	x	No	Yes	Yes	Зb		
Tone	1	х	1	1	0	No (o/c)	x	No	Yes	Yes	4		
No tone	1	х	×	x	0	No (o/c)	x	No	Yes	Yes	5		

 Table 1 - Combinations of Input/Output Conditions


Notes:


- 1a. Normal tone transmit condition.
- 1b. Tone transmit with phase reversed.
- 2 Notone programmed in TX mode, tone transmit O/P set to $V_{DD}/2 0.7V$. TX audio path enabled.
- 3a. Normal decode standby.
- 3b. Normal decode standby with PTL used to enable audio.
- 4. Normal decode of correct CTCSS tone condition, PTL has no effect.
- 5. Notone programmed in RX mode, tone transmit O/P (o/c). RX audio path enabled.

CTCSS Encoder/Decoder with Tx/Rx Audio Filters

v DataShoot4L com

۰.,

.

CTCSS PROGRAMMING TABLE

То	Pro	ogran	nming	Inputs	i				
Nominal Frequency (Hz)	MX365A Freq. (Hz)	∆fo (%)	D5	D4	D3	D2	D1	D0	Hex
67.0	67.05	+0.07	1	1	1	1	1	1	ЗF
69.3	69.32	+.03	1	1	1	0	0	1	39
71.9	71.9	0	0	1	1	1	1	1	1F
74.4	74.35	-0.07	1	1	1	1	1	0	3E
77.0	76.96	-0.05	0	0	1	1	1	1	0F
79.7	79.77	+0.09	1	1	1	1	0	1	3D
82.5	82.59	+0.1	0	1	1	1	1	0	1E
85.4	85.38	-0.2	1	1	1	1	0	0	ЗC
88.5	88.61	+0.13	0	0	1	1	1	0	0E
91.5	91.58	+0.09	1	1	1	0	1	1	3B
94.8	94.76	-0.04	0	1	1	1	0	1	1D
97.4	97.29	-0.11	1	1	1	0	1	0	ЗA
100.0	99.96	-0.04	0	0	1	1	0	1	0D
103.5	103.43	-0.07	0	1	1	1	0	0	1C
107.2	107.15	-0.05	0	0	1	1	0	0	0C
110.9	110.77	-0.12	0	1	1	0	1	1	1B
114.8	114.64	-0.14	0	0	1	0	1	1	0B
118.8	118.8	0	0	1	1	0	1	0	1A
123.0	122.8	-0.17	0	0	1	0	1	0	0A
127.3	127.08	-0.17	0	1	1	0	0	1	19
131.8	131.67	-0.10	0	0	1	0	0	1	09
136.5	136.61	+0.08	0	1	1	0	0	0	18
141.3	141.32	+0.02	0	0	1	0	0	0	08
146.2	146.37	+0.12	0	1	0	1	1	1	17
151.4	151.09	-0.2	0	0	0	1	1	1	07
156.7	156.88	+0.11	0	1	0	1	1	0	16
162.2	162.31	+0.07	0	0	0	1	1	0	06
167.9	168.14	+0.14	0	1	0	1	0	1	15
173.8	173.48	-0.19	0	0	0	1	0	1	05
179. 9	180.15	+0.14	0	1	0	1	0	0	14
186.2	186.29	+0.05	0	0	0	1	0	0	04
192.8	192.86	+0.03	0	1	0	0	1	1	13
203.5	203.65	+0.07	0	0	0	0	1	1	03
210.7	210.17	-0.25	0	1	0	0	1	0	12
218.1	218.58	+0.22	0	0	0	0	1	0	02
225.7	226.12	+0.18	0	1	0	0	0	1	11
233.6	234.19	+0.25	0	0	0	0	0	1	01
241.8	241.08	-0.30	0	1	0	0	0	0	10
250.3	250.28	-0.01	0	0	0	0	0	0	00
Notone		N/A	1	1	0	0	0	0	30
Serial Input Mode		N/A	1	0	Data	Clock	Х	Х	2X
Test <i>Table 2</i> - <i>CTCSS T</i>	1	1	0	0	1	1	33 or any invalic addres		

7

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Exceeding the maximum rating can result in device damage. Operation of the device outside the operating limits is not suggested.

Supply Voltage	-0.3 to 7.0 V
Input Voltage at any pin	
(ref V _{ss} = 0V)	-0.3 V to V _{pp} + 0.3 V
Sink/Source Current (Total)	20mA
Maximum Device Dissipation	100mW
Operating Temperature	-40°C to +85°C
Storage Temperature	-55°C to +125°C

OPERATING LIMITS

All devices were measured under the following conditions unless otherwise noted.

MX365A V_{DD} = 5.0V T_{AMB} = 25°C MX365A 0dB ref. = 308mVrms @ 1kHz

Composite signal: 0dB 1kHz test tone, 75 mVrms noise (band limited 6kHz gaussian white noise), 30 mVrms CTCSS tone.

Characteristics	See Note	e Min.	Тур.	Max.	Unit
STATIC VALUES					
Supply Voltage		4.5	5.0	5.5	V
Supply Current					
ТХ		., -	3.5	-	mA
RX		-	3.5	-	mA
RX Monitor		-	2.5	-	mA
Tone Input Impedance		-	1	-	MΩ
Audio Input Impedance		-	1	-	MΩ
Audio Output Impedance		-	1	-	kΩ
Digital Input Impedance	1	-	1	-	MΩ
Input logic"1"	1	70%V _{DD}	-	-	V
Input logic "0"	1	-	-	30%V _{DD}	V
Logic "1" output 1' source = 0.1mA	2	80%V _{DD}	-	-	V
Logic "0" output 1' sink - 0.1mA	2	-	-	20%V _{DD}	V
DYNAMIC VALUES					
<u>Decoder</u>					
Decode Input Signal Level	3	-20	-	+3	dB
Decode Response Time	3,6,10	-	-	250	ms
Deresponse Time	3,6,10	-	180	250	ms
Decode Selectivity (see Fig. 6)	3,12	±0.5	-	±3	%f _o
Freedor					-
Encoder		•			
Tone Output Level (relative to 775mVrms)		-3	0	-	dB
Tone Frequency Accuracy (f error)		-0.3	•	+0.3	%f _o
Risetime to 90% nominal O/P:	4.40		. –		
f ₀ >100Hz	4,10	-	15	75	ms
f _o <100Hz	4,10	-	45	120	ms
Tone Output Load Current		-	-	5	mA
Total Harmonic Distortion		-	2	5	%
Output Level Variation Between Tones	11	-1.0	-	+1.0	dB
TX Output Impedance		-	2.0	-	kΩ

CTCSS Encoder/Decoder with Tx/Rx Audio Filters

9

DataSheet4U.com					
Characteristics	See Note	Min.	Тур.	Max.	Unit
Audio Filter					
Total Harmonic Distortion	5,10	-	2	5	%
Output Noise Level	8	-	-54	-48	dB
(input a.c. short circuit, audio switch enabled)					
Sinad	9	36	40	-	dB
Spurious Emissions		-	-	-48	dB
Cutoff Frequency	7	-	300	-	Hz
Bandpass Ripple (300-3000Hz)		-	-	2	dB
Stopband Attenuation <250Hz	5,7	33	36	-	dB
Passband Gain 1kHz		-	0	-	dB
Audio Switch					
Isolation	5	-	60	-	dB
Serial/Parallel Inputs (See Figures 3 & 4)					
Parallel Set-up Time t _{se}		400	-	-	ns
Load/Latch Pulse Width t		400	-	-	ns
Serial Clock Pulse Width t _c		400	-	-	ns
Serial Set-up Time t _{ss}		400	-	-	ns
Serial Clock Frequency		-	1	-	MHz

NOTES:

1. Refers to RX/TX, PTL, Decode Comparator Input, D0-D5.

- 2. All logic outputs.
- 3. Composite Signal Test Condition.

4. Any programming tone and RL = 10,000, CL = 15 pF. This includes response to a phase reversal instruction.

- 5. 1kHz references = 0dB.
- 6. $f_0 > 100$ Hz (for 100 Hz> $f_0 > 67$ Hz: t = 100/ f_0 Hz x 250ms)
- 7. See Figure 3.
- 8. Measured in a 30kHz bandwidth.
- 9. The MX365A is measured with an input level of 308mV @ 1kHz, in a 30 kHz bandwidth.
- 10. Per TIA/EIA-603.
- 11. Ref. to 100 Hz.
- 12. Complies with TIA/EIA-603, must not decode adjacent $\rm f_{0}$ ±0.5%.

CML Product Data

In the process of creating a more global image, the three standard product semiconductor companies of CML Microsystems Plc (Consumer Microcircuits Limited (UK), MX-COM, Inc (USA) and CML Microcircuits (Singapore) Pte Ltd) have undergone name changes and, whilst maintaining their separate new names (CML Microcircuits (UK) Ltd, CML Microcircuits (USA) Inc and CML Microcircuits (Singapore) Pte Ltd), now operate under the single title CML Microcircuits.

These companies are all 100% owned operating companies of the CML Microsystems Plc Group and these changes are purely changes of name and do not change any underlying legal entities and hence will have no effect on any agreements or contacts currently in force.

CML Microcircuits Product Prefix Codes

Until the latter part of 1996, the differentiator between products manufactured and sold from MXCOM, Inc. and Consumer Microcircuits Limited were denoted by the prefixes MX and FX respectively. These products use the same silicon etc. and today still carry the same prefixes. In the latter part of 1996, both companies adopted the common prefix: CMX.

This notification is relevant product information to which it is attached.

CML Microcircuits (USA) [formerly MX-COM, Inc.] Product Textual Marking

On CML Microcircuits (USA) products, the '**MX-COM**' textual logo is being replaced by a '**CML**' textual logo.

Company contact information is as below:

Oval Park, Langford, Maldon, Essex, CM9 6WG, England Tel: +44 (0)1621 875500 Fax: +44 (0)1621 875600 uk.sales@cmlmicro.com www.cmlmicro.com

COMMUNICATION SEMICONDUCTORS

4800 Bethania Station Road, Winston-Salem, NC 27105, USA Tel: +1 336 744 5050, 0800 638 5577 Fax: +1 336 744 5054 us.sales@cmlmicro.com www.cmlmicro.com

No 2 Kallang Pudding Road, 09-05/ 06 Mactech Industrial Building, Singapore 349307 Tel: +65 7450426 Fax: +65 7452917 sg.sales@cmlmicro.com www.cmlmicro.com