1.0625 Gb/s Fiber Channel Short WavelengthTransceiver #### **FEATURES** - Class I eye safe. Does not require any external circuitry on PCB to ensure eye safety compliance - Single power supply Vcc = +5V - Received Signal Detect function - Low cost, high reliability, fiber optic-to-electronic - Complies with Fiber Channel (1.0625 Gb/s) Standard - Industry Standard 1x9 pin package footprint - Industry Standard duplex SC Optical Connector - Transmitter and Receiver functions built into a single package #### DESCRIPTION The HFM2504-001 fiber optic transceiver module provides a low cost solution to the requirements of high speed, intra-building interconnects over multimode fiber optic cable. The module is intended for the short wavelength 1,0625 Gb/s Fiber Channel format although it will operate with other protocols. Typical uses include LAN (Local Area Network) interconnect, clustered workstation links, and connections to mass storage devices. The module is designed and tested to meet or exceed ANSI X3T11 Fiber Channel link distance requirements (we specify 300 m in 62.5/125 micron fiber and 500 m in 50/125 micron fiber). The emitted optical power levels are within Class I operating limits as defined by both CDRH (Center for Disease and Radiological Health) and IEC825-1 for a center wavelength from 830 nm to 860 nm. Because the transceiver is designed to be inherently eve safe, it does not require open fiber control, thus eliminating complex electronics or mechanics. The HFM2504-001 consists of independent transmitter (TX) and Receiver (RX) functions combined in a single module housing. The transmitter consists of a high reliability 850 nm VCSEL (Vertical Cavity Surface Emitting Laser) which couples to a fiber optic cable through an SC connector. The transmitter is driven with a differential PECL (Positive Emitter Coupled Logic) signal applied to TX In+ and TX In-. This signal is converted to an appropriate modulation current by a Silicon Bipolar Laser Driver Integrated Circuit (IC). ### **OUTLINE DIMENSIONS in inches (mm)** #### ODIM 21A.cdr #### Pinout 1. BX VEE 6. TX Vcc 2. RX Out + 7. TX in - 3. RX Out-4. RX Signal Detect 8. TX In + 9. TX VEE 5. RX Vcc 4551830 0022227 362 1 Honeywell 523 ## 1.0625 Gb/s Fiber Channel Short WavelengthTransceiver ## **DESCRIPTION** (continued) The optical receiver consists of a PIN (P-type intrinsic N-type) photodiode and preamp assembly and a Silicon Bipolar Postamp IC. Optical input is coupled to the receiver with either a 50/125 or a 62.5/125 micron fiber through an SC connector. Output from the module consists of differential PECL data signals on RX Outhand RX Outhand a single PECL signal detect function RX Signal Detect. ## 1.0625 Gb/s Fiber Channel Short WavelengthTransceiver ### **ELECTRICAL CHARACTERISTICS** | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | TEST CONDITIONS | |-----------------------------------|---------|--------|-------|--------|-------|-----------------| | Supply Current - TX | lcc | | 65 | | mA | | | Supply Current - RX | lcc | | 130 | | mA | | | Power Dissipation - TX | Poiss | | 0.325 | | W | | | Power Dissipation - RX | Poiss | | 0.650 | | W | | | Differential Output Voltage Swing | Vod | | 1.00 | | ٧ | peak-to-peak | | Data Output Rise Time | tR | | | 0.25 | ns | 20%-80% | | Data Output Fall Time | te | | | 0.25 | ns | 80%-20% | | Data Input Voltage - Low | Vін-Vcc | | | -1.475 | V | | | Data Input Voltage - High | ViL-Vcc | -1.165 | | | V | | | Data Output Load | RL | | 50 | | Ω | | ### **RECEIVER ELECTRO-OPTICAL CHARACTERISTICS** | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | TEST CONDITIONS | |--|------------------------|-----|---------------|------|----------|-----------------| | Receiver Overload Condition | P _{IN} (max.) | | | 0 | dBm | , | | Sensitivity at "eye" center | Pin (min.) | -17 | | | dBm avg. | (1) | | Operating Wavelength | λ | 770 | ************* | 860 | nm | | | Signal Detect - Asserted | PA | | | -20 | dBm avg. | | | Signal Detect - Hysteresis | PA-PD | 1.5 | 2.0 | | dBm | | | Singal Detect Assert Time (Off to On) | AS | | | 0.75 | μs | (2) | | Signal Detect DeAssert Time (On to Off | ANS | | | 15.0 | μs | (3) | #### Notes - 1. For a BER of 10⁻¹² and static clock offset of +/- 15% and an extinction ratio of the Source ≥ 9 dBm. - 2. Transition from PIN (Max) to dark. - 3. Transition from dark to PIN (Min). ## TRANSMITTER ELECTRO-OPTICAL CHARACTERISTICS | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | TEST CONDITIONS | |-------------------------------------|----------------|-------------------------------|------|------|----------|---| | Output Optical Power | Po | -10 | | -4 | dBm avg. | (1) · | | Optical Extinction Ratio | | 9 | 13 | | dB | 10 Log (Ph/PL) (2) | | Center Wavelength | λο | 830 | | 860 | nm | | | Spectral Width | Δλ | | | 4 | nm | RMS | | Optical Rise Time | t _R | | | 0.26 | ns | 20%-80% (3) | | Optical Fall Time | t _F | | | 0.26 | ns | 80%-20% (4) | | RIN | | | -130 | -122 | dB/Hz | *************************************** | | Optical Transmit Pulse - Undershoot | | | | 20 | % | (3) | | Optical Transmit Pulse - Overshoot | | *** ******* ***** ****** **** | | 30 | % | (3) | #### Notes - 1. Class I maximum eye safety limits are specified according to wavelength at the limits shown in figure "Laser safety standards". - 2. Optical Extinction Ratio is measured with an idle line state equal to 1/5 the data rate (156.25 MHz). - 3. The required transmitter pulse shape characteristics are specified in the form of a mask of the transmitter "eye" diagram (Figure 2). This "eye" characterizes jitter, optical rise and fall times, undershoot, overshoot, and ringing. The "eye" should be measured with 4 pole 937.5 MHz Bessel-Thomson filter as specified in ITU G.957 to represent the effective receiver bandwidth - 4. The required transmitter pulse shape characteristics are specified in the form of a mask of the transmitter "eye" diagram (Figure 2). The "eye" should be measured with 4 pole 937.5 MHz Bessel-Thomson filter as specified in ITU G.957 to represent the effective receiver bandwidth. Actual transmitter te/tr must be corrected for bandwidth limitations introduced by test equipment. 525 ## 1.0625 Gb/s Fiber Channel Short WavelengthTransceiver ### **ABSOLUTE MAXIMUM RATINGS** | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | TEST CONDITIONS | |-----------------------|---------|------|-----|--------|-------|-----------------| | Storage temperature | Ta | -40 | | 100 | ů. | | | Lead Soldering Limits | | | | 240/10 | °C/s | · | | Supply voltage | Vcc-Vee | -0.2 | | 7.00 | V | | ## RECOMMENDED OPERATING CONDITIONS | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | TEST CONDITIONS | |----------------------------|--------|------|-----|------|-------|-----------------| | Case Operating Temperature | TA | 0 | | 70 | °C | (1) | | Supply Voltage | Vcc | 4.75 | | 5.25 | V | | #### Notes 1. Thermal performance is closely coupled to the thermal characteristics of the board on which the module is used. The stated range of operation is assured for all applications where the temperature of the board into which the module is inserted is maintained at 70°C or less. ### **ORDER GUIDE** | Description | Catalog Listing | |---------------------------------|-----------------| | 1.0625 Gb/s Fiber Channel Short | HFM2504-001 | | Wavelength Transceiver | | #### CAUTION The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation to equipment, take normal ESD precautions when handling this product. ## **FUNCTIONAL BLOCK DIAGRAM** ## Fig. 1 Laser safety standards 526 ■ 4551830 0022230 957 ■ Honeywell ## 1.0625 Gb/s Fiber Channel Short WavelengthTransceiver