AT27C512R

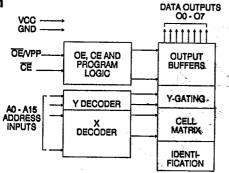
Features

- Low Power CMOS Operation 100 μA max. Standby 20 mA max. Active at 5 MHz
- Fast Read Access Time 120ns
- Wide Selection of JEDEC Standard Packages including OTP 28-Lead 600 mil Cerdip and OTP Plastic DIP or SOIC 32-Pad LCC and OTP PLCC
- 5V ± 10% Supply
- High Reliability CMOS Technology 2000V ESD Protection 200mA Latchup Immunity
- Rapid Programming 100µs/byte (typical)
- **Two-line Control**
- **CMOS and TTL Compatible Inputs and Outputs**
- Integrated Product Identification Code
- Military, Commercial and Industrial Temperature Ranges
- Fully Compatible with AT27C512

512K (64K x 8)

T-46-13-29

UV

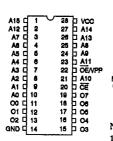

Erasable

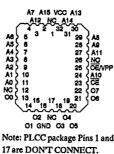
CMOS

EPROM

Preliminary

Block Diagram


Description


The ATMEL 27C512R chip is a low-power, high performance 524,288 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM) organized 64K x 8. It requires only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 120ns, eliminating the need for speed reducing WAIT states on high performance microprocessor systems.

The AT27C512R meets or exceeds all specifications for the AT27C512. ATMEL's 1.2 micron scaled CMOS technology additionally provides lower active power consumption, and significantly faster programming. Power consumption is typically only 8mA in Active Mode and less than 10µA in Standby.

Pin Configurations

PIN NAMES						
A0 - A15 Addresses						
O0 - O7	Outputs					
CE	Chip Enable					
OE/Vpp	Output Enable					
NC	No Connect					

Description (Continued)

JEDEC-approved packages including; 28-pin DIP ceramic or one time programmable (OTP) plastic, 28-pin OTP plastic small outline (SOIC), and 32-pad ceramic leadless chip carrier (LCC), or OTP plastic J-leaded chip carrier (PLCC). All devices feature two line control (CE, OE) to give designers the flexibility to prevent bus contention.

With high density 64K byte storage capability, the AT27C512R allows firmware to be stored reliably and to be accessed by the system without the delays of mass storage

The AT27C512R comes in a choice of industry standard ATMEL's 27C512R has additional features to ensure high quality and efficient production use. The Rapid Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100 µs/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and vol-

Operating Modes

CE	ŌE/V _{PP}	Ai	Vcc	Outputs
VIL	VIL	Ai	Vcc	Dour
VIL	V _{IH}	X¹	Vcc	High Z
V_{IH}	X	X	Vcc	High Z
VIL	Vpp	Ai	Vcc	DIN
V_{IL}	V _{IL}	Ai	Vcc	Dout
VIH	Vpp	X	Vcc	High Z
	•	$A9 = V_H^3$		Identification
V_{IL}	VIL	$A0 = V_{IH}$ or V_{IL} $A1-A15 = V_{IL}$	Vcc	Code
	VIL VIH VIL VIL VIL VIL	VIL VIL VIL VIH VIH X VIL VPP VIL VIL VIH VPP	VIL VIL Ai VIL VIH X¹ VIH X X VIL VPP Ai VIL VIL Ai VIH VPP X A9=VH³ VIL VIL A0=VIH or VIL	VIL VIL Ai VCC VIL VIH X¹ VCC VIH X X VCC VIL VPP Ai VCC VIL VIL Ai VCC VIH VPP X VCC A9 = VH³ VIL A0 = VIH or VIL VCC

Notes: 1. X can be VIL or VIH.

2. Refer to Programming Characteristics.

 $3. V_H = 12.0 \pm 0.5 V.$

Absolute Maximum Ratings*

Temperature Under Bias	55°C to +125°C
Storage Temperature	65°C to +150°C
Voltage on Any Pin with Respect to Ground	2.0V to $+7.0V^{1}$
Voltage on A9 with Respect to Ground	
Vpp Supply Voltage with Respect to Ground	
Integrated UV Erase Dose	

Notes: 1. Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20ns, Maximum output pin voltage is VCC+0.75V dc which may overshoot to +7.0V for pulses of less than 20ns.

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Erasure Characteristics

The entire memory array of the AT27C512R is erased (all lated from the minimum integrated erasure dose of sity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calcu-

outputs read as VOH) after exposure to ultraviolet light at a 15W • sec/cm². To prevent unintentional erasure, an opaque wavelength of 2537Å. Complete erasure is assured after a label is recommended to cover the clear window on any UV minimum of 20 minutes exposure using 12,000 µW/cm² intenerasable EPROM which will be subjected to continuous fluorescent indoor lighting or sunlight.

^{4.} Two identifier bytes may be selected. All Ai inputs are held low (VIL), except A9 which is set to VH and A0 which is toggled low (VIL) to select the Manufacturer's Identification byte and high (VIH) to select the Device Code byte.

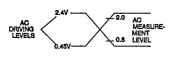
AT27C512R

D.C. and A.C. Operating Conditions for Read Operation

		AT27C512R				
		-12	-15	-20	-25	
Operating	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C	
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	
(case)	Mil.	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C	
CC Power Suppl	y	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%	

D.C. and Operating Characteristics for Read Operation

Symbol	Parameter	Condition	Min	Max	Units
Iц	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 1V$		10	μA
ILO	Output Leakage Current	$V_{OUT} = -0.1V$ to $V_{CC} + 0.1V$		10	μA
		I _{SB1} (CMOS)	Com.	100	μΑ
I_{SB}	VCC ¹ Standby Current	$\overline{CE} = V_{CC}$ -0.3 to V_{CC} +1.0V	Ind.,Mil.	200	μA
		I _{SB2} (TTL)	Com.	2	mA
		$\overline{\text{CE}} = 2.0 \text{ to V}_{\text{CC}} + 1.0 \text{V}$	Ind.,Mil.	3	mA
Icc	VCC Active Current	$f = 5MHz,I_{OUT} = 0mA,\overline{CE} = VIL$	Com.	20	mA
			Ind.,Mil,	25	mA
VIL	Input Low Voltage		-0.6	0.8	V
ViH	Input High Voltage		2.0	V _{CC} +1	V
Vol	Output Low Voltage	I _{OL} =2.1mA		.45	V
		$I_{OH} = -100 \mu A$	V _{CC} -0.3		V
VOH	Output High Voltage	$I_{OH} = -2.5 \text{mA}$	3.5		V
		I _{OH} = -400μA	2.4	2.4	


Note: 1. VCC must be applied simultaneously or before OE/Vpp, and removed simultaneously or after OE/Vpp.

A.C. Characteristics for Read Operation

	AT27C512R							
				-12	-15	-20	-25	
Symbo	l Parameter	Condition		Min Max	Min Max	Min Max	Min Max	Units
tACC4	Address to	$\overline{CE} = \overline{OE}/V_{PP}$	Com.	120	150	200	250	n
	Output Delay	$=V_{IL}$	Ind.,Mi	i. 120	150	200	250	n
tcE3	CE to Output Delay	$\overline{OE}/V_{PP} = V_{IL}$		120	150	200	250	n
toE3,4	OE/VPP to Output Delay	$\overline{CE} = V_{IL}$		50	60	75	100	n
tDF2,5	OE/Vpp or CE High to Output Float	CE = V _{IL}		45	50	55	60	ns
tон	Output Hold from Address, CE or OE/Vpp, whichever occurred first	CE = OE/Vpp = VIL		0	. 0	0	0	n

Notes: 2,3,4, and 5 - see AC Waveforms for Read Operation.

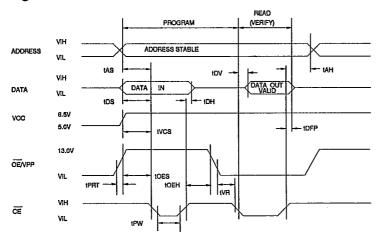
Input Test Waveforms and Measurement Levels

tR, tF < 20ns (10% to 90%)

Output Test Load

Note: C_L = 100pF including jig capacitance.

A.C. Waveforms for Read Operation¹


Notes:

- 1. Timing measurement references are 0.8V and 2.0V. Input AC driving levels are 0.45V and 2.4V, unless otherwise specified.
- 2. tDF is specified from OE/Vpp or CE, whichever occurs first.
- 3. OE/VPP may be delayed up to tce-toe after the falling edge of CE without impact on tce.
- 4. OE/VPP may be delayed up to tACC-tOE after the address is valid without impact on tACC.
- 5. This parameter is only sampled and is not 100% tested.

Pin Capacitance(f=1MHz T=25°C)

	Тур	Max	Units	Conditions
Cin	4	6	pF	$V_{IN} = 0V$
Cour	8	12	pF	$V_{OUT} = 0V$

Programming Waveforms¹

Notes:

- 1. The Input Timing Reference is 0.8V for V_{IL} and 2.0V for V_{IH} .
- 2. toe and tofp are characteristics of the device but must be accommodated by the programmer.

D.C. Programming Characteristics

 $T_A = 25 \pm 5^{\circ}C$. $V_{CC} = 6.5 \pm 0.25V$. $\overline{OE}/V_{PP} = 13.0 \pm 0.25V$

· ·		Test	Lin	iits	
Symbol	Parameter	Conditions	Min	Max	Units
ILI	Input Load Current	VIN=VIL, VIH		10	μА
V_{IL}	Input Low Level	(All Inputs)	-0.6	0.8	V
VIH	Input High Level		2.0	VCC+	1 V
Vol	Output Low Volt.	IOL=2.1mA		.45	v
Voh	Output High Volt.	$I_{OH} = -400 \mu A$	2,4		v
I _{CC2}	Vcc Supply Current				
	(Program and Verify)			25	mΑ
IPP2	OE/Vpp Current	$\overline{CE} = V_{IL}$		25	mA
V_{ID}	A9 Product				*
	Identification Voltage	1	11.5	12,5	V

A.C. Programming Characteristics

$T_A = 25 \pm 5^{\circ}C$, $V_{CC} = 6.5 \pm 0.25V$, $OE/V_{PP} = 13.0 \pm 0.25V$								
		Test Conditions* Limits						
Symbol	Parameter	(see Note 1)	Min	Max	Units			
tas	Address Setup Time		2		μs			
toes	OE/VPP Setup Time		2		μs			
toen	OE/Vpp Hold Time		2		μs			
tDS	Data Setup Time		2		μs			
tah	Address Hold Time		0		μs			
tDH	Data Hold Time		2		μs			
tDFP	CE High to							
	Output Float Delay	(Note 2)	0	130	ns			
tvcs	VCC Setup Time		2		μs			
tpw	CE Program							
L	Pulse Width	(Note 3)	95	105	μs			
tDV	Data Valid from CE	(Note 2)		1	μs			
tvr	OE/Vpp Recovery Ti		2		μs			
tprt	OE/Vpp Pulse Rise T	ime						
	During Programming		_50		ns			
** ~ ~	anditions of Tasts							

*A.C. Conditions of Test:

Input Rise and Fall Times (10% to 90%) 20ns

Input Pulse Levels 0.45V to 2.4V

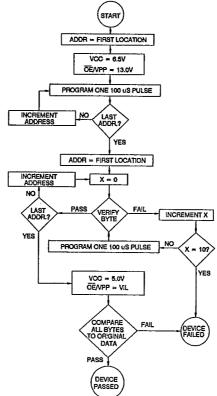
Input Timing Reference Level 0.8V to 2.0V

Output Timing Reference Level 0.8V to 2.0V

Notes:

1.

VCC must be applied simultaneously or before \overline{OE}/V_{PP} and removed simultaneously or after \overline{OE}/V_{PP} .


This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven - see timing diagram.
3. Program Pulse width tolerance is 100 µs ± 5%.

ATMEL's 27C512R Integrated Product Identification Code:

Pins	A0	07	O6	O5	04	O3	O2	01	00	Hex
Codes						_				Data
Manufacturer	0	0	0	0	1	1	1	1	0	1E
Device Type	1	0	0	0	0	1	1	0	1	0D

Rapid Programming Algorithm

A 100 us CE pulse width is used to program. The address is set to the first location. VCC is raised to 6.5V and Vpp is raised to 13.0V. Each address is first programmed with one 100 µs CE pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 100 µs pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked, OE/Vpp is then lowered to VIL and VCC to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.

Ordering Information

tacc	Icc (mA)		Ordering Code	Package	Operation Range
(ns)	Active	Standby	Ordering Code	, doktago	Operation Flatige
120	20	0.1	AT27C512R-12DC AT27C512R-12LC	28DW6 32LW	Commercial (0°C to 70°C)
120	25	0.2	AT27C512R-12DI AT27C512R-12LI	28DW6 32LW	Industrial (-40°C to 85°C)
			AT27C512R-12DM AT27C512R-12LM	28DW6 32LW	Military (-55°C to 125°C)
٠.			AT27C512R-12DM/883 AT27C512R-12LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
150	20	0.1	AT27C512R-15DC AT27C512R-15LC AT27C512R-15PC AT27C512R-15JC AT27C512R-15TC	28DW6 32LW 28P6 32J 28T	Commercial (0°C to 70°C)
150	25	0.2	AT27C512R-15DI AT27C512R-15LI AT27C512R-15PI AT27C512R-15JI AT27C512R-15TI	28DW6 32LW 28P6 32J 28T	Industrial (-40°C to 85°C)
			AT27C512R-15DM AT27C512R-15LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27C512R-15DM/883 AT27C512R-15LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	20	0.1	AT27C512R-20DC AT27C512R-20LC AT27C512R-20PC AT27C512R-20JC AT27C512R-20TC	28DW6 32LW 28P6 32J 28T	Commercial (0°C to 70°C)
200	25	0.2	AT27C512R-20DI AT27C512R-20LI AT27C512R-20PI AT27C512R-20JI AT27C512R-20TI	28DW6 32LW 28P6 32J. 28T	Industrial (-40°C to 85°C)
			AT27C512R-20DM AT27C512R-20LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27C512R-20DM/883 AT27C512R-20LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

■ AT27C512R

Ordering Information

tacc (ns)	I _{cc} Active	(mA) Standby	Ordering Code	Package	Operation Range
250	20	Õ.1	AT27C512R-25DC AT27C512R-25LC AT27C512R-25PC AT27C512R-25JC AT27C512R-25TC	28DW6 32LW 28P6 32J 28T	Commercial (0°C to 70°C)
250	25	0.2	AT27C512R-25DI AT27C512R-25LI AT27C512R-25PI AT27C512R-25JI AT27C512R-25TI	28DW6 32LW 28P6 32J 28T	Industrial (-40°C to 85°C)
			AT27C512R-25DM AT27C512R-25LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27C512R-25DM/883 AT27C512R-25LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

Package Type	
28DW6	28 Lead, 0.6", Windowed Cerdip
32J	32 Lead, Plastic J-Lead Chip Carrier
32LW	32 Pad, Windowed, Ceramic Leadless Chip Carrier
28P6	28 Lead, 0.6" Wide, Plastic Dual-In-Line
28T	28 Lead, Wide Footprint, Plastic Gull Wing SOIC

