

## **4.8 V NPN Common Emitter Output Power Transistor for GSM Class IV Phones**

# **Technical Data**



#### **Features**

- 4.8 Volt Pulsed Operation (pulse width = 577 μsec, duty cycle = 12.5%)
- +35.0 dBm P<sub>out</sub> @ 900 MHz, Typ.
- 65% Collector Efficiency @ 900 MHz, Typ.
- 9 dB Power Gain @ 900 MHz, Typ.
- Internal Input Pre-Matching Facilitates Cascading

#### Applications

• Output Power Device for GSM Class IV Handsets SOIC-8 Surface Mount Plastic Package Outline P8



### **Pin Configuration**



#### Description

Agilent's AT-36408 combines internal input pre-matching with low cost, NPN power silicon bipolar junction transistors in a SOIC-8 surface mount plastic package. This device is designed for use as the output device for GSM Class IV handsets. At 4.8 volts, the device features +35 dBm pulsed output power, superior power added efficiency, and excellent gain, making the AT-36408 an excellent choice for battery powered systems.

The AT-36408 is fabricated with Agilent's 10 GHz FT Self-Aligned-Transistor (SAT) process. The die are nitride passivated for surface protection. Excellent device uniformity, performance and reliability are produced by the use of ion-implantation, self-alignment techniques, and gold metalization in the fabrication of these devices.

| Symbol           | Parameter                                | Units | Absolute<br>Maximum <sup>[1]</sup> |
|------------------|------------------------------------------|-------|------------------------------------|
| V <sub>EBO</sub> | Emitter-Base Voltage                     | V     | 1.4                                |
| V <sub>CBO</sub> | Collector-Base Voltage                   | V     | 16.0                               |
| V <sub>CEO</sub> | Collector-Emitter Voltage                | V     | 9.5                                |
| I <sub>c</sub>   | Collector Current <sup>[2]</sup>         | А     | 1.7                                |
| P <sub>T</sub>   | Peak Power Dissipation <sup>[2, 3]</sup> | W     | 8.6                                |
| Tj               | Junction Temperature                     | °C    | 150                                |
| T <sub>STG</sub> | Storage Temperature                      | °C    | -65 to 150                         |

#### **AT-36408 Absolute Maximum Ratings**

#### Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. Pulsed operation, pulse width =  $577 \mu sec$ , duty cycle = 12.5%.
- 3. Derate at 133.3 mW/°C for  $T_C > 85$ °C.  $T_C$  is defined to be the temperature of the collector pins 3 and 6, where the lead contacts the circuit board.
- 4. Using the liquid crystal technique,  $V_{CE}$  = 4.5 V,  $I_c$  =100 mA,  $T_j$  =150°C, 1-2  $\mu m$  "hot-spot" resolution.

| Symbol            | Parameters and Test Conditions                                                                                                                               | Units | Min.  | Typ.  | Max. |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|------|
|                   | Freq. = 900 MHz, $V_{CE}$ = 4.8 V, $I_{CQ}$ = 50 mA, pulsed operation, pulse width = 577 µsec, duty cycle = 12.5%, Test Circuit A,unless otherwise specified |       |       |       |      |
| P <sub>out</sub>  | Output Power <sup>[1]</sup> $P_{in} = +26 \text{ dBm}$                                                                                                       | dBm   | +34.0 | +35.0 |      |
| $\eta_{\rm C}$    | Collector Efficiency <sup>[1]</sup> $P_{in} = +26 \text{ dBm}$                                                                                               | %     | 55    | 65    |      |
| H2                | 2nd Harmonic <sup>[1]</sup> $F_0 = 900 \text{ MHz}$                                                                                                          | dBc   |       | -50   |      |
| H3                | $3$ rd Harmonic <sup>[1]</sup> $F_0 = 900 \text{ MHz}$                                                                                                       | dBc   |       | -40   |      |
|                   | Mismatch Tolerance, No Damage $^{[1]}$ $P_{out} = +35 \text{ dBm}$ any phase, 2 sec duration                                                                 |       |       |       | 7:1  |
| BV <sub>EBO</sub> | Emitter-Base Breakdown Voltage $I_E = 0.8$ mA, open collector                                                                                                | V     | 1.4   |       |      |
| BV <sub>CBO</sub> | Collector-Base Breakdown Voltage $I_c = 4.0$ mA, open emitter                                                                                                | V     | 16.0  |       |      |
| BV <sub>CEO</sub> | Collector-Emitter Breakdown Voltage $I_c = 20.0$ mA, open base                                                                                               | V     | 9.5   |       |      |
| h <sub>FE</sub>   | $Forward Current Transfer Ratio \qquad V_{CE} = 3 V, I_{C} = 180 mA$                                                                                         |       | 80    | 150   | 330  |
| I <sub>CEO</sub>  | Collector Leakage Current $V_{CEO} = 5 V$                                                                                                                    | μA    |       |       | 50   |

#### Electrical Specifications, $T_c = 25^{\circ}C$

Note:

1. With external matching on input and output, tested in a 50 ohm environment. Refer to Test Circuit A (GSM).

2

Thermal Resistance<sup>[4]</sup>:

 $\theta_{jc} = 60^{\circ}C/W$ 

#### AT-36408 Typical Performance, $T_c = 25^{\circ}C$

Frequency = 900 MHz,  $V_{CE}$  = 4.8 V,  $I_{CQ}$  = 50 mA, pulsed operation, pulse width = 577  $\mu$ sec, duty cycle = 12.5%, Test Circuit A (GSM), unless otherwise specified.

38



**Figure 1. Output Power and Collector** 

Efficiency vs. Input Power.



**Power Over Bias Voltage.** 

80  $\Gamma_{\text{source}}$  = 0.88  $\angle$  -171 Γload = 0.85 ∠ +172 70 % EFFICIENCY 60 50 40 COLLECTOR 30 20 3.6 V 4.8 V 10 6.0 V ----0 8 10 12 14 16 18 20 22 24 26 28 6 INPUT POWER (dBm)

Figure 3. Collector Efficiency vs. Input Power Over Bias Voltage.

0



Figure 4. Output Power vs. Input Power Over Temperature.







Figure 6. Input and Output Return Loss vs. Frequency.

#### **AT-36408** Typical Large Signal Impedances

| $v_{CE} = 4.0 v$ , $i_{CO} = 50 \text{ mA}$ , i uised Operation, i <sub>out</sub> = $\pm 55.0 \text{ ub}$ | $T_{\rm CE} = 4.8$ | 8 V, $I_{CO} = 5$ | 0 mA, Pulsed | Operation, | $P_{out} =$ | +35.0 | dBn |
|-----------------------------------------------------------------------------------------------------------|--------------------|-------------------|--------------|------------|-------------|-------|-----|
|-----------------------------------------------------------------------------------------------------------|--------------------|-------------------|--------------|------------|-------------|-------|-----|

| Freq. | Γ s   | ource  | Г     | load  |
|-------|-------|--------|-------|-------|
| MHz   | Mag.  | Ang.   | Mag.  | Ang.  |
| 880   | 0.882 | -170.0 | 0.847 | 172.7 |
| 890   | 0.885 | -170.5 | 0.849 | 172.2 |
| 900   | 0.887 | -171.1 | 0.851 | 171.6 |
| 910   | 0.890 | -171.4 | 0.853 | 171.1 |
| 915   | 0.891 | -169.0 | 0.854 | 168.4 |
| 920   | 0.893 | -168.4 | 0.855 | 168.2 |



Figure 7. Collector-Base Capacitance vs. Collector-Base Voltage (DC Test).

#### SPICE Model Parameters Die Model



| Label | Value    | Label | Value     |
|-------|----------|-------|-----------|
| BF    | 280      | TR    | 1E-9      |
| IKF   | 299.9    | EG    | 1.11      |
| ISE   | 9.9E-11  | IS    | 3.598E-15 |
| NE    | 2.399    | XTI   | 3         |
| VAF   | 33.16    | CJC   | 0.8E-12   |
| NF    | 0.9935   | VJC   | 0.4831    |
| TF    | 1.6E-11  | MJC   | 0.2508    |
| XTF   | 0.006656 | XCJC  | 0.001     |
| VTF   | 0.02785  | FC    | 0.999     |
| ITF   | 0.001    | CJE   | 6.16E-12  |
| PTF   | 23       | VJE   | 1.186     |
| XTB   | 0        | MJE   | 0.5965    |
| BR    | 54.61    | RB    | 0.752     |
| IKR   | 81       | IRB   | 0         |
| ISC   | 8.7E-13  | RBM   | 0.01      |
| NC    | 1.587    | RE    | 1.27      |
| VAR   | 1.511    | RC    | 0.107     |
| NR    | 0.9886   |       |           |

#### **Packaged Model**



| Label | Value   | Label  | Value      |
|-------|---------|--------|------------|
| Rlead | 0.63 Ω  | LE2    | 0.00064 nH |
| Llead | 1.45 nH | Cbase  | 46.0 pF    |
| Rwire | 1.3 Ω   | Rwbase | 0.2 Ω      |
| Lwire | 0.52 nH | Lwbase | 1.19 nH    |
| Cpkg1 | 0.4 pF  | Rwbb   | 0.1 Ω      |
| Cpkg2 | 1.2 pF  | Lwbb   | 0.1 nH     |
| LE1   | 0.3 nH  |        |            |

| Freq.                | S                | 11          |      | S <sub>21</sub> |      |       | <b>S</b> <sub>12</sub> |      | S    | 22   |
|----------------------|------------------|-------------|------|-----------------|------|-------|------------------------|------|------|------|
| GHz                  | Mag.             | Ang.        | dB   | Mag.            | Ang. | dB    | Mag.                   | Ang. | Mag. | Ang. |
| 0.05                 | 0.96             | -175        | 22.3 | 13.08           | 93   | -38.4 | 0.012                  | 11   | 0.74 | -169 |
| 0.10                 | 0.96             | -178        | 16.4 | 6.61            | 88   | -37.7 | 0.013                  | 13   | 0.74 | -174 |
| 0.25                 | 0.96             | 177         | 8.8  | 2.76            | 80   | -36.5 | 0.015                  | 24   | 0.75 | -177 |
| 0.50                 | 0.94             | 173         | 4.2  | 1.63            | 66   | -34.4 | 0.019                  | 33   | 0.73 | -177 |
| 0.75                 | 0.90             | 169         | 3.4  | 1.49            | 46   | -32.0 | 0.025                  | 27   | 0.71 | -172 |
| 0.90                 | 0.84             | 168         | 4.2  | 1.63            | 24   | -32.0 | 0.025                  | 10   | 0.72 | -165 |
| 1.00                 | 0.79             | 170         | 4.6  | 1.70            | 0    | -34.0 | 0.020                  | -14  | 0.81 | -160 |
| 1.25                 | 0.92             | 175         | -1.2 | 0.87            | -68  | -37.1 | 0.014                  | 126  | 1.01 | -172 |
| 1.50                 | 0.97             | 169         | -9.6 | 0.33            | -98  | -30.2 | 0.031                  | 97   | 0.96 | -177 |
| $V_{\rm CE} = 4.8$ V | $V, I_{c} = 200$ | mA, $T_c =$ | 25°C |                 |      |       |                        |      | •    |      |
| 0.05                 | 0.96             | -174        | 22.6 | 13.42           | 93   | -37.7 | 0.013                  | 11   | 0.74 | -169 |
| 0.10                 | 0.96             | -178        | 16.6 | 6.79            | 88   | -37.7 | 0.013                  | 13   | 0.73 | -174 |
| 0.25                 | 0.96             | 178         | 9.0  | 2.83            | 80   | -36.5 | 0.015                  | 23   | 0.74 | -177 |
| 0.50                 | 0.94             | 173         | 4.4  | 1.66            | 66   | -34.4 | 0.019                  | 32   | 0.72 | -176 |
| 0.75                 | 0.90             | 169         | 3.6  | 1.51            | 46   | -32.4 | 0.024                  | 26   | 0.70 | -172 |
| 0.90                 | 0.84             | 168         | 4.3  | 1.64            | 24   | -32.0 | 0.025                  | 9    | 0.72 | -164 |
| 1.00                 | 0.80             | 170         | 4.6  | 1.71            | 0    | -34.0 | 0.020                  | -14  | 0.81 | -160 |
| 1.25                 | 0.92             | 175         | -1.0 | 0.89            | -67  | -37.1 | 0.014                  | 126  | 1.01 | -171 |
| 1.50                 | 0.97             | 169         | -9.4 | 0.34            | -97  | -30.2 | 0.031                  | 97   | 0.96 | -177 |
| $V_{\rm CE} = 6.0$ V | V, $I_c = 200$   | mA, $T_c =$ | 25°C |                 |      |       |                        |      |      |      |
| 0.05                 | 0.96             | -174        | 22.7 | 13.60           | 93   | -37.7 | 0.013                  | 12   | 0.73 | -169 |
| 0.10                 | 0.96             | -178        | 16.7 | 6.88            | 88   | -37.1 | 0.014                  | 14   | 0.72 | -174 |
| 0.25                 | 0.96             | 178         | 9.2  | 2.87            | 79   | -35.9 | 0.016                  | 23   | 0.73 | -177 |
| 0.50                 | 0.94             | 173         | 4.5  | 1.68            | 65   | -34.0 | 0.020                  | 30   | 0.71 | -176 |
| 0.75                 | 0.90             | 169         | 3.7  | 1.52            | 45   | -32.0 | 0.025                  | 24   | 0.69 | -171 |
| 0.90                 | 0.85             | 168         | 4.3  | 1.64            | 23   | -32.0 | 0.025                  | 8    | 0.72 | -164 |
| 1.00                 | 0.80             | 170         | 4.6  | 1.70            | 0    | -34.0 | 0.020                  | -14  | 0.81 | -159 |
| 1.25                 | 0.92             | 175         | -1.0 | 0.90            | -67  | -37.7 | 0.013                  | 125  | 1.01 | -171 |
| 1.50                 | 0.97             | 169         | -9.2 | 0.35            | -97  | -30.2 | 0.031                  | 96   | 0.95 | -177 |

AT-36408 Typical Scattering Parameters, Common Emitter,  $Z_0 = 50 \Omega$ V<sub>CE</sub> = 3.6 V, I<sub>c</sub> = 200 mA, T<sub>c</sub> = 25°C

## **Typical Performance**



Figure 8. Insertion Power Gain, Maximum Available Gain, and Maximum Stable Gain vs. Frequency.  $V_{CE}$  = 3.6 V,  $I_C$  = 200 mA.



Figure 9. Insertion Power Gain, Maximum Available Gain, and Maximum Stable Gain vs. Frequency.  $V_{CE}$  = 4.8 V,  $I_C$  = 200 mA.



Figure 10. Insertion Power Gain, Maximum Available Gain, and Maximum Stable Gain vs. Frequency.  $V_{CE}$  = 6.0 V,  $I_C$  = 200 mA.



#### Test Circuit A: Test Circuit Board Layout @ 900 MHz (GSM)

Test Circuit A: Test Circuit Schematic Diagram @ 900 MHz (GSM)



| Part | Numb | oer Oro | lering | Informa | tion |
|------|------|---------|--------|---------|------|
|------|------|---------|--------|---------|------|

| Part Number  | No. of Devices | Container    |
|--------------|----------------|--------------|
| AT-36408-TR1 | 1000           | 7" Reel      |
| AT-36408-BLK | 25             | Carrier Tape |

#### **Package Dimensions** SOIC-8 Surface Mount Plastic Package



#### Note:

<sup>1.</sup> Dimensions are shown in millimeters (inches).



#### Tape Dimensions and Product Orientation For Package SOIC-8



| DESCRIPTION                                                                                                                             |                                        | SYMBOL                                | SIZE (mm)                                                                                                                                                             | SIZE (INCHES)                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAVITY LENGTH<br>WIDTH<br>DEPTH<br>PITCH                                                                                                |                                        | A<br>B<br>K<br>P1                     | $\begin{array}{c} \textbf{6.45} \pm \textbf{0.10} \\ \textbf{5.13} \pm \textbf{0.10} \\ \textbf{2.11} \pm \textbf{0.10} \\ \textbf{8.00} + \textbf{0.10} \end{array}$ | $\begin{array}{c} \textbf{0.254} \pm \textbf{0.004} \\ \textbf{0.202} \pm \textbf{0.004} \\ \textbf{0.083} \pm \textbf{0.004} \\ \textbf{0.315} \pm \textbf{0.004} \end{array}$ |
| BOTTOM HOLE D                                                                                                                           | IAMETER                                | D <sub>1</sub>                        | 1.50 min.                                                                                                                                                             | 0.059 min.                                                                                                                                                                      |
| PERFORATION DIAMETER<br>PITCH<br>POSITION                                                                                               |                                        | D <sub>0</sub><br>P <sub>0</sub><br>E | 1.50 + 0.10/-0<br>4.00 ± 0.10<br>1.75 ± 0.10                                                                                                                          | 0.059 + 0.004/-0<br>0.157 ± 0.004<br>0.069 ± 0.004                                                                                                                              |
| CARRIER TAPE WIDTH<br>THICKNESS                                                                                                         |                                        | W<br>t                                | $\begin{array}{c} 8.00 \pm 0.30 \\ 0.255 \pm 0.013 \end{array}$                                                                                                       | $\begin{array}{c} \textbf{0.315} \pm \textbf{0.012} \\ \textbf{0.0100} \pm \textbf{0.0005} \end{array}$                                                                         |
| COVER TAPE WIDTH<br>TAPE THICKNESS                                                                                                      | 6                                      | C<br>T                                | $\begin{array}{c} \textbf{9.19} \pm \textbf{0.10} \\ \textbf{0.051} \pm \textbf{0.010} \end{array}$                                                                   | $\begin{array}{c} \textbf{0.362} \pm \textbf{0.004} \\ \textbf{0.0020} \pm \textbf{0.0004} \end{array}$                                                                         |
| DISTANCE<br>BETWEEN<br>CENTERLINE<br>CAVITY TO PERF                                                                                     | ORATION<br>DN)<br>ORATION              | F<br>P <sub>2</sub>                   | $\begin{array}{c} {\bf 5.51 \pm 0.05} \\ {\bf 2.00 \pm 0.05} \end{array}$                                                                                             | $\begin{array}{c} \textbf{0.217} \pm \textbf{0.002} \\ \textbf{0.079} \pm \textbf{0.002} \end{array}$                                                                           |
| COVER TAPE WIDTH<br>TAPE THICKNESS<br>DISTANCE CAVITY TO PERF<br>BETWEEN (WIDTH DIRECTIO<br>CENTERLINE CAVITY TO PERF<br>(LENGTH DIRECT | S<br>ORATION<br>DN)<br>ORATION<br>ION) | C<br>T<br>F<br>P <sub>2</sub>         | $\begin{array}{c} 9.19 \pm 0.10 \\ 0.051 \pm 0.010 \\ \hline 5.51 \pm 0.05 \\ 2.00 \pm 0.05 \end{array}$                                                              | 0.3<br>0.0<br>0.2<br>0.2                                                                                                                                                        |

www.semiconductor.agilent.com Data subject to change. Copyright © 1999 Agilent Technologies 5965-5960E (11/99)