

MMBZ5V6AL - MMBZ33VAL

24W AND 40W PEAK POWER DUAL SURFACE MOUNT TVS

Features

Dual TVS in Common Anode Configuration

24W/40W Peak Power Dissipation Rating @ 1.0ms

(Unidirectional)

225 mW Power Dissipation

Ideally Suited for Automatic Insertion

Low Leakage

Lead Free/RoHS Compliant (Note 5)

Mechanical Data

Case: SOT-23

Case Material: Molded Plastic. UL Flammability

Classification 94V-0

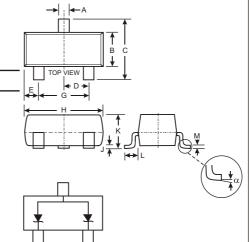
Moisture Sensitivity: Level 1 per J-STD-020C

Terminals: Solderable per MIL-STD-202, Method 208

Polarity: See Diagram

Lead Free Plating (Matte Tin Finish annealed over

Alloy 42 leadframe).


Marking: Marking Code & Date Code, See Page 2

Marking Code: See Table Below and Page 2

Ordering Information: See Page 2

ESD Rating Exceeding 16kV per the Human Body Model (Note 4)

Weight: 0.008 grams (approximate)

	SOT-23									
Dim	Min	Max								
Α	0.37	0.51								
В	1.20	1.40								
С	2.30	2.50								
D	0.89	1.03								
E	0.45	0.60 2.05								
G	1.78									
Н	2.80	3.00								
J	0.013	0.10								
K	0.903	1.10								
L	0.45	0.61								
M	0.085	0.180								
	0	8								
All Din	All Dimensions in mm									

Maximum Ratings @TA = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 1)	P _d	225	mW
Peak Power Dissipation (Note 2) MMBZ5V6AL - MMBZ10VAL	P _{pk}	24	W
Peak Power Dissipation (Note 2) MMBZ15VAL - MMBZ33VAL	P _{pk}	40	W
Thermal Resistance, Junction to Ambient Air (Note 1)	R JA	556	°C/W
Operating and Storage Temperature Range	T_j, T_{STG}	-65 to +150	°C

Electrical Characteristics @T_A = 25°C unless otherwise specified

24 Watt (V_F = 0.9V max @ I_F = 10mA)

		.,	I _R @		Breakdow	n Voltage		V _C @ I _{PP} (Note 2)		Typical Temperature Coefficient	
Type Marking Number Code	V _{RWM}	V _{RWM}	V	_{3R} (Note 3) ((V)	@ I _T	Vc	l _{PP}			
	Volts		Min	Nom	Max	mA	٧	Α	Tc (mV/ C)		
MMBZ5V6AL	K9A	3	5.0	5.32	5.6	5.88	20	8.0	3.0	1.8	

24 Watt (V_F = 1.1V max @ I_F = 200mA)

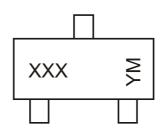
		.,	I _R @		Breakdow	n Voltage		V _C @	I _{PP} (Note 2)	Typical Temperature Coefficient	
Type Number	Marking Code	V _{RWM}	V _{RWM}	V	BR (Note 3)	(V)	@ I _T	Vc	l _{PP}		
		Volts	Α	Min	Nom	Max	mA	V	Α	Tc (%/ C)	
MMBZ6V2AL	K9B	3.0	0.5	5.89	6.2	6.51	1.0	8.7	2.76	+0.04	
MMBZ6V8AL	K9C	4.5	0.5	6.46	6.8	7.14	1.0	9.6	2.5	+0.045	
MMBZ9V1AL	K9D	6.0	0.3	8.65	9.1	9.56	1.0	14	1.7	+0.065	
MMBZ10VAL	K9E	6.5	0.3	9.50	10	10.5	1.0	14.2	1.7	+0.065	

1. Device mounted on FR-5 PCB 1.0 x 0.75 x 0.062 inch pad layout as shown on Diodes Inc. suggested pad layout AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf. 200mW per element must not be exceeded.

- 2. Non-repetitive current pulse per Figure 2 and derate above $T_A = 25\,$ C per Figure 1.
- 3. Short duration pulse test used to minimize self-heating effect.
- 4. MMBZ5V6AL and MMBZ15VAL exceed 16kV ESD rating, all other voltages exceed 8kV ESD rating.
- 5. No purposefully added lead.

40 Watt ($V_F = 1.1V \text{ max } @ I_F = 200\text{mA}$)

		.,	I _R @		Breakdov	vn Voltage		V _C @	I _{PP} (Note 2)	Typical Temperature Coefficient	
Type Number	Marking Code	V _{RWM}	V _{RWM}	V	_{BR} (Note 3)	(V)	@ I _T	Vc	lpp		
		Volts	nA	Min	Nom	Max	mA	V	Α	Tc (%/ C)	
MMBZ15VAL	K9K	12	50	14.25	15	15.75	1.0	21	1.9	+0.080	
MMBZ18VAL	K9L	14.5	50	17.10	18	18.90	1.0	25	1.6	+0.090	
MMBZ20VAL	K9N	17	50	19.00	20	21.00	1.0	28	1.4	+0.090	
MMBZ27VAL	K9Q	22	50	25.65	27	28.35	1.0	40	1.0	+0.090	
MMBZ33VAL	K9T	26	50	31.35	33	34.65	1.0	46	0.87	+0.090	

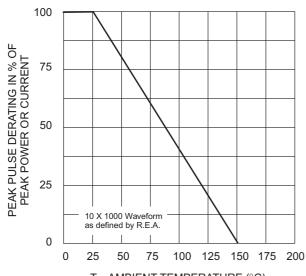

Ordering Information (Note 6)

Device	Packaging	Shipping
(Type number)-7*-F	SOT-23	3000/Tape & Reel

^{*} Example: 5.6V type = MMBZ5V6AL-7-F.

Notes: 6. For Packaging Details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information



XXX = Product Type Marking Code YM = Date Code Marking Y = Year ex: N = 2002 M = Month ex: 9 = September

Date Code Key

Code M N P R S	Т	U	V	W

Month	Jan	Feb	March	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	N	D

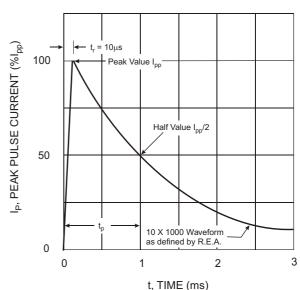


Fig. 2 Pulse Waveform

DIODES

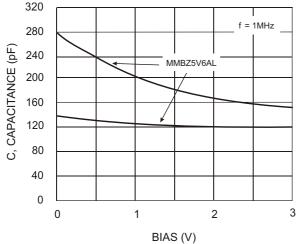
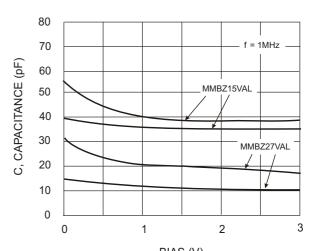
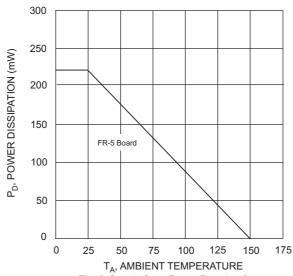
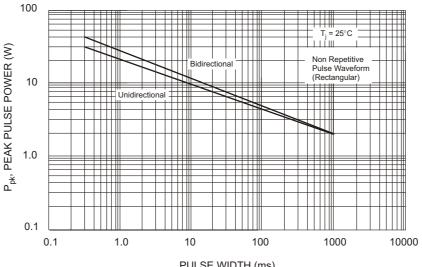
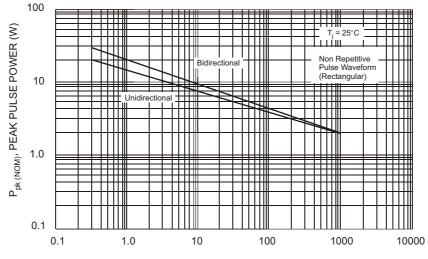



Fig. 3 Typical Capacitance vs. Bias Voltage (Lower curve is Bidirectional mode, Upper curve is Unidirectional mode)

BIAS (V)
Fig. 4 Typical Capacitance vs. Bias Voltage (Lower curve is Bidirectional mode, Upper curve is Unidirectional mode)


Fig. 5 Steady State Power Derating Curve

PULSE WIDTH (ms)
Fig. 6 Pulse Rating Curve,
P_{pk}(W) vs. Pulse Width (ms)

Power is defined as $P_{pk} = V_C \times I_{pp}$

 $\begin{array}{c} \text{PULSE WIDTH (ms)} \\ \text{Fig. 7 Pulse Rating Curve,} \\ \text{P}_{\text{pk (NOM)}} (\text{W}) \text{ vs. Pulse Width (ms)} \end{array}$

Power is defined as $P_{pk(NOM)} = V_{Z(NOM)} \times I_{pp}$ where $V_{Z(NOM)}$ is the nominal Zener voltage measured at the low test current used for voltage classification

IMPORTANT NOTICE

Diodes, Inc. and its subsidiaries reserve the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. Diodes, Inc. does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

The products located on our website at **www.diodes.com** are not recommended for use in life support systems where a failure or malfunction of the component may directly threaten life or cause injury without the expressed written approval of Diodes Incorporated.