					3"77				RE	VISI	ONS													
LTR					ı	DESC	RIPT	TON									DAT	E (YR	-MO-i	DA)	A	PPR	OVE	>
								,																
		•																						
																1								
																							٠	
REV	\neg	T						Γ		П	П		Г		Π	<u> </u>		<u> </u>		Γ			Π	П
SHEET		╂─	-		_		-	┢	-	╁			\vdash	_	╁─	\vdash	ļ	-	<u> </u>		T		T	
REV		+-						\vdash	_	 			\vdash		1	<u> </u>								
SHEET	1	T																						
REV STATUS	R	ΕV																_	_				_	ļ
OF SHEETS	s	HEET		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	L_	<u> </u>		L_	
PMIC N/A				Α.	PARE		<i>_</i>	1	/					DEI	FENS	E ELI	ECTF	RONI	cs s	UPP	LY CI	ENTE	R	
CTANDAD	ילותי	ח:		-,44	CKE	<u> </u>	<u> </u>	Kr.	1	<u>_</u>		DEFENSE ELECTF DAYTO												
9	MILITARY DRAWING APPROVED BY		M	1	ICRO	CIF	RCUI	rs,	LIN	AR,	MI	CROP	ROCE	SSO	R									
				,0111 7	. : T F	BLE, ERS,	16	01.	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	LOG-	-70-	DIG	TAL											
THIS DRAWING	IS AVAIL	.ABLE	:	DR	_	G AP	PROV	ALX		4		+	SIZE			CAGE			Т					
FOR USE BY ALL AND AGENCI	DEPART	'HE 'HE	TS	91	-08	-30)						A			672			5962-88615					
DEPARTMENT	OF DEFI	ENSE		REV	ISIOI	4 LE	/EL					}							L					
AMSC N/A												L		SHE					•			. (1

DESC FORM 193 SEP 87 ÷ U.S. GOVERNMENT PRINTING OFFICE: 1987 — 748-129/60911 5962−E068

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

1. SCOPE					
				3 microcircuits in accordance with ith compliant non-JAN devices".	1.2.1 of
1.2 Part or	Identifying Number	(PIN). The complet	e PIN shall be a	as shown in the following example:	
	5962-88615 Drawing number	Device type (1.2.1)	Case outline (1.2.2)	Lead finish per MIL-M-38510	
1.2.1 <u>Devic</u>	e type(s). The dev	rice type(s) shall id	lentify the circu	uit function as follows:	
<u>Devic</u>	e type Ger	meric number	<u>c</u> :	ircuit function	
0		674AU 674AT	converter with Multi-chip, med	ph performance, 12-bit A/D th microprocessor interface dium performance, 12-bit A/D th microprocessor interface	
	utline letter X D-	<u>Ca</u> -10 (28-lead, 1.490"	x .610" x .232"	d in appendix C of MIL-M-38510, and d, dual-in-line package d'), square chip carrier package	as follows:
1.3 Absolut	e maximum ratings.	4 (20-terminat, 40t	7 X 1400 X 1100	7), square chip carrier package	
An	atou common to utul	n		0 V dc to +16.5 V dc 0 V dc to -16.5 V dc 0 V dc to +7 V dc ±1 V dc	
Ana	alog inputs (REF IN analog common – –	, BIP OFF, 10 V _{IN}) t	:0 	-0.5 V dc to V _{LOGIC} +0.5 V dc ±16.5 V dc	
v _R	EF OUT	oltage to analog com		±24 V dc Indefinite short to common 10 ms short to V _{CC}	
Le: Ste Jui The	ad temperature (sol orage temperature r nction temperature ermal resistance, j	= +25°C): dering, 10 seconds) ange)	833 mW +300°C -65°C to +150°C +175°C See MIL-M-38510, appendix C	
(Case 3	unction-to-ambient(6	JA	+60°C/W +70°C/W	
1.4 Recomme	nded operating cond	itions.			
Ļo	gic_supply (V _{LOGIC})			+4.75 V dc to +5.25 V dc	

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE A		5962-88615
	REVISION LEVEL	SHEET 2

DESC FORM 193A

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standard, and bulletin</u>. Unless otherwise specified, the following specification, standard, and bulletin of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510 - Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883 - Test Methods and Procedures for Microelectronics.

BULLETIN

MILITARY

MIL-BUL-103 - List of Standardized Military Drawings (SMD,s).

(Copies of the specification, standard, and bulletin required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.2 herein.
 - 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.
 - 3.2.3 Truth table. The truth table shall be as specified on figure 2.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full ambient operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-BUL-103 (see 6.6 herein).

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88615
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 3

DESC FORM 193A

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	Conditions $\frac{1}{2}$ -55°C $\leq T_A \leq +125$ °C	Device types	Group A subgroups	Lim	its	Unit	
		-55°C < TA < +125°C V _{CC} = +15 V, V _{LOGIC} = +5 V V _{EE} = -15 V unless otherwise specified		ļ	Min	Max		
Power supply current from V _{LOGIC} 2/	ILOGIC	Three-state outputs	All	1, 2, 3	[+45	mA	
Power supply current from V _{CC} 2/	¹ cc		ALL	1, 2, 3		+5		
Power supply current from V _{EE} 2/	IEE		All	1, 2, 3	 -29 			
Integral linearity	LE	Unipolar 10 V span	ALL	1	-0.5	+0.5	LSB	
error	or B.	Bipolar 20 V span		2, 3	-1.0	+1.0	<u> </u>	
Differential linearity error (minimum resolution for which no missing codes are guaranteed)	DLE	Unipolar 10 V span Bipolar 20 V span	All	1, 2, 3	12		Bits	
Unipolar offset voltage error	v _{IO}	10 V span	All	1	-2	+2	LSB	
Unipolar offset voltage drift	AV IO			2, 3	-1	+1		
Bipolar offset error	BZ	20 V span	All	1	-4	+4		
Bipolar offset drift	ΔBZ		01	2, 3	-1	+1	_	
	ΔŤ		02	2, 3	-2	+2		
Gain error	A _E	With 50Ω resistor from REF OUT to REF IN Bipolar 20 V span T _A = +25°C	ALL	1	-0.25	+0.25	% of F	
Gain error drift	ΔAE	Bipolar 20 V span	01	2, 3		12.5	ppm/°C	
	ΔT		02			25	-	

See footnotes at end of table.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88615
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 4

DESC FORM 193A

Test	Symbol	Conditions $\frac{1}{2}$ / -55°C $\leq T_A \leq +125$ °C	Device types	Group A subgroups	Lim	its	Unit
		-55°C < T < +125°C V _{CC} = +15 V, V _{LOGIC} = +5 V V _E = -15 V unless otherwise specified			Min	Max	
Power supply sensitivity to V_{CC} 3/4/	 +PSS1	Unipolar 10 V span	All	1, 2, 3	-1 	+1	LSB
Power supply sensitivity to V _{LOGIC} 3/5/	+PSS2	Unipolar 10 V span	All	1, 2, 3	 -0.5 	+0.5	LSB
Power supply sensitivity to V _{EE} <u>3</u> / <u>6</u> /	-PSS3	Unipolar 10 V span	ALL	1, 2, 3	 -1	+1	LSB
Input impedance <u>2</u> /	Z _{IN}	10 V span	All	1, 2, 3	3	7	kΩ
_		20 V span	 All	1, 2, 3	6	14	
Internal reference voltage <u>7</u> /	V _{REF}	Bipolar 20 V span	ALL	1, 2, 3	+9.9	+10.1	V
Logic input high voltage (CE, CS, 12/8, R/C, A _Q) 2/ 8/	v _{IH}	Logic "1"	All	1, 2, 3	+2.0		v
Logic input low_ voltage (CE, CS, 12/8, R/C, A _O) 2/ <u>8</u> /	v _{IL}	 Logic "0" 	All	1, 2, 3		+0.8	v
Logic input current <u>2</u> /	I IN(LOG)	 V _{IH} = 5.0 V V _{IL} = 0.0 V	All	1, 2, 3	-100	+100	μ A

See footnotes at end of table.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88615
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 5

Test	Symbol	Conditions 1/ -55°C < T _A < +125°C	Device types	Group A subgroups	Lim [*]	its	Unit
		-55°C \le T \le +125°C V _{CC} = +15 V, V _L OGIC = +5 V V _E = -15 V unless otherwise specified			Min	Max	<u></u>
ogic low output voltage 2/ (DB11-DBO, STS)	V _{OL}	Logic "0", I _{sink} = +1.6 mA	All	1, 2, 3		+0.4	V
ogic high output voltage <u>2</u> / (DB11-DBO)	v _{он}	Logic "1", I _{source} = 500 μA	ALL	1, 2, 3	+2.4		v
Three-state output Leakage current (DB11-DBO)	IOLT	High-Z state, Vapplied = 5.0 V	All	1, 2, 3	-20	 +20 	μ Α
Functional tests <u>2</u> /		(See 4.3.1c)	All	7, 8			
Low R/C pulse width <u>9</u> /	t _{HRL}		ALL	9, 10, 11	50		ns
STS delay from R/C <u>10</u> /	^t DS					200	
Data valid after R/C low <u>11</u> /	t _{HDR}				25		
STS delay after valid data	t _{HS}				30	600	
9/ High R/C pulse width	tHRH				150		<u> </u>
Data access time <u>12</u> /	^t DDR					150	
STS delay from CE <u>10</u> /	^t DSC	See figure 4				200	<u> </u>
CE pulse width 9/	tHEC				50	 	<u> </u>
CS to CE setup	tssc				50		- -
CS low during CE high	t _{HSC}				50	 	
R/C to CE setup	tSRC				50		
ee footnotes at end of 1	table.						

SIZE

A

REVISION LEVEL

5962-88615

6

SHEET

DESC FORM 193A JUL 91 STANDARDIZED

MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER

DAYTON, OHIO 45444

Test	Symbol	Conditions 1/ -55°C < T. < +125°C	Device types	Group A subgroups	Limits		Unit
		-55°C \le T A \le +125°C VCC = +15 V, VLOGIC = +5 V VEE = -15 V unless otherwise specified	,, 		Min	Max	
R/C low during CE high	t _{HRC}	See figure 4	ALL	9, 10, 11	50		ns
A _O to CE setup	tsac				0		_
A _O valid during CE high	tHAC				50 		
Conversion time	tc	8-bit cycle, see figure 4	All	9, 10,	6	10	μs
_		12-bit cycle, see figure 4] 		9	15	
Access time (from CE)	t _{DD}	See figure 5	All	9, 10,		150	ns
11/ Data valid after CE low	t _{HD}	1			25		
0utput float delay	t _{HL}					150	
CS to CE setup	tssR				50		
R/\overline{C} to CE setup	tSRR				0		
A _O to CE setup	^t SAR				50		
CS valid after CE low	t _{HSR}		 		0		
R/C high after CE low	t _{HRR}				0		
A _O valid after CE low	t _{HAR}				50		

See footnotes at end of table.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88615
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 7

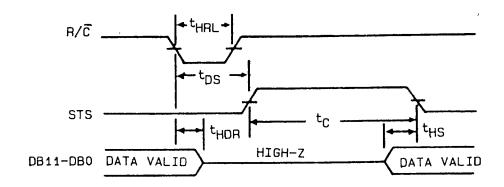
TABLE I. Electrical performance characteristics - Continued.

- 1/ $12/\overline{8}$ connected to V_{LOGIC} , A_0 and \overline{CS} at logic "O", CE at logic "1". 10 V unipolar: 50α resistor pin 8 to pin 10, 50α resistor pin 12 to ground. Analog input connected to pin 13. 20 V bipolar: 50α resistor pin 8 to pin 12, 50α resistor pin 8 to pin 10. Analog input connected to pin 14. These conditions apply unless otherwise noted.
- 2/ Device types are tested to the conditions stated in table I, but are guaranteed to the specified limits for the following variations in the supply voltage ranges.
 V_{LOGIC} = 5 V to ±5%, V_{CC} = +12 V ±5% and +15 V to ±10%, V_{EE} = -12 V ±5% and -15 V ±10%.
- 3/ Maximum change in full scale calibration due to supply voltage shifts. Full scale calibration to be measured at minimum and maximum voltage settings for each individual supply.
- $\underline{4}$ / +13.5 V \leq V_{CC} \leq +16.5 V, V_{LOGIC} = 5 V, V_{EE} = -15 V and +11.4 V \leq V_{CC} \leq +12.6 V, V_{LOGIC} = 5 V, V_{EE} = -12 V.
- 5/ 4.75 V \leq V_{LOGIC} \leq 5.25 V, V_{CC} = 15 V, V_{EE} = -15 V.
- $\underline{6}$ / -16.5 V ≤ V_{EE} ≤ -13.5 V, V_{LOGIC} = 5 V, V_{CC} = +15 V and -12.6 V ≤ V_{EE} ≤ -11.4 V, V_{LOGIC} = 5 V, V_{CC} = +12 V.
- 7/ Reference should be buffered for operation on ±12 V supplies. External load should not change during conversion.
- 8/ 12/8 is not TTL compatible and must be hard-wired to V_{LOGIC} or digital common.
- 9/ Pulse width is measured at the Schottky TTL input logic threshold voltage (1.3 V).
- $\frac{10}{(1.3 \text{ V})}$ and t_{DSC} are measured from the point when the input signal crosses the Schottky TTL logic threshold voltage (1.3 V) to when the STS output reaches 2.4 V. No external loading is applied to STS.
- 11/ t_{HDR}, t_{HD}, and t_{HL} are measured from the point when the input signal crosses the Schottky TTL logic threshold voltage (1.3 V), to when the output voltage has moved 0.5 V in the direction of its final high impedance output voltage. Each individual data bit (DBO DB11) is measured for both logic one to "high Z" and logic zero to "high Z" transitions. External loading is as shown on figure 6.
- 12/ t_{DDR} and t_{DD} are measured from the point when the input signal crosses the Schottky TTL logic threshold voltage (1.5 V), to when the output crosses either 2.4 V for a logic one, or 0.4 V for a logic zero. Each individual data bit (DBO DB11) is measured for both "high Z" to logic zero transitions. External loading is as shown on figure 7.
- 13/ t_r is measured as the time from when the STS line crosses the 1.0 V level, going positive, to when it crosses the 1.0 V level going negative. No external loading is applied to STS.
- 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.6 herein). The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88615
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 8

DESC FORM 193A

Device types	01 and 02
Case outlines	X and 3
 Terminal number	Terminal symbol
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	+5 V supply (V _{LOGIC}) Data mode select (I2/8) Chip select (CS) Byte address/short cycle (A ₀) Read/convert (R/C) Chip enable (CE) +12 V/ +15 V supply (V _{CC}) +10 V reference (REF OUT) Analog common (AC) Reference input (REF IN) -12 V/ -15 supply (V _{EC}) Bipolar offset (BIP OFF) 10 V span input (10 V _{IN}) 20 V span input (20 V _{IN}) Digital common (DC) DBO DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 (MSB) Status (STS)


FIGURE 1. Terminal connections.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-88615
		REVISION LEVEL	SHEET 9

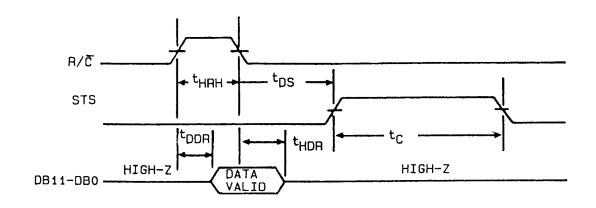
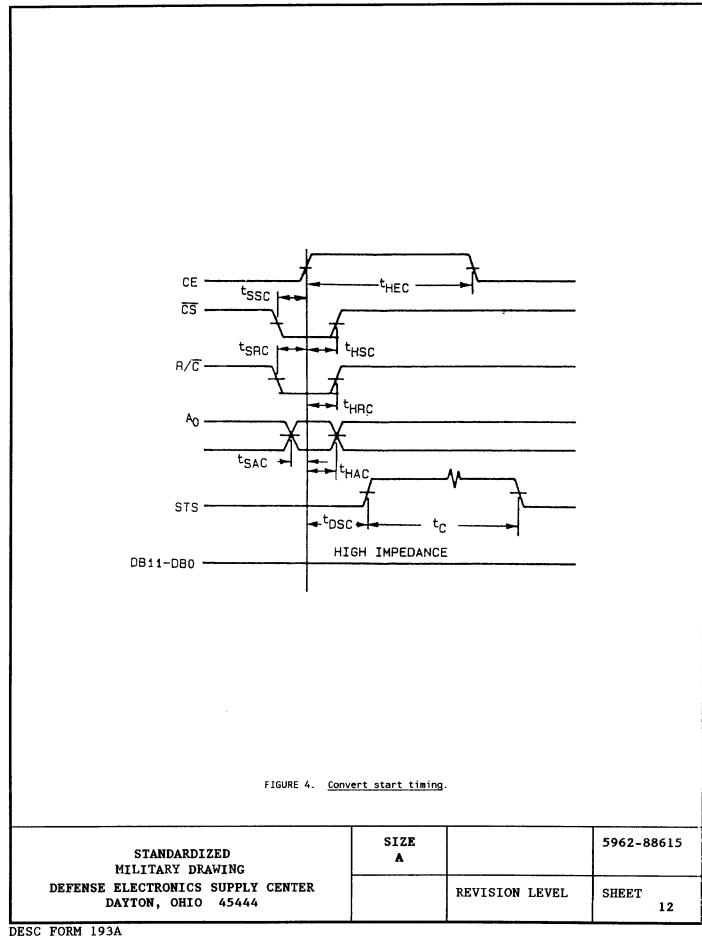
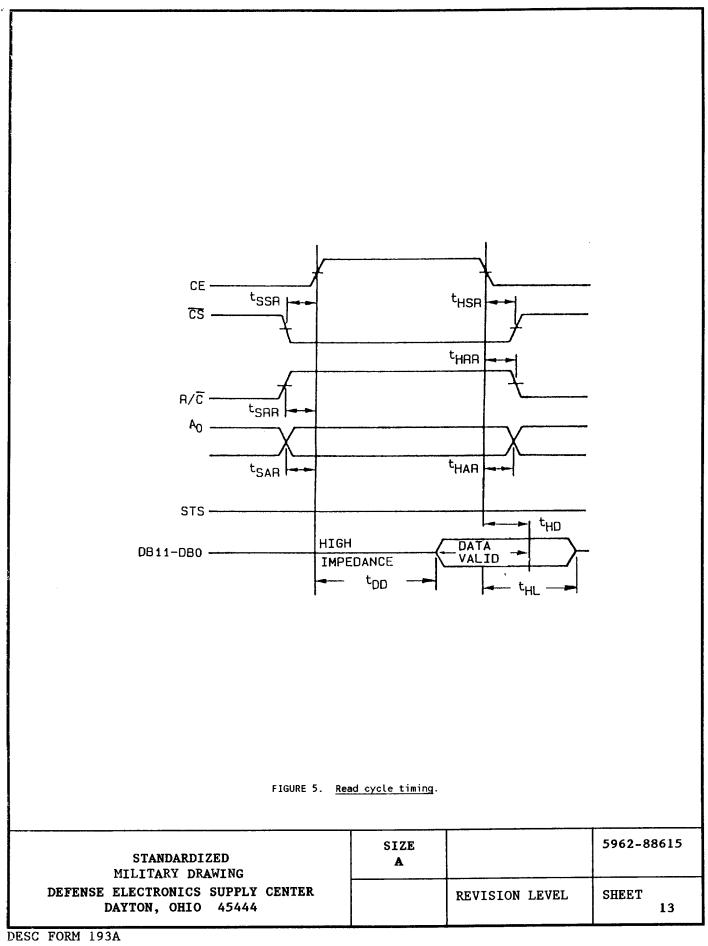

CE	cs	R/C	12/8	A ₀	Operation
0 X	 X 1	X X	X X	x x	None None
1	0	0	X X	0	Initiate 12-bit conversion Initiate 8-bit conversion
1	o	1	1	x	Enable 12-bit parallel output
1	0	1	0	0	Enable 8 most significant bits Enable 4LSBs + 4 trailing zeros

FIGURE 2. <u>Truth table</u>.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88615
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 10


LOW PULSE FOR R/C - OUTPUTS ENABLED AFTER CONVERSION



HIGH PULSE FOR R/\overline{C} - OUTPUTS ENABLED WHILE R/\overline{C} HIGH, OTHERWISE HIGH-Z

FIGURE 3. High/low pulse for R/C.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88615
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 11

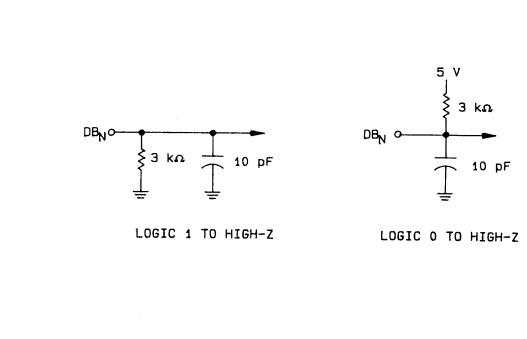


FIGURE 6. Load circuit for output float delay test.

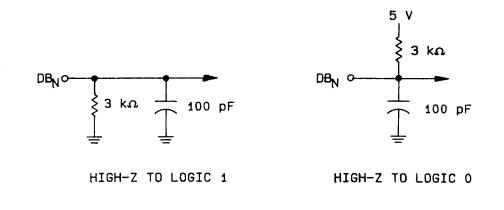


FIGURE 7. Load circuit for access time test.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88615
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 14

- 3.8 <u>Notification of change</u>. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.9 <u>Verification and review</u>. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.6 herein).
 - (2) $T_A = +125^{\circ}C$, minimum
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
 - c. Internal visual inspection shall be in accordance with method 2017 of MIL-STD-883.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroups 7 and 8 tests shall verify the truth table on figure 2.
 - 4.3.2 Groups C and D inspection.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test conditions, method 1005 of MIL-STD-883:
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.6 herein).
 - (2) $T_{\Delta} = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
 - 5. PACKAGING
 - 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88615
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 15

TABLE II. <u>Electrical test requirements</u>.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	1
Final electrical test parameters (method 5004)	1*, 2, 3
Group A test requirements (method 5005)	1, 2, 3, 7, 8, 9 10**, 11**
Group C and D end-point electrical parameters (method 5005)	1

* PDA applies to subgroup 1.

6. NOTES

- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
 - 6.2 Replaceability. Replaceability is determined as follows:
 - a. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
 - b. When a QPL source is established, the device specified in this drawing will be replaced by the microcircuit identified as PIN M38510/14005, O6BXX.
- 6.3 <u>Configuration control of SMD's.</u> All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-481 using DD Form 1693, Engineering Change Proposal (Short Form).
- 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and the applicable SMD. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DESC-ECS, telephone (513) 296-6022.
- 6.5 <u>Comments</u>. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone (513) 296-5375.
- 6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-BUL-103. The vendors listed in MIL-BUL-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-ECS.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88615
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 16

DESC FORM 193A JUL 91

025571 _ _ _

^{**} Subgroups 10 and 11, if not tested, shall be guaranteed to the limits specified in table I.