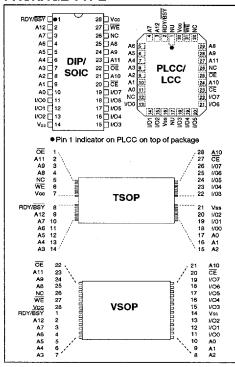
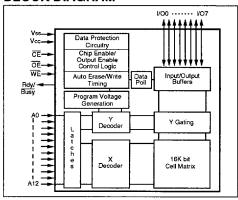


28C64A

64K (8K x 8) CMOS EEPROM


FEATURES

- Fast Read Access Time—150 ns
- · CMOS Technology for Low Power Dissipation
 - 30 mA Active
 - 100 μA Standby
- Fast Byte Write Time—200 µs or 1 ms
- Data Retention >10 years
- High Endurance Minimum 10⁴ Erase/Write Cycles
- Automatic Write Operation
 - Internal Control Timer
 - Auto-Clear Before Write Operation
- On-Chip Address and Data Latches
- Data Polling
- Ready/Busy
- · Chip Clear Operation
- · Enhanced Data Protection
 - Vcc Detector
 - Pulse Filter
 - Write Inhibit
- Electronic Signature for Device Identification
- 5-Volt-Only Operation
- Organized 8Kx8 JEDEC Standard Pinout
- 28-pin Dual-In-Line Package
- 32-pin Chip Carrier (Leadless or Plastic)
- 28-pin Thin Small Outline Package (TSOP) 8x20mm
- 28-pin Very Small Outline Package (VSOP) 8x13.4mm
- Available for Extended Temperature Ranges:
 - Commercial: 0°C to +70°C


DESCRIPTION

The Microchip Technology Inc. 28C64A is a CMOS 64K nonvolatile electrically Erasable PROM. The 28C64A accessed like a static RAM for the read or write cycles without the need of external components. During a "byte write", the address and data are latched internally, freeing the microprocessor address and data bus for other operations. Following the initiation of write cycle, the device will go to a busy state and automatically clear and write the latched data using an internal control timer. To determine when the write cycle is complete, the user has a choice of monitoring the Ready/ Busy output or using Data polling. The Ready/Busy pin is an open drain output, which allows easy configuration in wiredor systems. Alternatively, Data polling allows the user to read the location last written to when the write operation is complete. CMOS design and processing enables this part to be used in systems where reduced power consumption and reliability are required. A complete family of packages is offered to provide the utmost flexibility in applications

PACKAGE TYPE

BLOCK DIAGRAM

© 1994 Microchip Technology Inc.

■ 6103201 0012415 793 **■**

DS11109F-page 6-25

1.0 ELECTRICAL CHARACTERISTICS

1.1 MAXIMUM RATINGS*

Vcc and input voltages w.r.t. Vss.....-0.6V to + 6.25V

Voltage on OE w.r.t. Vss....-0.6V to +13.5V

Voltage on A9 w.r.t. Vss...-0.6V to +13.5V

Output Voltage w.r.t. Vss...-0.6V to Vcc+0.6V

Storage temperature ...-65°C to +125°C

Ambient temp. with power applied-50°C to +95°C

*Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 1-1: PIN FUNCTION TABLE

Name	Function
A0 - A12	Address Inputs
CE	Chip Enable
OE .	Output Enable
WE	Write Enable
1/00 - 1/07	Data Inputs/Outputs
, RDY/Busy	Ready/Busy
Vcc	+5V Power Supply
Vss	Ground
NC	No Connect; No Internal Connection
NU	Not Used; No External Connection is Allowed

TABLE 1-2: READ/WRITE OPERATION DC CHARACTERISTIC

i				Vcc = $+5V \pm 10\%$ Commercial (C): Tamb = 0°C to $+70$ °C Industrial (I): Tamb = -40 °C to $+85$ °C		
Parameter	Status	Symbol	Min	Max	Units	Conditions
Input Voltages	Logic '1' Logic '0'	VIH VIL	2.0 -0.1	Vcc+1 0.8	V	
Input Leakage	_	lu	-10	10	μΑ	Vin = -0.1V to Vcc +1
Input Capacitance		CIN	_	10	pF	Vin = 0V; Tamb = 25°C; f = 1 MHz (Note 2)
Output Voltages	Logic '1' Logic '0'	Voн Vol	2.4	0.45	V V	IOH = -400 μA IOL = 2.1 mA
Output Leakage	_	ILO	-10	10	μА	Vout = -0.1V to Vcc +0.1V
Output Capacitance	- '.	Соит		12	pF	Vin = 0V; Tamb = 25°C; f = 1 MHz (Note 2)
Power Supply Current, Active	TTL input	Icc	_	30	mA	f = 5 MHz (Note 1) Vcc = 5.5V
Power Supply Current, Standby	TTL input TTL input CMOS input	ICC(S)TTL ICC(S)TTL ICC(S)CMOS	_	2 3 100	mA mA μA	CE = ViH (0°C to +70°C) CE = ViH (-40°C to +85°C) CE = Vcc-0.3 to Vcc +1

Note 1: AC power supply current above 5MHz: 2mA/MHz.

Note 2: Not 100% tested.

DS11109F-page 6-26

■ P703507 OO7547P P51 \blacksquare

CE = VIL

Note 1

Note 1

TABLE 1-3: READ OPERATION AC CHARACTERISTICS

to_E

toff

ton

AC Testing Waveform: VIH = 2.4V; VIL = 0.45V; VOH = 2.0V; VOL = 0.8VOutput Load: 1 TTL Load + 100 pF Input Rise and Fall Times: 20 ns Ambient Temperature: Commercial (C): 0°C to +70°C Tamb Industrial Tamb -40°C to +85°C (I): = 28C64A-15 28C64A-20 28C64A-25 **Parameter** Symbol Units Conditions Min Max Min Max Min Max Address to Output Delay OE = CE = VIL 250 **t**ACC 150 200 CE to Output Delay OÉ = VIL tce 150 200 250 ns

70

50

a

0

0

80

55

0

0

100

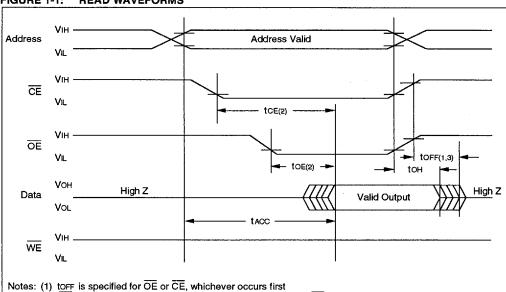
70

กร

ns

ns

or OE, whichever occurs first.


Note 1: Not 100% tested.

CE or OE High to Output Float

Output Hold from Address, CE

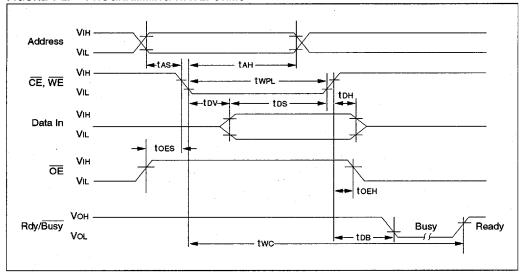
OE to Output Delay

FIGURE 1-1: READ WAVEFORMS

(2) OE may be delayed up to tce - toe after the falling edge of CE without impact on tce

(3) This parameter is sampled and is not 100% tested

TABLE 1-4: BYTE WRITE AC CHARACTERISTICS


 $V_{IH} = 2.4V$; $V_{IL} = 0.45V$; $V_{OH} = 2.0V$; $V_{OL} = 0.8V$ AC Testing Waveform: Output Load: 1 TTL Load + 100 pF Input Rise/Fall Times: 20 ns Ambient Temperature: Commercial (C): Tamb = 0°C to +70°C Industrial (1): Tamb -40°C to +85°C

Parameter	Symbol	Min	Max	Units	Remarks
Address Set-Up Time	tas	10		ns	
Address Hold Time	tan	50	_	ns	
Data Set-Up Time	tos	50		ns	
Data Hold Time	tDH	10		ns	
Write Pulse Width	twPL	100	<u> </u>	ns	Note 1
Write Pulse High Time	twpH	50	-	ns	
OE Hold Time	toeh	10		ns	
OE Set-Up Time	toes	10		ns	
Data Valid Time	tov	_	1000	ns	Note 2
Time to Device Busy	tos	2	50	ns	
Write Cycle Time (28C64A)	twc		1	ms	0.5 ms typical
Write Cycle Time (28C64AF)	twc	_	200	μs	100 μs typical

Note 1: A write cycle can be initiated be CE or WE going low, whichever occurs last. The data is latched on the positive edge WE, whichever occurs first.

Note 2: Data must be valid within 1000ns max, after a write cycle is initiated and must be stable at least until toH after the positive edge of WE or CE, whichever occurs first.

FIGURE 1-2: **PROGRAMMING WAVEFORMS**

DS11109F-page 6-28

6103201 0012418 4T2 **....**

FIGURE 1-3: DATA POLLING WAVEFORMS

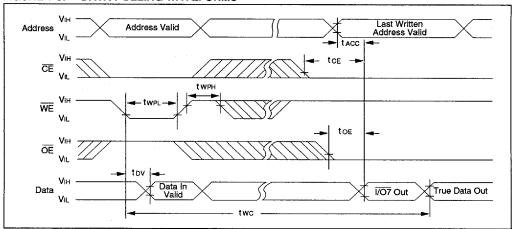
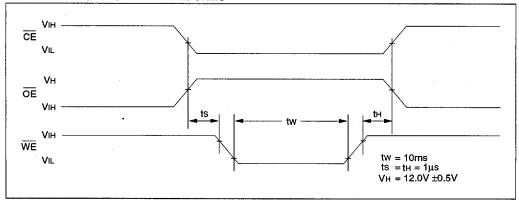



FIGURE 1-4: **CHIP CLEAR WAVEFORMS**

TABLE 1-5: SUPPLEMENTARY CONTROL

Mode	CE	ŌĒ	WE	A9	Vcc	l/Oı
Chip Clear	VIL	ViH	VIL	х	Vcc	
Extra Row Read	VIL	ViL	ViH	A9 = VH	Vcc	Data Out
Extra Row Write	*	ViH	*	A9 = VH	Vcc	Data In

DEVICE OPERATION

The Microchip Technology Inc. 28C64A has four basic modes of operation-read, standby, write inhibit, and byte write—as outlined in the following table.

Operation Mode	CE	ŌĒ	WE	VO	Rdy/Busy (1)	
Read	L	L	Н	Dout	Н	
Standby	Н	х	х	High Z	н	
Write Inhibit	н	х	х	High Z	Н	
Write Inhibit	Х	L.	х	High Z	Н	
Write Inhibit	Х	х	н	High Z	Н	
Byte Write	L	Н	L	DIN	· L	
Byte Clear	Automatic Before Each "Write"					

Note 1: Open drain output. Note 2: X = Any TTL level.

2.1 Read Mode

The 28C64A has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and is used to gate data to the output pins independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from CE to output (tCE). Data is available at the output toE after the falling edge of OE, assuming that CE has been low and addresses have been stable for at least tACC-tOE.

2.2 Standby Mode

The 28C64A is placed in the standby mode by applying a high signal to the CE input. When in the standby mode, the outputs are in a high impedance state, independent of the OE input.

2.3 **Data Protection**

In order to ensure data integrity, especially during critical power-up and power-down transitions, the following enhanced data protection circuits are incorporated:

First, an internal Vcc detect (3.3 volts typical) will inhibit the initiation of non-volatile programming operation when Vcc is less than the Vcc detect circuit trip.

Second, there is a WE filtering circuit that prevents WE pulses of less than 10 ns duration from initiating a write cvcle.

Third, holding WE or CE high or OE low, inhibits a write cycle during power-on and power-off (VCC).

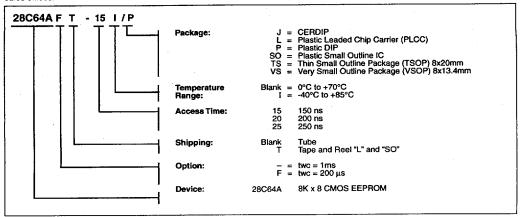
2.4 Write Mode

The 28C64A has a write cycle similar to that of a Static RAM. The write cycle is completely self-timed and initiated by a low going pulse on the WE pin. On the falling edge of WE, the address information is latched. On rising edge, the data and the control pins (CE and OE) are latched. The Ready/Busy pin goes to a logic low level indicating that the 28C64A is in a write cycle which signals the microprocessor host that the system bus is free for other activity. When Ready/Busy goes back to a high, the 28C64A has completed writing and is ready to accept another cycle.

2.5 Data Polling

The 28C64A features Data polling to signal the completion of a byte write cycle. During a write cycle, an attempted read of the last byte written results in the data complement of I/O7 (I/O0 to I/O6 are indeterminable). After completion of the write cycle, true data is available. Data polling allows a simple read/compare operation to determine the status of the chip eliminating the need for external hardware.

2.6 Electronic Signature for Device Identification


An extra row of 32 bytes of EEPROM memory is available to the user for device identification. By raising A9 to 12V ±0.5V and using address locations 1FEO to 1FFF, the additional bytes can be written to or read from in the same manner as the regular memory array.

2.7 Chip Clear

All data may be cleared to 1's in a chip clear cycle by raising OE to 12 volts and bringing the WE and CE low. This procedure clears all data, except for the extra row.

28C64A Product Identification System

To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed sales offices.

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277
- 3.The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.

DS11109F-page 6-32

■ 6103201 0012421 T97 **■**