

SunPower Series Agilent HLMP-RG10, HLMP-SG10, HLMP-RL10, HLMP-SL10, HLMP-RD11, HLMP-SD11, HLMP-RL11, HLMP-SL11

Description

These Precision Optical Performance Oval LEDs are specifically designed for Full Color/Video and Passenger Information signs. The oval shaped radiation pattern $(60^{\circ} \ge 120^{\circ})$ and high luminous intensity ensure that these devices are excellent for wide field of view outdoor applications where a wide viewing angle and readability in sunlight are essential. These lamps have very smooth, matched radiation patterns ensuring consistent color mixing in full color applications, message uniformity across the viewing angle of the sign.

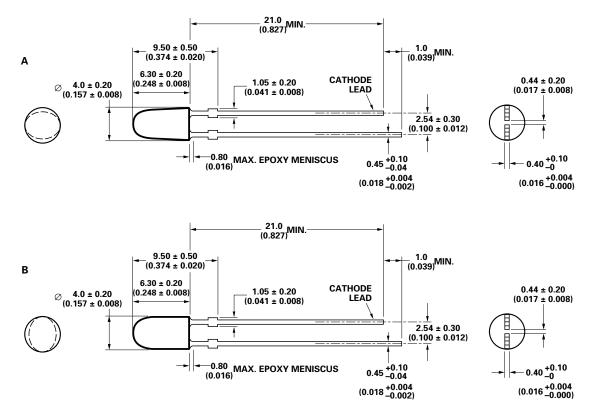
High efficiency LED materials are used in these lamps: Aluminum Indium Gallium Phosphide (AlInGaP) for Red and Amber color. There are two families of red and amber lamps, AlInGaP and the higher performance AlInGaP II. Each lamp is made with an advanced optical grade epoxy offering superior high temperature and high moisture resistance in outdoor applications. The package epoxy contains both uv-a and uv-b inhibitors to reduce the effects of long term exposure to direct sunlight.

Designers can select parallel (where the axis of the leads is parallel to the wide axis of the oval radiation pattern) or perpendicular orientation. Both lamps are available in tinted version.

- Well defined spatial radiation
- Viewing angle: major axis 120° minor axis 60°
- High luminous output
- Two red and amber intensity levels AllnGaP (bright) and AllnGaP II (brightest)
- Colors 626/630 nm red 590/592 nm amber
- Superior resistance to moisture
- UV resistant epoxy

Benefits

- Viewing angle designed for wide field of view applications
- Superior performance for outdoor environments


Applications

Full color signs

Agilent Technologies Innovating the HP Way

Package Dimensions

Dimensions are in millimeters (inches).

Device Selection Guide for AllnGaP

Part Number	Color and Dominant Wavelength λ _d (nm) Typ.	Lumino Intensit I _V (mcd Min.		Leads with Stand-Offs	Leadframe Orientation	Package Drawing
HLMP-SG10-GK000	Red 626	120	460	Yes	Perpendicular	A
HLMP-RG10-GK000	Red 626	120	460	Yes	Parallel	В
HLMP-SL10-FJ000	Amber 590	96	360	Yes	Perpendicular	А
HLMP-RL10-FJ000	Amber 590	96	360	Yes	Parallel	В

Notes:

1. The luminous intensity is measured on the mechanical axis of the lamp package.

2. The optical axis is closely aligned with the package mechanical axis.

3. The dominant wavelength λ_d is derived from the CIE Chromaticity Diagram and represents the color of the lamp.

Part Number	Color and Dominant Wavelength λ _d (nm) Typ.	Lumino Intensit I _V (mcd Min.		Leads with Stand-Offs	Leadframe Orientation	Package Drawing
HLMP-SD11-LP000	Red 630	345	1330	Yes	Perpendicular	А
HLMP-RD11-LP000	Red 630	345	1330	Yes	Parallel	В
HLMP-SL11-LP000	Amber 592	345	1330	Yes	Perpendicular	А
HLMP-RL11-LP000	Amber 592	345	1330	Yes	Parallel	В

Device Selection Guide for AllnGaP II

Notes:

1. The luminous intensity is measured on the mechanical axis of the lamp package.

2. The optical axis is closely aligned with the package mechanical axis.

3. The dominant wavelength λ_d is derived from the CIE Chromaticity Diagram and represents the color of the lamp.

Absolute Maximum Ratings $T_A = 25^{\circ}C$

Parameter	Amber and Red
DC Forward Current ^[1]	50 mA
Peak Pulsed Forward Current	70 mA
Average Forward Current	30 mA
Reverse Voltage (I _R = 100 μA)	5 V
Power Dissipation	120 mW
LED Junction Temperature	130°C
Operating Temperature Range	-40°C to +100°C
Storage Temperature Range	–40°C to +120°C
Soldering Temperature	260 $^{\circ}$ for 5 sec

Note:

1. Derate linearly as shown in Figure 4.

Electrical/Optical Characteristics $T_A=25^\circ\text{C}$

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Typical Viewing Angle						
Major	2 θ _{1/2}		120		deg	
Minor			60		-	
Forward Voltage						
Red ($\lambda_d = 626$ nm)	V _F		1.9	2.4	V	I _F = 20 mA
Red ($\lambda_d = 630$ nm)	·		2.0	2.4		
Amber ($\lambda_d = 590 \text{ nm}$)			2.02	2.4		
Amber ($\lambda_d = 592 \text{ nm}$)			2.15	2.4		
Reverse Voltage	V _R	5	20		V	I _B = 100 μA
Amber and Red						
Peak Wavelength	λ_{PEAK}				nm	Peak of Wavelength of
Red ($\lambda_d = 626$ nm)	T E/ IX		635			Spectral Distribution
Red ($\lambda_{d} = 630 \text{ nm}$)			639			at I _F = 20 mA
Amber ($\lambda_d = 590$ nm)			592			•
Amber ($\lambda_d = 592 \text{ nm}$)			594			

LED Indicators

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Spectral Halfwidth						Wavelength Width at
Red ($\lambda_d = 626/630 \text{ nm}$)	$\Delta\lambda_{1/2}$		17		nm	Spectral Distribution
Amber (λ_d = 590/592 nm)	.,_		17			¹ / ₂ Power Point at I _F = 20 mA
Capacitance	С		40		рF	$V_{F} = 0, F = 1 MHz$
Red and Amber					-	
Thermal Resistance	$R\theta_{J-PIN}$		240		°C/W	LED Junction-to-Cathode
Red and Amber						Lead
Luminous Efficacy						Emitted Luminous Power/
Red ($\lambda_d = 626$ nm)	η_v		150		lm/W	Emitted Radiant Power
Red ($\lambda_d = 630$ nm)			155			
Amber ($\lambda_d = 590 \text{ nm}$)			480			
Amber ($\lambda_d = 592 \text{ nm}$)			500			

Notes:

1. $2\theta_{1/2}$ is the off-axis angle where the luminous intensity is the on-axis intensity.

2. The radiant intensity, I_e , in watts per steradian, may be found from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

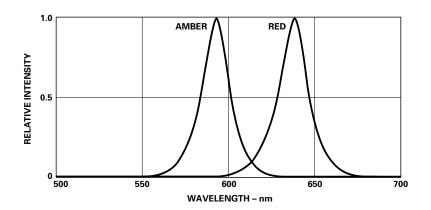
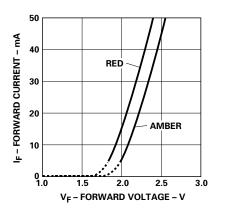
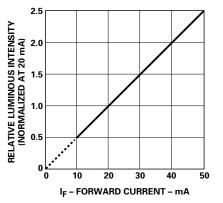




Figure 1. Relative Intensity vs. Wavelength.

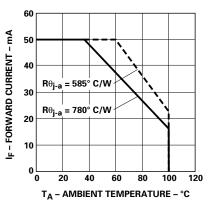


Figure 2. Forward Current vs. Forward Voltage.

Figure 3. Relative Luminous Intensity vs. Forward Current.

Figure 4. Maximum Forward Current vs. Ambient Temperature.

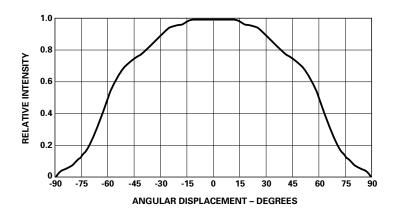


Figure 5a. Representative Spatial Radiation Pattern for Major Axis.

Figure 5b. Representative Spatial Radiation Pattern for Minor Axis.

Intensity Bin Limits (mcd at 20 mA)

Min.	Max.
110	140
140	180
180	240
240	310
310	400
400	520
520	680
680	880
880	1150
	110 140 180 240 310 400 520 680

Tolerance for each bin limit is $\pm 15\%$.

Note:

1. Bin categories are established for classification of products. Products may not be available in all bin categories.

www.semiconductor.agilent.com Data subject to change. Copyright © 2000 Agilent Technologies Inc. 5968-9083E (4/00)

Agilent Technologies