T1

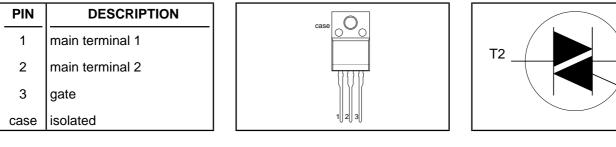
G

Three quadrant triacs guaranteed commutation

BTA212X series D, E and F

GENERAL DESCRIPTION

Passivated guaranteed commutation triacs in a full pack, plastic envelope intended for use in motor control circuits or with other highly inductive loads. These devices balance the requirements of commutation performance and gate sensitivity. The "sensitive gate" E series and "logic level" D series are intended for interfacing with low power drivers, including micro controllers.


PINNING - SOT186A

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MAX.	MAX.	UNIT
	BTA212X- BTA212X- BTA212X- BTA212X-	600D 600E 600F	- 800E	
V_{DRM}	Repetitive peak off-state voltages	600	800	V
I _{T(RMS)} I _{TSM}	RMS on-state current Non-repetitive peak on-state current	12 95	12 95	A A

PIN CONFIGURATION

SYMBOL

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MA	Х.	UNIT
V _{DRM}	Repetitive peak off-state voltages		-	-600 600 ¹	-800 800	V
I _{T(RMS)}	RMS on-state current	full sine wave; T _{hs} ≤ 56 °C	-	12	2	Α
I _{TSM}	Non-repetitive peak on-state current	full sine wave; $T_j = 25 \degree C$ prior to surge				
		t = 20 ms t = 16.7 ms	-	95 10		A A
l²t dl _⊤ /dt	I ² t for fusing Repetitive rate of rise of on-state current after	$t = 10 \text{ ms} I_{TM} = 20 \text{ A}; I_G = 0.2 \text{ A}; dI_G/dt = 0.2 \text{ A}/\mu \text{s}$	-	45 10	5	Α²s Α/μs
I _{GM} P _{GM}	triggering Peak gate current Peak gate power	over onv 20 me	-	2 5 0.5	-	A W W
P _{G(AV)}	Average gate power	over any 20 ms period	-			
T _{stg} T _j	Storage temperature Operating junction temperature		-40 -	15 12		°C °C

¹ Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may switch to the on-state. The rate of rise of current should not exceed 15 $A/\mu s$.

BTA212X series D, E and F

ISOLATION LIMITING VALUE & CHARACTERISTIC

 $T_{hs} = 25$ °C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{isol}	R.M.S. isolation voltage from all three terminals to external heatsink	f = 50-60 Hz; sinusoidal waveform; R.H. \leq 65% ; clean and dustfree	-	-	2500	V
C _{isol}	Capacitance from T2 to external heatsink	f = 1 MHz	-	10	-	pF

THERMAL RESISTANCES

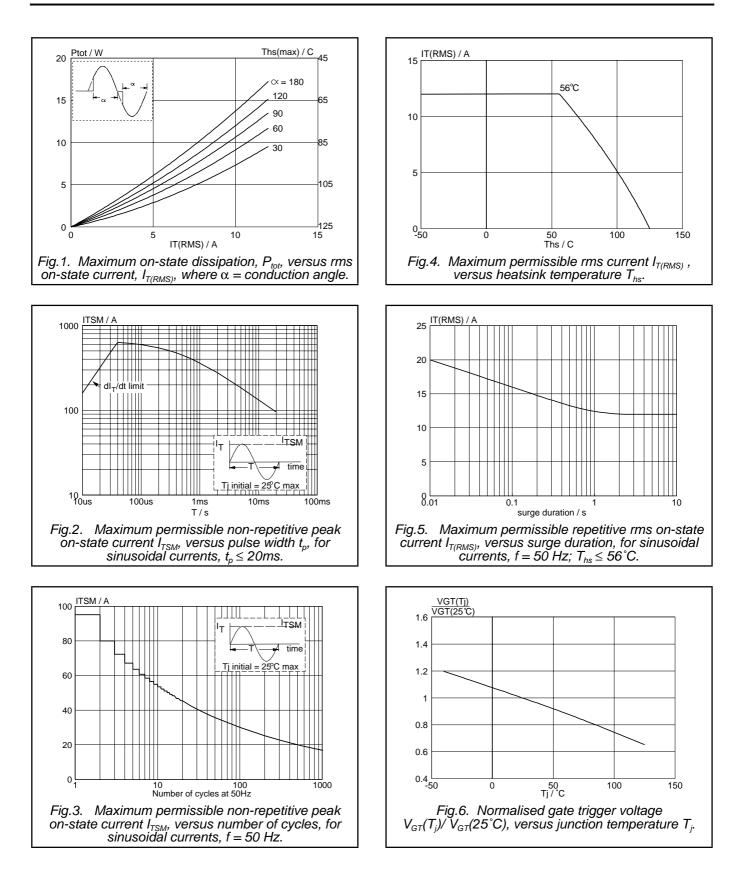
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
R _{th j-hs} R _{th j-a}	Thermal resistance junction to heatsink Thermal resistance junction to ambient	full or half cycle with heatsink compound without heatsink compound in free air	- - -	- - 55	4.0 5.5 -	K/W K/W K/W

STATIC CHARACTERISTICS

$T_i = 25$ °C unless otherwise stated

SYMBOL	PARAMETER	CONDITIONS	MIN.		MAX.		UNIT
		BTA212X-		D	E	F	
I _{GT}	Gate trigger current ²	$V_{\rm D} = 12 \text{ V}; I_{\rm T} = 0.1 \text{ A}$					
		T2+ G+	-	5	10	25	mA
		T2+ G- T2- G-	-	5 5 5	10 10	25 25	mA mA
ц	Latching current	$V_{\rm D} = 12 \text{ V}; I_{\rm GT} = 0.1 \text{ A}$	_	5	10	20	
L .	3.1.1.1	T2+G+	-	15	25	30	mA
		T2+G-	-	25	30	40	mA
		T2- G-	-	25	30	40	mA
I _H	Holding current	$V_{\rm D} = 12 \text{ V}; \text{ I}_{\rm GT} = 0.1 \text{ A}$	-	15	25	30	mA
V _T	On-state voltage	I _T = 17 Α	-		1.6		V
V _{GT}	Gate trigger voltage	$\dot{V}_{\rm D} = 12 \text{ V}; I_{\rm T} = 0.1 \text{ A}$	-		1.5		V
		$V_{\rm D} = 400 \text{ V}; I_{\rm T} = 0.1 \text{ A};$ $T_{\rm i} = 125 \text{ °C}$	0.25		-		V
I _D	Off-state leakage current	$T_j = 125 °C$ $V_D = V_{DRM(max)}; T_j = 125 °C$	-		0.5		mA

² Device does not trigger in the T2-, G+ quadrant.

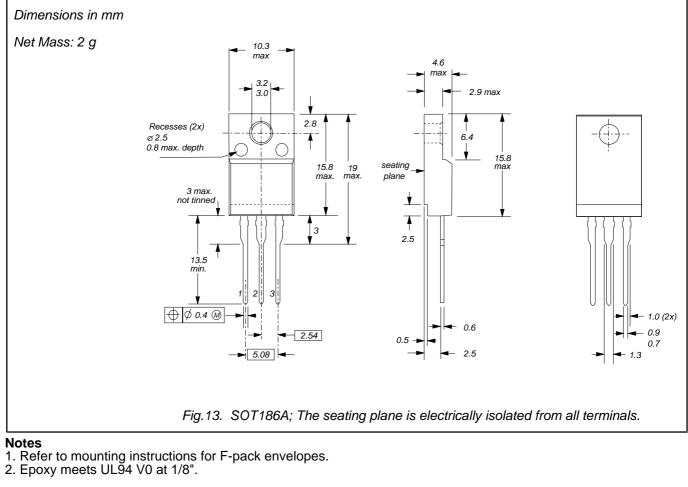

BTA212X series D, E and F

DYNAMIC CHARACTERISTICS

 $T_i = 25$ °C unless otherwise stated

SYMBOL	PARAMETER	CONDITIONS		MIN.		MAX.	UNIT
		BTA212X-	D	E	F		
dV _D /dt	Critical rate of rise of off-state voltage	$V_{DM} = 67\% V_{DRM(max)};$ $T_j = 110 °C;$ exponential waveform; gate open arouit	30	60	70	-	V/µs
dl _{com} /dt	Critical rate of change of commutating current	circuit $V_{DM} = 400 \text{ V}; \text{ T}_{j} = 125 \text{ °C};$ $I_{T(RMS)} = 12 \text{ A};$ $dV_{com}/dt = 10 \text{ V/}\mu\text{s}; \text{ gate}$ open circuit	1.0	8.0	21	-	A/ms
dl _{com} /dt	Critical rate of change of commutating current		3.5	16	32	-	A/ms

BTA212X series D, E and F


BTA212X series D, E and F

Three quadrant triacs guaranteed commutation

IT / A IGT(Tj) IGT(25°C) 40 Tj = 125 C ----typ 3 — T2+ G+ — T2+ G-Tj = 25 C max - T2- G-2.5 30 Vo = 1.175 V Rs = 0.0316 Ohms 2 20 1.5 1 10 0.5 0 L 0 0 1.5 VT / V 0.5 2 2.5 3 -50 0 100 150 т<u>ј</u>/°С Fig.7. Normalised gate trigger current $I_{GT}(T_j)/I_{GT}(25^{\circ}C)$, versus junction temperature T_{j} . Fig.10. Typical and maximum on-state characteristic. IL(Tj) IL(25°C) Zth j-hs (K/W) 10 3 with heatsink compound without heatsink compound 25 2 0.1 1.5 1 • ^tp • 0.01 0.5 0.001 └─ 10us 0└ -50 50 Tj /℃ 0 100 150 0.1ms 1ms 10ms 0.1s 1s 10s tp/s Normalised latching current $I_L(T_i)/I_L(25^{\circ}C)$, Fig.8. Fig.11. Transient thermal impedance $Z_{th j-hs}$, versus pulse width t_p . versus junction temperature T_{i} IH(Tj) 3 IH(25°C dlcom/dt (A/ms) 103 F TYPE E TYPE 2.5 D TYPE 10² 2 1.5 10 1 0.5 1 0 -50 50 Tj /℃ 100 150 0 20 40 60 ¹²⁰ T_j (°C) ¹⁴⁰ 80 100 Fig.9. Normalised holding current $I_H(T_j)/I_H(25^{\circ}C)$, versus junction temperature T_j . Fig. 12. Minimum critical rate of change of commutating current dI_{com}/dt versus junction temperature, $dV_{com}/dt = 10 V/\mu s$.

BTA212X series D, E and F

MECHANICAL DATA

BTA212X series D, E and F

DEFINITIONS

DATA SHEET STA	TUS	
DATA SHEET STATUS ³	PRODUCT STATUS⁴	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A

Limiting values

Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

© Philips Electronics N.V. 2003

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

³ Please consult the most recently issued datasheet before initiating or completing a design.

⁴ The product status of the device(s) described in this datasheet may have changed since this datasheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.