

IDT™ Interprise™ Integrated **Communications Processor**

79RC32351

RISController

Features List

RC32300 32-bit Microprocessor

- Enhanced MIPS-II ISA
- Enhanced MIPS-IV cache prefetch instruction
- **DSP** Instructions
- MMU with 16-entry TLB
- 8kB Instruction cache, 2-way set associative
- 2kB Data cache, 2-way set associative
- Per line cache locking
- Write-through and write-back cache management
- Debug interface through the EJTAG port
- Big or little endian support

Interrupt Controller

Allows status of each interrupt to be read and masked

UARTs

- Two 16550 Compatible UARTs
- Baud rate support up to 1.5 Mb/s

Counter/Timers

Three general purpose 32-bit counter/timers

General Purpose I/O Pins (GPIOP)

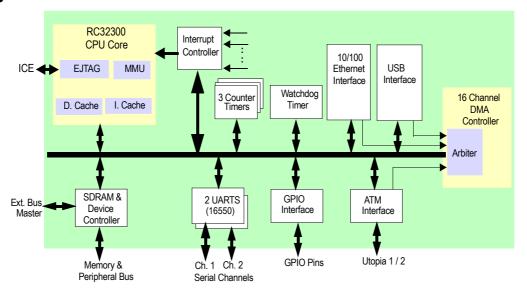
- 32 individually programmable pins: each pin programmable as input, output, or alternate function, input can be an interrupt or NMI source, input can also be active high or active low
- 4 additional, auxiliary GPIO pins can be configured as input or output

SDRAM Controller

- 2 memory banks, non-interleaved, 512 MB total
- 32-bit wide data path
- Supports 4-bit, 8-bit, and 16-bit wide SDRAM chips
- SODIMM support
- Stays on page between transfers
- Automatic refresh generation

Peripheral Device Controller

- 26-bit address bus
- 32-bit data bus with variable width support of 8-, 16-, or 32-bits
- 8-bit boot ROM support
- 6 banks available, up to 64MB per bank
- Supports Flash ROM, PROM, SRAM, dual-port memory, and peripheral devices
- Supports external wait-state generation, Intel or Motorola style
- Write protect capability
- Direct control of optional external data transceivers


System Integrity

- Programmable system watchdog timer resets system on time-
- Programmable bus transaction times memory and peripheral transactions and generates a warm reset on time-out

DMA

- 14 DMA channels
- Services on-chip and external peripherals
- Supports memory-to-memory, memory-to-I/O, and I/O-to-I/O transfers
- Supports flexible descriptor based operation and chaining via linked lists of records (scatter / gather capability)
- Supports unaligned transfers

Block Diagram

IDT and the IDT logo are trademarks of Integrated Device Technology, Inc.

1 of 42 © 2002 Integrated Device Technology, Inc.

Supports burst transfers

USB

- Revision 1.1 compliant
- USB slave device controller
- Supports a 6th USB endpoint
- Full speed operation at 12 Mb/s
- Supports control, interrupt, bulk and isochronous endpoints
- Supports USB remote wakeup
- Integrated USB transceiver

◆ F.ITAG

- Run-time Mode provides a standard JTAG interface
- Real-Time Mode provides additional pins for real-time trace information

Ethernet

- Full duplex support for 10 and 100 Mb/s Ethernet
- IEEE 802.3u compatible Media Independent Interface (MII) with serial management interface
- IEEE 802.3u auto-negotiation for automatic speed selection
- Flexible address filtering modes
- 64-entry hash table based multicast address filtering

ATM SAR

- Can be configured as one UTOPIA level 1 interface or 1 UTOPIA level 2 interface with 2 address lines (3 PHYs max)
- Supports 25Mb/s and faster ATM
- Supports UTOPIA data path interface operation at speeds up to 33 MHz
- Supports standard 53-byte ATM cells
- Performs HEC generation and checking
- Cell processing discards short cells and clips long cells
- 16 cells worth of buffering
- UTOPIA modes: 8 cell input buffer and 8 cell output buffer
- Hardware support for CRC-32 generation and checking for AAL5
- Hardware support for CRC-10 generation and checking
- Virtual caching receive mechanism supports reception of any length packet without CPU intervention on up to eight simultaneously active receive channels
- Frame Mode transmit mechanism supports transmission of any length packet without CPU intervention

System Features

- JTAG interface (IEEE Std. 1149.1 compatible)
- 208 pin PQFP package
- 2.5V core supply and 3.3V I/O supply
- Up to 133 MHz pipeline frequency and up to 66 MHz bus frequency

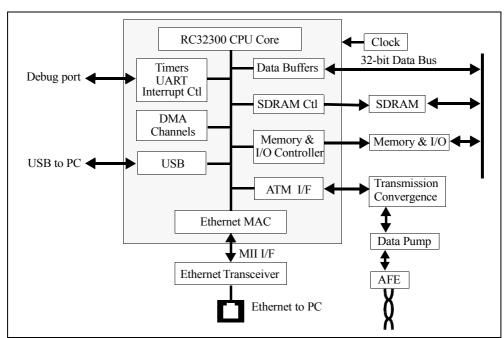


Figure 2 Example of xDSL Residential Gateway Using RC32351

Device Overview

The RC32351 is a "System on a Chip" which contains a high performance 32-bit microprocessor. The microprocessor core is used extensively at the heart of the device to implement the most needed functionalities in software with minimal hardware support. The high performance microprocessor handles diverse general computing tasks and specific application tasks that would have required dedicated hardware. Specific application tasks implemented in software can include routing functions, fire wall functions, modem emulation, ATM SAR emulation, and others.

The RC32351 meets the requirements of various embedded communications and digital consumer applications. It is a single chip solution that incorporates most of the generic system functionalities and application specific interfaces that enable rapid time to market, very low cost systems, simplified designs, and reduced board real estate.

CPU Execution Core

The RC32351 is built around the RC32300 32-bit high performance microprocessor core. The RC32300 implements the enhanced MIPS-II ISA and helps meet the real-time goals and maximize throughput of communications and consumer systems by providing capabilities such as a prefetch instruction, multiple DSP instructions, and cache locking. The DSP instructions enable the RC32300 to implement 33.6 and 56kbps modem functionality in software, removing the need for external dedicated hardware. Cache locking guarantees real-time performance by holding critical DSP code and parameters in the cache for immediate availability. The microprocessor also implements an on-chip MMU with a TLB, making the it fully compliant with the requirements of real time operating systems.

Memory and IO Controller

The RC32351 incorporates a flexible memory and peripheral device controller providing support for SDRAM, Flash ROM, SRAM, dual-port memory, and other I/O devices. It can interface directly to 8-bit boot ROM for a very low cost system implementation. It enables access to high bandwidth external memory (200 MB/sec peak) at very low system costs. It also offers various trade-offs in cost / performance for the main memory architecture. The timers implemented on the RC32351 satisfy the requirements of most RTOS.

DMA Controller

The DMA controller off-loads the CPU core from moving data among the on-chip interfaces, external peripherals, and memory. The DMA controller supports scatter / gather DMA with no alignment restrictions, appropriate for communications and graphics systems.

Ethernet Interface

The RC32351 contains an on-chip Ethernet MAC capable of 10 and 100 Mbps line interface with an MII interface. It supports up to 4 MAC addresses. In a SOHO router, the high performance RC32300 CPU core routes the data between the Ethernet and the ATM interface. In other applications, such as high speed modems, the Ethernet interface can be used to connect to the PC.

USB Device Interface

The RC32351 includes the industry standard USB device interface to enable consumer appliances to directly connect to the PC.

ATM SAR

The RC32351 includes a configurable ATM SAR that supports a UTOPIA level 1 or a UTOPIA level 2 interface. The ATM SAR is implemented as a hybrid between software and hardware. A hardware block provides the necessary low level blocks (like CRC generation and checking and cell buffering) while the software is used for higher level SARing functions. In xDSL modem applications, the UTOPIA port interfaces directly to an xDSL chip set. In SOHO routers or in a line card for a Layer 3 switch, it provides access to an ATM network.

Enhanced JTAG Interface for ICE

For low-cost In-Circuit Emulation (ICE), the RC32300 CPU core includes an Enhanced JTAG (EJTAG) interface. This interface consists of two operation modes: Run-Time Mode and Real-Time Mode.

The Run-Time Mode provides a standard JTAG interface for on-chip debugging, and the Real-Time Mode provides additional status pins—PCST[2:0]—which are used in conjunction with the JTAG pins for real-time trace information at the processor internal clock or any division of the pipeline clock.

Thermal Considerations

The RC32351 consumes less than 1.5 W peak power and is guaranteed in an ambient temperature range of 0° to $+70^\circ$ C (commercial).

Revision History

January 7, 2002: Initial publication.

May 20, 2002: Added values (in place of TBD) to Table 18, Power Consumption.

September 19, 2002: Added COLDRSTN Trise1 parameter to Table 5, Reset and System AC Timing Characteristics.

December 6, 2002: In Features section, changed UART speed from 115 Kb/s to 1.5 Mb/s.

December 17, 2002: Added \textbf{V}_{OH} parameter to Table 16, DC Electrical Characteristics.

May 25, 2004: In Table 7, signals MIIRXCLK and MIITXCLK, the Min and Max values for 10 Mbps Thigh1/Tlow1 were changed to 140 and 260 respectively and the Min and Max values for 100 Mbps Thigh1/Tlow1 were changed to 14.0 and 26.0 respectively.

Pin Description Table

The following table lists the functions of the pins provided on the RC32351. Some of the functions listed may be multiplexed onto the same pin.

To define the active polarity of a signal, a suffix will be used. Signals ending with an "N" should be interpreted as being active, or asserted, when at a logic zero (low) level. All other signals (including clocks, buses and select lines) will be interpreted as being active, or asserted when at a logic one (high) level.

Note: The input pads of the RC32351 do not contain internal pull-ups or pull-downs. Unused inputs should be tied off to appropriate levels. This is especially critical for unused control signal inputs (such as BRN) which, if left floating, could adversely affect the RC32351's operation. Also, any input pin left floating can cause a slight increase in power consumption.

Name	Туре	I/O Type	Description					
System								
CLKP	I	Input	System Clock input. This is the system master clock input. The RISCore 32300 pipeline frequency is a multiple (x2, x3, or x4) of this clock frequency. All other logic runs at this frequency or less.					
COLDRSTN	I	STI ¹	old Reset. The assertion of this signal low initiates a cold reset. This causes the RC32351 state to be initialized, boot onfiguration to be loaded, and the internal processor PLL to lock onto the system clock (CLKP).					
RSTN	I/O	Low Drive with STI	eset. This bidirectional signal is either driven low or tri-stated, an external pull-up is required to supply the high state. The C32351 drives RSTN low during a reset (to inform the external system that a reset is taking place) and then tri-states it. ne external system can drive RSTN low to initiate a warm reset, and then should tri-state it.					
SYSCLKP	0	High Drive	System clock output. This is a buffered and delayed version of the system clock input (CLKP). All SDRAM transactions are synchronous to this clock. This pin should be externally connected to the SDRAMs and to the RC32351 SDCLKINP pin SDRAM clock input).					
Memory and Peri	pheral Bus	}						
MADDR[25:0]	0	[21:0] High Drive	Memory Address Bus. 26-bit address bus for memory and peripheral accesses. MADDR[20:17] are used for the SODIMM data mask enables if SODIMM mode is selected.					
		[25:22] Low Drive with STI	MADDR[22] Primary function: General Purpose I/O, GPIOP[27]. MADDR[23] Primary function: General Purpose I/O, GPIOP[28]. MADDR[24] Primary function: General Purpose I/O, GPIOP[29]. MADDR[25] Primary function: General Purpose I/O, GPIOP[30].					
MDATA[31:0]	I/O	High Drive	Memory Data Bus. 32-bit data bus for memory and peripheral accesses.					
BDIRN	0	High Drive	External Buffer Direction. External transceiver direction control for the memory and peripheral data bus, MDATA[31:0]. It is asserted low during any read transaction, and remains high during write transactions.					
BOEN[1:0]	0	High Drive	External Buffer Output Enable. These signals provide two output enable controls for external data bus transceivers on the memory and peripheral data bus, MDATA. BOEN[0] is asserted low during external device read transactions. BOEN[1] is asserted low during SDRAM read transactions.					
BRN	I	STI	External Bus Request. This signal is asserted low by an external master device to request ownership of the memory and peripheral bus.					
BGN	0	Low Drive	External Bus Grant. This signal is asserted low by RC32351 to indicate that RC32351 has relinquished ownership of the local memory and peripheral bus to an external master.					
WAITACKN	I	STI	Wait or Transfer Acknowledge. When configured as wait, this signal is asserted low during a memory and peripheral device bus transaction to extend the bus cycle. When configured as transfer acknowledge, this signal is asserted low during a memory and peripheral device bus transaction to signal the completion of the transaction.					
CSN[5:0]	0	[3:0] High Drive [5:4] Low Drive	Device Chip Select. These signals are used to select an external device on the memory and peripheral bus during device transactions. Each bit is asserted low during an access to the selected external device. CSN[4] Primary function: General purpose I/O, GPIOP[16]. CSN[5] Primary function: General purpose I/O, GPIOP[17].					

Table 1 Pin Descriptions (Part 1 of 7)

Name	Туре	I/O Type	Description				
RWN	0	High Drive	Read or Write. This signal indicates if the transaction on the memory and peripheral bus is a read transaction or a write transaction. A high level indicates a read from an external device, a low level indicates a write to an external device.				
OEN	0	High Drive	put Enable. This signal is asserted low when data should be driven by an external device during device read transacs on the memory and peripheral bus.				
BWEN[3:0]	0	High Drive	M Byte Enable Mask or Memory and I/O Byte Write Enables. These signals are used as data input/output masks SDRAM transactions and as byte write enable signals during device controller transactions on the memory and leral bus. They are active low. V[0] corresponds to byte lane MDATA[7:0]. V[1] corresponds to byte lane MDATA[15:8]. V[2] corresponds to byte lane MDATA[23:16]. V[3] corresponds to byte lane MDATA[31:24].				
SDCSN[1:0]	0	High Drive	DRAM Chip Select. These signals are used to select the SDRAM device on the memory and peripheral bus. Each bit is sserted low during an access to the selected SDRAM.				
RASN	0	High Drive	DRAM Row Address Strobe . The row address strobe asserted low during memory and peripheral bus SDRAM transacons.				
CASN	0	High Drive	DRAM Column Address Strobe. The column address strobe asserted low during memory and peripheral bus SDRAM ansactions.				
SDWEN	0	High Drive	SDRAM Write Enable. Asserted low during memory and peripheral bus SDRAM write transactions.				
CKENP	0	Low Drive	DRAM Clock Enable. Asserted high during active SDRAM clock cycles. imary function: General Purpose I/O, GPIOP[21].				
SDCLKINP	I	STI	SDRAM Clock Input. This clock input is a delayed version of SYSCLKP. SDRAM read data is sampled into the RC32351 on the rising edge of this clock.				
ATM Interface	•						

ATMINP[11:0]	I	STI	ATM PHY Inputs. These pins are the inputs for the ATM interface.			
ATMIOP[1:0]	I/O	Low Drive with STI	TM PHY Bidirectional Signals. These pins are the bidirectional pins for the ATM interface.			
ATMOUTP[9:0]	0	Low Drive	ATM PHY Outputs. These pins are the outputs for the ATM interface.			
TXADDR[1:0]	0	Low Drive	ATM Transmit Address [1:0]. 2-bit address bus used for transmission in Utopia-2 mode. TXADDR[0] Primary function: General purpose I/O, GPIOP[22]. TXADDR[1] Primary function: General purpose I/O, GPIOP[23].			
RXADDR[1:0]	0	Low Drive	ATM Receive Address [1:0]. 2-bit address bus for receiving in Utopia-2 mode. RXADDR[0] Primary function: General purpose I/O, GPIOP[24]. RXADDR[1] Primary function: General purpose I/O, GPIOP[25].			

General Purpose Input/Output

GPIOP[0]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function: UART channel 0 serial output, U0SOUTP.
GPIOP[1]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function: UART channel 0 serial input, U0SINP.
GPIOP[2]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. 1st Alternate function: UART channel 0 ring indicator, U0RIN. 2nd Alternate function: JTAG boundary scan tap controller reset, JTAG_TRST_N.
GPIOP[3]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function: UART channel 0 data carrier detect, U0DCRN.
GPIOP[4]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. 1st Alternate function: UART channel 0 data terminal ready, U0DTRN. 2nd Alternate function: CPU or DMA transaction indicator, CPUP.

Table 1 Pin Descriptions (Part 2 of 7)

Name	Туре	I/O Type	Description					
GPIOP[5]	I/O		General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function: UART channel 0 data set ready, U0DSRN.					
GPIOP[6]	I/O		General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function: UART channel 0 request to send, U0RTSN.					
GPIOP[7]	I/O	Low Drive with STI	eral Purpose I/O. pin can be configured as a general purpose I/O pin. nate function: UART channel 0 clear to send, U0CTSN.					
GPIOP[8]	I/O	Low Drive with STI	General Purpose I/O. This pin can be configured as a general purpose I/O pin. 1st Alternate function: UART channel 1 serial output, U1SOUTP. 2nd Alternate function: Active DMA channel code, DMAP[3].					
GPIOP[9]	I/O	Low Drive with STI	General Purpose I/O. This pin can be configured as a general purpose I/O pin. 1st Alternate function: UART channel 1 serial input, U1SINP. 2nd Alternate function: Active DMA channel code, DMAP[2].					
GPIOP[10]	I/O	Low Drive with STI	General Purpose I/O. This pin can be configured as a general purpose I/O pin. 1st Alternate function: UART channel 1 data terminal ready, U1DTRN. 2nd Alternate function: ICE PC trace status, EJTAG_PCST[0].					
GPIOP[11]	I/O	Low Drive with STI	General Purpose I/O. This pin can be configured as a general purpose I/O pin. 1st Alternate function: UART channel 1 data set ready, U1DSRN. 2nd Alternate function: ICE PC trace status, EJTAG_PCST[1].					
GPIOP[12]	I/O	Low Drive with STI	eral Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function: UART channel 1 request to send, U1RTSN. Alternate function: ICE PC trace status, EJTAG_PCST[2].					
GPIOP[13]	I/O	Low Drive with STI	neral Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function: UART channel 1 clear to send, U1CTSN. If Alternate function: ICE PC trace clock, EJTAG_DCLK.					
GPIOP[14]	I/O	Low Drive with STI	neral Purpose I/O. This pin can be configured as a general purpose I/O pin.					
GPIOP[15]	I/O	Low Drive with STI	General Purpose I/O. This pin can be configured as a general purpose I/O pin.					
GPIOP[16]	I/O	High Drive	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function: Memory and peripheral bus chip select, CSN[4].					
GPIOP[17]	I/O	High Drive	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function: Memory and peripheral bus chip select, CSN[5].					
GPIOP[18]	I/O		General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function: External DMA device request, DMAREQN.					
GPIOP[19]	I/O	Low Drive with STI	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function: External DMA device done, DMADONEN.					
GPIOP[20]	I/O		ieneral Purpose I/O. This pin can be configured as a general purpose I/O pin. Iternate function: USB start of frame, USBSOF.					
GPIOP[21]	I/O	Low Drive with STI	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function: SDRAM clock enable CKENP.					
GPIOP[22]	I/O		General Purpose I/O. This pin can be configured as a general purpose I/O pin. Nternate function: ATM transmit PHY address, TXADDR[0].					
GPIOP[23]	I/O	Low Drive with STI	eneral Purpose I/O. This pin can be configured as a general purpose I/O pin. t Alternate function: ATM transmit PHY address, TXADDR[1]. d Alternate function: Active DMA channel code, DMAP[0].					

Table 1 Pin Descriptions (Part 3 of 7)

Name	Туре	I/O Type	Description						
GPIOP[24]	I/O	Low Drive with STI	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function: ATM receive PHY address, RXADDR[0].						
GPIOP[25]	I/O	Low Drive with STI	General Purpose I/O. This pin can be configured as a general purpose I/O pin. 1st Alternate function: ATM receive PHY address, RXADDR[1]. 2nd Alternate function: Active DMA channel code, DMAP[1].						
GPIOP[26]	I/O	Low Drive with STI	General Purpose I/O. This pin can be configured as a general purpose I/O pin.						
GPIOP[27]	I/O	Low Drive with STI	eneral Purpose I/O. This pin can be configured as a general purpose I/O pin. ernate function: Memory and peripheral bus address, MADDR[22].						
GPIOP[28]	I/O	Low Drive with STI	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function: Memory and peripheral bus address, MADDR[23].						
GPIOP[29]	I/O	Low Drive with STI	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function: Memory and peripheral bus address, MADDR[24].						
GPIOP[30]	I/O	Low Drive with STI	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function: Memory and peripheral bus address, MADDR[25].						
GPIOP[31]	I/O	Low Drive with STI	General Purpose I/O. This pin can be configured as a general purpose I/O pin. 1ST Alternate function: DMA finished, DMAFIN. 2nd Alternate function: EJTAG/ICE reset, EJTAG_TRST_N.						
GPIOP[32]	I/O	High Drive	General Purpose I/O. This pin can be configured as an auxiliary general purpose I/O pin.						
GPIOP[33]	I/O	Low Drive with STI	eneral Purpose I/O. This pin can be configured as an auxiliary general purpose I/O pin.						
GPIOP[34]	I/O	High Drive	General Purpose I/O. This pin can be configured as an auxiliary general purpose I/O pin.						
GPIOP[35]	I/O	Low Drive with STI	General Purpose I/O. This pin can be configured as an auxiliary general purpose I/O pin.						
DMA	•								
DMAFIN	0	Low	External DMA finished. This signal is asserted low by the RC32351 when the number of bytes specified in the DMA descriptor have been transferred to or from an external device. Primary function: General Purpose I/O, GPIOP[31]. At reset, this pin defaults to primary function GPIOP[31]. 2nd Alternate function: EJTAG_TRST_N.						
DMAREQN	I	STI	External DMA Device Request. The external DMA device asserts this pin low to request DMA service. Primary function: General purpose I/O, GPIOP[18]. At reset, this pin defaults to primary function GPIOP[18].						
DMADONEN	I	STI	External DMA Device Done . The external DMA device asserts this signal low to inform the RC32351 that it is done with the current DMA transaction. Primary function: General purpose I/O, GPIOP[19]. At reset, this pin defaults to primary function GPIOP[19].						
USB									
USBCLKP	I	STI	USB Clock. 48 MHz clock input used as time base for the USB interface.						
USBDN	I/O	USB	USB D- Data Line. This is the negative differential USB data signal.						
USBDP	I/O	USB	USB D+ Data Line. This is the positive differential USB data signal.						
USBSOF	0	Low Drive	USB start of frame. Primary function: General Purpose I/O, GPIOP[20]. At reset, this pin defaults to primary function GPIOP[20].						
Ethernet	ı								
MIICOLP	I	STI	MII Collision Detected. This signal is asserted by the ethernet PHY when a collision is detected.						
MIICRSP	I	STI	MII Carrier Sense. This signal is asserted by the ethernet PHY when either the transmit or receive medium is not idle.						
MIIMDCP	0	Low Drive	MII Management Data Clock. This signal is used as a timing reference for transmission of data on the management interface.						

Table 1 Pin Descriptions (Part 4 of 7)

Name	Туре	I/O Type	Description				
MIIMDIOP	I/O	Low Drive with STI	MII Management Data. This bidirectional signal is used to transfer data between the station management entity and the ethernet PHY.				
MIIRXCLKP	ı	STI	MII Receive Clock. This clock is a continuous clock that provides a timing reference for the reception of data.				
MIIRXDP[3:0]	1	STI	MII Receive Data. This nibble wide data bus contains the data received by the ethernet PHY.				
MIIRXDVP	ı	STI	MII Receive Data Valid. The assertion of this signal indicates that valid receive data is in the MII receive data bus.				
MIIRXERP	I	STI	Receive Error. The assertion of this signal indicates that an error was detected somewhere in the ethernet frame curtly being sent in the MII receive data bus.				
MIITXCLKP	1	STI	MII Transmit Clock. This clock is a continuous clock that provides a timing reference for the transfer of transmit data.				
MIITXDP[3:0]	0	Low Drive	MII Transmit Data. This nibble wide data bus contains the data to be transmitted.				
MIITXENP	0	Low Drive	MII Transmit Enable. The assertion of this signal indicates that data is present on the MII for transmission.				
MIITXERP	0	Low Drive	MII Transmit Coding Error. When this signal is asserted together with MIITXENP, the ethernet PHY will transmit symbols which are not valid data or delimiters.				
EJTAG	- U						
JTAG_TCK	I	STI	JTAG Clock. This is an input test clock, used to shift data into or out of the boundary scan logic. This signal requires an external resistor, listed in Table 14.				
JTAG_TDI	I	STI	AG Data Input. This is the serial data shifted into the boundary scan logic. This signal requires an external resistor, ted in Table 14. This is also used to input EJTAG_DINTN during EJTAG/ICE mode. EJTAG_DINTN is an interrupt to vitch the PC trace mode off.				
JTAG_TDO	0	Low Drive	TAG Data Output. This is the serial data shifted out from the boundary scan logic. When no data is being shifted out, this ignal is tri-stated. This signal requires an external resistor, listed in Table 14. This is also used to output the EJTAG_TPC uring EJTAG/ICE mode. EJTAG_TPC is the non-sequential program counter output.				
JTAG_TMS	I	STI	FAG Mode Select. This input signal is decoded by the tap controller to control test operation. This signal requires an external resistor, listed in Table 14.				
EJTAG_PCST[0]	0	Low Drive	C trace status. This bus gives the PC trace status information during EJTAG/ICE mode. EJTAG/ICE enable is selected uring reset using the boot configuration and overrides the selection of the Primary and Alternate functions. This signal equires an external resistor, listed in Table 14. rimary function: General Purpose I/O, GPIOP[10]. st Alternate function: UART channel 1 data terminal ready, U1DTRN.				
EJTAG_PCST[1]	0	Low Drive	PC trace status. This bus gives the PC trace status information during EJTAG/ICE mode. EJTAG/ICE enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions. This signal equires an external resistor, listed in Table 14. Primary function: General Purpose I/O, GPIOP[11]. At reset, this pin defaults to primary function GPIOP[11]. List Alternate function: UART channel 1 data set ready, U1DSRN.				
EJTAG_PCST[2]	0	Low Drive	PC trace status. This bus gives the PC trace status information during EJTAG/ICE mode. EJTAG/ICE enable is selected luring reset using the boot configuration and overrides the selection of the Primary and Alternate functions. This signal equires an external resistor, listed in Table 14. Primary function: General Purpose I/O, GPIOP[12]. st Alternate function: UART channel 1 request to send, U1RTSN.				
EJTAG_DCLK	0	Low Drive	PC trace clock. This is used to capture address and data during EJTAG/ICE mode. EJTAG/ICE enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions. This signal requires an external resistor, listed in Table 14. Primary function: General Purpose I/O, GPIOP[13]. 1st Alternate function: UART channel 1 clear to send, U1CTSN.				

Table 1 Pin Descriptions (Part 5 of 7)

Name Type I/O Type			Description							
EJTAG_TRST_N	I	STI	EJTAG Test Reset. EJTAG_TRST_N is an active-low signal for asynchronous reset of only the EJTAG/ICE controller. EJTAG_TRST_N requires an external pull-up on the board. EJTAG/ICE enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions. This signal requires an external resistor, listed in Table 14. Primary: General Purpose I/O, GPIOP[31] 1st Alternate function: DMA finished output, DMAFIN.							
JTAG_TRST_N	I	STI	JTAG Test Reset. JTAG_TRST_N is an active-low signal for asynchronous reset of only the JTAG boundary scan controller. JTAG_TRST_N requires an external pull-down on the board that will hold the JTAG boundary scan controller in reset when not in use if selected. JTAG reset enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions. Primary function: General Purpose I/O, GPIOP[2]. 1st Alternate function: UART channel 0 ring indicator, U0RIN.							
Debug										
INSTP	0	Low Drive	Instruction or Data Indicator . This signal is driven high during CPU instruction fetches and low during CPU data transactions on the memory and peripheral bus.							
CPUP	0	Low Drive	CPU or DMA Transaction Indicator. This signal is driven high during CPU transactions and low during DMA transactions on the memory and peripheral bus if CPU/DMA Transaction Indicator Enable is enabled. CPU/DMA Status mode enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions. Primary function: General Purpose I/O, GPIOP[4]. 1st Alternate function: UART channel 0 data terminal ready U0DTRN.							
DMAP[0]	0	Low Drive	Active DMA channel code. DMA debug enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions. Primary function: General Purpose I/O, GPIOP[23]. Ist Alternate function: TXADDR[1].							
DMAP[1]	0	Low Drive	Active DMA channel code. DMA debug enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions. Primary function: General Purpose I/O, GPIOP[25]. 1st Alternate function: RXADDR[1].							
DMAP[2]	0	Low Drive	Active DMA channel code. DMA debug enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions. Primary function: General Purpose I/O, GPIOP[9]. 1st Alternate function: U1SINP.							
DMAP[3]	0	Low Drive	Active DMA channel code. DMA debug enable is selected during reset using the boot configuration and overrides the selection of the Primary and Alternate functions. Primary function: General Purpose I/O, GPIOP[8]. 1st Alternate function: U1SOUTP.							
UART	· I									
U0SOUTP	I	STI	UART channel 0 serial transmit. Primary function: General Purpose I/O, GPIOP[0]. At reset, this pin defaults to primary function GPIOP[0].							
U0SINP	I	STI	UART channel 0 serial receive. Primary function: General Purpose I/O, GPIOP[1]. At reset, this pin defaults to primary function GPIOP[1].							
UORIN	I	STI	UART channel 0 ring indicator. Primary function: General Purpose I/O, GPIOP[2]. At reset, this pin defaults to primary function GPIOP[2] if JTAG reset enable is not selected during reset using the boot configuration. 2nd Alternate function: JTAG boundary scan reset, JTAG_TRST_N.							
U0DCRN	I	STI	UART channel 0 data carrier detect. Primary function: General Purpose I/O, GPIOP[3]. At reset, this pin defaults to primary function GPIOP[3].							

Table 1 Pin Descriptions (Part 6 of 7)

Name	Туре	I/O Type	Description			
U0DTRN	0	Low Drive	UART channel 0 data terminal ready. Primary function: General Purpose I/O, GPIOP[4]. At reset, this pin defaults to primary function GPIOP[4] if CPU/DMA Status Mode enable is not selected during reset using the boot configuration. 2nd Alternate function: CPU or DMA transaction indicator, CPUP.			
U0DSRN	I	STI	JART channel 0 data set ready. Primary function: General Purpose I/O, GPIOP[5]. At reset, this pin defaults to primary function GPIOP[5].			
U0RTSN	0	Low Drive	UART channel 0 request to send. Primary function: General Purpose I/O, GPIOP[6]. At reset, this pin defaults to primary function GPIOP[6].			
U0CTSN	I	STI	UART channel 0 clear to send. Primary function: General Purpose I/O, GPIOP[7]. At reset, this pin defaults to primary function GPIOP[7].			
U0SOUTP	0	Low Drive	RT channel 1 serial transmit. mary function: General Purpose I/O, GPIOP[8]. At reset, this pin defaults to primary function GPIOP[8] if DMA Debug ible is not selected during reset using the boot configuration. Alternate function: DMA channel, DMAP[3].			
U1SINP	I	STI	PART channel 1 serial receive. Primary function: General Purpose I/O, GPIOP[9]. At reset, this pin defaults to primary function GPIOP[9] if DMA Debug mable is not selected during reset using the boot configuration. Ind Alternate function: DMA channel, DMAP[2].			
U1DTRN	0	Low Drive	UART channel 1 data terminal ready. Primary function: General Purpose I/O, GPIOP[10]. At reset, this pin defaults to primary function GPIOP[10] if ICE Interface enable is not selected during reset using the boot configuration. Alternate function: PC trace status bit 0, EJTAG_PCST[0].			
U1DSRN	I	STI	UART channel 1 data set ready. Primary function: General Purpose I/O, GPIOP[11]. At reset, this pin defaults to primary function GPIOP[11] if ICE Interface enable is not selected during reset using the boot configuration. 2nd Alternate function: PC trace status bit 1, EJTAG_PCST[1].			
U1RTSN	0	Low Drive	UART channel 1 request to send. Primary function: General Purpose I/O, GPIOP[12]. At reset, this pin defaults to primary function GPIOP[12] if ICE Interface enable is not selected during reset using the boot configuration. 2nd Alternate function: PC trace status bit 2, EJTAG_PCST[2].			
U1CTSN	I	STI	UART channel 1 clear to send. Primary function: General Purpose I/O, GPIOP[13]. At reset, this pin defaults to primary function GPIOP[13] if ICE Interface enable is not selected during reset using the boot configuration. 2nd Alternate function: PC trace clock, EJTAG_DCLK.			

Table 1 Pin Descriptions (Part 7 of 7)

Boot Configuration Vector

The boot configuration vector is read into the RC32351 during cold reset. The vector defines parameters in the RC32351 that are essential to operation when cold reset is complete.

The encoding of boot configuration vector is described in Table 2, and the vector input is illustrated in Figure 6.

^{1.} Schmitt Trigger Input.

Signal	Name/Description
MDATA[2:0]	Clock Multiplier. This field specifies the value by which the system clock (CLKP) is multiplied internally to generate the CPU pipeline clock. 0x0 - multiply by 2 0x1 - multiply by 3 0x2 - multiply by 4 0x3 - reserved 0x4 - reserved 0x5 - reserved 0x6 - reserved 0x7 - reserved
MDATA[3]	Endian. This bit specifies the endianness of RC32351. 0x0 - little endian 0x1 - big endian
MDATA[4]	Reserved. Must be set to 0.
MDATA[5]	Debug Boot Mode . When this bit is set, the RC32351 begins executing from address 0xFF20_0200 rather than 0xBFC0_0000 following a reset. 0x0 - regular mode (processor begins executing at 0xBFC0_0000) 0x1 - debug boot mode (processor begins executing at 0xFF20_0200)
MDATA[7:6]	Boot Device Width. This field specifies the width of the boot device. 0x0 - 8-bit boot device width 0x1 - 16-bit boot device width 0x2 - 32-bit boot device width 0x3 - reserved
MDATA[8]	EJTAG/ICE Interface Enable. When this bit is set, Alternate 2 pin functions EJTAG_PCST[2:0], EJTAG_DCLK, and EJTAG_TRST_N are selected. 0x0 - GPIOP[31, 13:10] pins behaves as GPIOP 0x1 - GPIOP[31] pin behaves as EJTAG_TRST_N, GPIOP[12:10] pins behave as EJTAG_PCST[2:0], and GPIOP[13] pin behaves as EJTAG_DCLK
MDATA[9]	Fast Reset. When this bit is set, RC32351 drives RSTN for 64 clock cycles, used during test only. Clear this bit for normal operation. 0x0 - Normal reset: RC32351 drives RSTN for minimum of 4096 clock cycles 0x1 - Fast Reset: RC32351 drives RSTN for 64 clock cycles (test only)
MDATA[10]	DMA Debug Enable. When this bit is set, Alternate 2 pin function, DMAP is selected. DMAP provides the DMA channel number during memory and peripheral bus DMA transactions. 0x0 - GPIOP[8, 9, 25, 23] pins behave as GPIOP 0x1 - GPIOP[8, 9, 25, 23] pins behave as DMAP[3:0]
MDATA[11]	Hold SYSCLKP Constant. For systems that do not require a SYSCLKP output and can instead use CLKP, setting this bit to a one causes the SYSCLKP output to be held at a constant level. This may be used to reduce EMI. 0x0 - Allow SYSCLKP to toggle 0x1 - Hold SYSCLKP constant
MDATA[12]	JTAG Boundary Scan Reset Enable. When this bit is set, Alternate 2 pin function, JTAG_TRST_N is selected. 0x0 - GPIOP[2] pin behaves as GPIOP 0x1 - GPIOP[2] pin behaves as JTAG_TRST_N
MDATA[13]	CPU / DMA Transaction Indicator Enable. When this bit is set, Alternate 2 pin function, CPUP is selected. 0x0 - GPIOP[4] pin behaves as GPIOP 0x1 - GPIOP[4] pin behaves as CPUP
MDATA[15:14]	Reserved. These pins must be driven low during boot configuration.

Table 2 Boot Configuration Vector Encoding

Logic Diagram

The following Logic Diagram shows the primary pin functions of the RC32351.

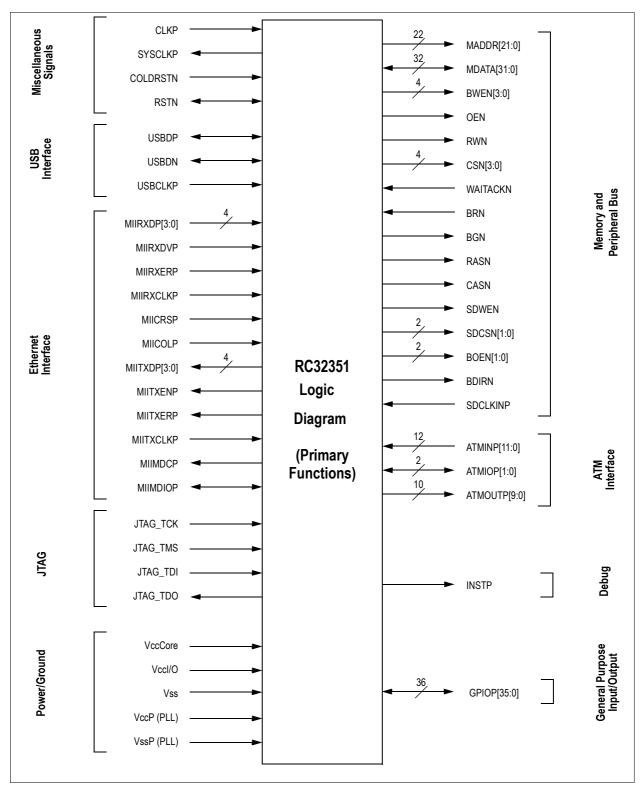


Figure 3 Logic Diagram

13 of 42

Clock Parameters

(Ta = 0°C to +70°C Commercial, Vcc I/O = +3.3V \pm 5%, V_{cc} Core and V_{cc}P = +2.5V \pm 5%)

Parameter	Symbol	Reference Edge	RC32351 100MHz		RC32351 133MHz		Units	Timing Diagram
			Min	Max	Min	Max		Reference
Internal CPU pipeline clock ¹	Frequency	none	100	100	100	133	MHz	Figure 4
CLKP ^{2,3,4}	Frequency	none	25	50	25	67	MHz	
	Tperiod1		20	40	15	40	ns	
	Thigh1		10	_	6	_	ns	
	Tlow1		10	_	6	_	ns	
	Trise1		_	3	_	3	ns	
	Tfall1		_	3	_	3	ns	
	Tjitter		_	±250	_	±250	ps	

Table 3 Clock Parameters

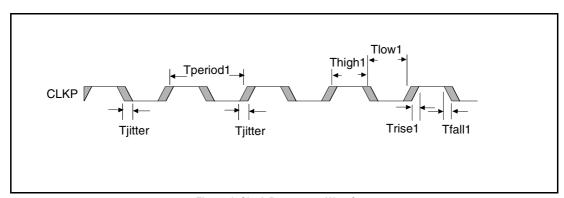


Figure 4 Clock Parameters Waveform

<sup>The CPU pipeline clock speed is selected during cold reset by the boot configuration vector (see Table 2).

Ethernet clock (MIIRXCLKP and MIITXCLKP) frequency must be equal to or less than 1/2 CLKP frequency.

USB clock (USBCLKP) frequency must be less than CLKP frequency.

ATM Utopia clock (RXCLKP and TXCLKP) frequency must be equal to or less than 1/2 CLKP frequency.</sup>

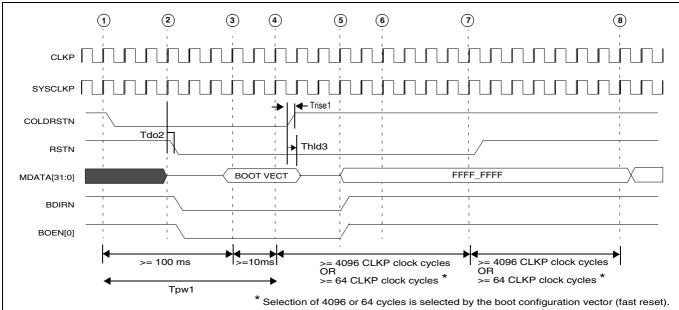
AC Timing Definitions

Below are examples of the AC timing characteristics used throughout this document.

Figure 5 AC Timing Definitions Waveform

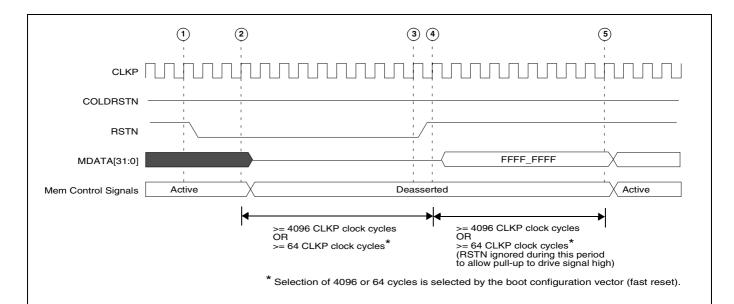
Symbol	Definition
Tperiod	Clock period.
Tlow	Clock low. Amount of time the clock is low in one clock period.
Thigh	Clock high. Amount of time the clock is high in one clock period.
Trise	Rise time. Low to high transition time.
Tfall	Fall time. High to low transition time.
Tjitter	Jitter. Amount of time the reference clock (or signal) edge can vary on either the rising or falling edges.
Tdo	Data out. Amount of time after the reference clock edge that the output will become valid. The minimum time represents the data output hold. The maximum time represents the earliest time the designer can use the data.
Tzd	Z state to data valid. Amount of time after the reference clock edge that the tri-stated output takes to become valid.
Tdz	Data valid to Z state. Amount of time after the reference clock edge that the valid output takes to become tri-stated.
Tsu	Input set-up. Amount of time before the reference clock edge that the input must be valid.
Thld	Input hold. Amount of time after the reference clock edge that the input must remain valid.
Tpw	Pulse width. Amount of time the input or output is active.

Table 4 AC Timing Definitions


AC Timing Characteristics

(Ta = 0°C to +70°C Commercial, Vcc I/O = +3.3V \pm 5%, V_{cc} Core = +2.5V \pm 5%, V_{cc}P = +2.5V \pm 5%)

o: 1		Reference	100	MHz	133	MHz		• 1141	Timing
Signal	Symbol	Edge	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
Reset and System					<u> </u>				
COLDRSTN	Tpw1	none	110	_	110	_	ms		Figure 6
	Trise1	none	_	5.0	_	5.0	ns		Figure 7
RSTN ¹	Tdo2	CLKP rising	4.0	10.7	4.0	10.7	ns		
MDATA[15:0] Boot Configuration Vector	Thld3	COLDRSTN rising	3	_	3	_	ns		
INSTP	Tdo	CLKP rising	5	8	5.0	8.0	ns		
CPUP	Tdo	CLKP rising	3.5	7	3.5	7.0	ns		
DMAP	Tdo	CLKP rising	3.5	6.6	3.5	6.6	ns		
DMAREQN ²	Tpw	none	(CLKP+7)	_	(CLKP+7)	_	ns		
DMADONEN ²	Tpw	none	(CLKP+7)	_	(CLKP+7)	_	ns		
DMAFIN	Tdo	CLKP rising	3.5	5.9	3.5	5.9	ns		
BRN	Tsu	CLKP rising	1.6	_	1.6	_	ns		
	Thld		0	_	0	_	ns		
BGN	Tdo	CLKP rising	3.3	5.8	3.3	5.8	ns		


Table 5 Reset and System AC Timing Characteristics

RSTN is a bidirectional signal. It is treated as an asynchronous input.
 DMAREQN and DMADONEN minimum pulse width equals the CLKP period plus 7ns.

- COLDRSTN asserted by external logic.
- The RC32351 asserts RSTN, asserts BOEN[0] low, drives BDIRN low, and tri-states the data bus in response. 2.
- External logic begins driving valid boot configuration vector on the data bus, and the RC32351 starts sampling it. 3.
- External logic negates COLDRSTN and tri-states the boot configuration vector on MDATA[15:0]. The boot configuration vector must not be tri-stated before COLDRSTN is deasserted. The RC32351 stops sampling the boot configuration vector.
- The RC32351 starts driving the data bus, MDATA[31:0], deasserts BOEN[0] high, and drives BDIRN high.
- SYSCLKP may be held constant after this point if Hold SYSCLKP Constant is selected in the boot configuration vector. 6.
- RSTN negated by RC32351. 7.
- CPU begins executing by taking MIPS reset exception, and the RC32351 starts sampling RSTN as a warm reset input.

Figure 6 Cold Reset AC Timing Waveform

- 1. Warm reset condition caused by either RSTN asserted, write to reset register, or bus transaction timer time-out. The RC32351 asserts RSTN output low in response.
- 2. The RC32351 tri-states the data bus, MDATA[31:0], and deasserts all memory control signals, such as RASN, CASN, RWN, OEN, etc.
- 3. The RC32351 deasserts RSTN.
- 4. The RC32351 starts driving the data bus, MDATA[31:0], again, but does not sample the RSTN input.
- 5. CPU begins executing by taking a MIPS soft reset exception and also starts sampling the RSTN input again.

Figure 7 Warm Reset AC Timing Waveform

Siam al	Sb al	Reference	100	MHz	133	MHz	11:4	Conditions	Timing
Signal	Symbol	Edge	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
Memory and Peripheral Bu	s - SDRAM Acce	SS							•
MDATA[31:0]	Tsu1	SDCLKINP	2.5	_	2.5	_	ns		Figure 8
	Thld1	rising	1.2	_	1.2	_	ns		Figure 9 Figure 10
	Tdo1	SYSCLKP	1.2	5.8	1.2	5.8	ns		
	Tdz1	rising	_	5.0	_	5.0	ns		
	Tzd1		1.0	_	1.0	_	ns		
MADDR[20:2], BWEN[3:0]	Tdo2	SYSCLKP rising	1.2	5.3	1.2	5.3	ns		
CASN, RASN, SDCSN[1:0], SDWEN	Tdo3	SYSCLKP rising	1.2	5.3	1.2	5.3	ns		
CKENP	Tdo4	SYSCLKP rising	1.2	5.3	1.2	5.3	ns		_
BDIRN	Tdo5	SYSCLKP rising	1.2	5.3	1.2	5.3	ns		_
BOEN[1:0]	Tdo6	SYSCLKP rising	1.2	5.3	1.2	5.3	ns		_
SYSCLKP rising	Tdo7	CLKP rising	0.5	5.0	0.5	5.0	ns		
SDCLKINP	Tperiod8	none	20	50	15	50	ns		
	Thigh8,Tlow8		10	_	6.0	_	ns		
	Trise8,Tfall8		_	3.0	_	3.0	ns		
	Tdelay8	SYSCLKP rising	0	4.8	0	4.8	ns		

Table 6 Memory and Peripheral Bus AC Timing Characteristics (Part 1 of 2)

		Reference	100	MHz	133	MHz			Timing
Signal	Symbol	Edge	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
Memory and Peripheral B	us - Device Acce	ss		I		<u> </u>			<u> </u>
MDATA[31:0]	Tsu1	CLKP rising	2.5	_	2.5	_	ns		Figure 11
	Thld1		1.5	_	1.5	_	ns		Figure 12
	Tdo1		2.0	6.5	2.0	6.5	ns		
	Tdz1		_	9.0	_	9.0	ns		
	Tzd1		2.0	_	2.0	_	ns		
WAITACKN, BRN	Tsu	CLKP rising	2.5	_	2.5	_	ns		
	Thld	1	1.5	_	1.5	_	ns		
MADDR[21:0]	Tdo2	CLKP rising	2.0	6.0	2.0	6.0	ns		
	Tdz2		_	9.0	_	9.0	ns		
	Tzd2		2.0	_	2.0	_	ns		
MADDR[25:22]	Tdo3	CLKP rising	2.5	6.5	2.5	6.5	ns		
	Tdz3		_	9.0	_	9.0	ns		
	Tzd3	1	2.0	_	2.0	_	ns]
BDIRN, BOEN[0]	Tdo4	CLKP rising	2.0	6.0	2.0	6.0	ns		
	Tdz4		_	9.0	_	9.0	ns		
	Tzd4	1	2.0	_	2.0	_	ns]
BGN, BWEN[3:0], OEN,	Tdo5	CLKP rising	2.0	6.0	2.0	6.0	ns]
RWN	Tdz5	1	_	9.0	_	9.0	ns		
	Tzd5	1	2.0	_	2.0	_	ns]
CSN[3:0]	Tdo6	CLKP rising	1.7	5.0	1.7	5.0	ns]
	Tdz6	† †	_	9.0	_	9.0	ns		1
	Tzd6		2.0	_	2.0	_	ns		1
CSN[5:4]	Tdo7	CLKP rising	2.5	6.0	2.5	6.0	ns		1
	Tdz7	†	_	9.0	_	9.0	ns		1
	Tzd7	1	2.0	_	2.0	_	ns		1

Table 6 Memory and Peripheral Bus AC Timing Characteristics (Part 2 of 2)

Note: The RC32351 provides bus turnaround cycles to prevent bus contention when going from a read to write, write to read, and during external bus ownership. For example, there are no cycles where an external device and the RC32351 are both driving. See Chapter 10, "Device Controller," Chapter 11, "Synchronous DRAM Controller," and Chapter 12, "Bus Arbitration" in the RC32351 User Reference Manual.

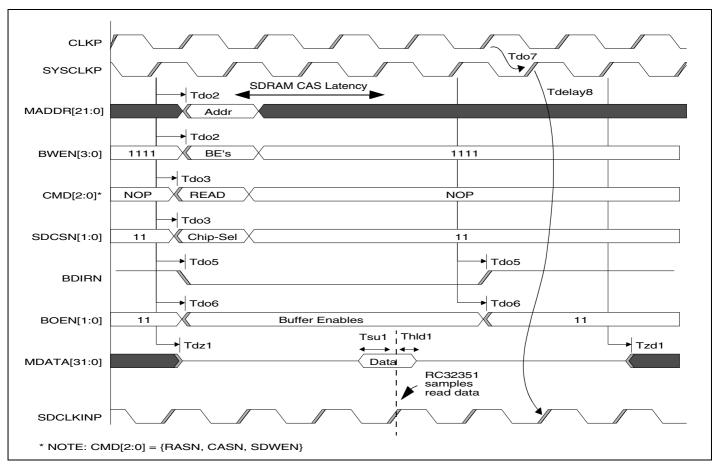


Figure 8 Memory and Peripheral Bus AC Timing Waveform - SDRAM Read Access

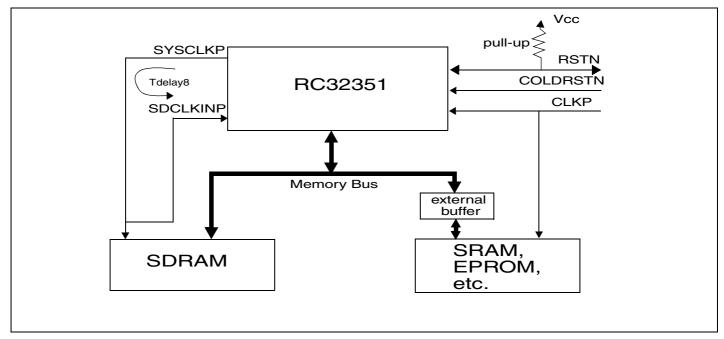


Figure 9 SYSCLKP - SDCLKINP Relationship

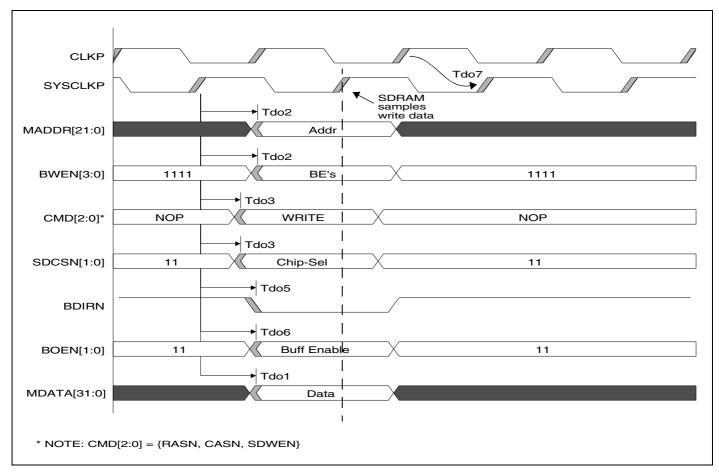


Figure 10 Memory and Peripheral Bus AC Timing Waveform - SDRAM Write Access

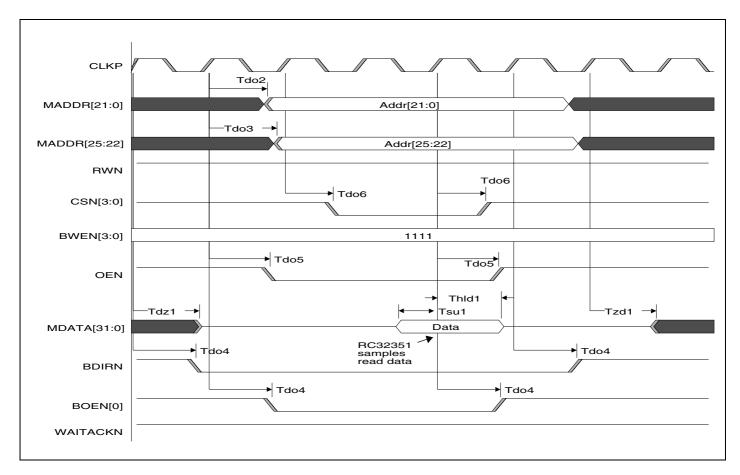


Figure 11 Memory and Peripheral Bus AC Timing Waveform - Device Read Access

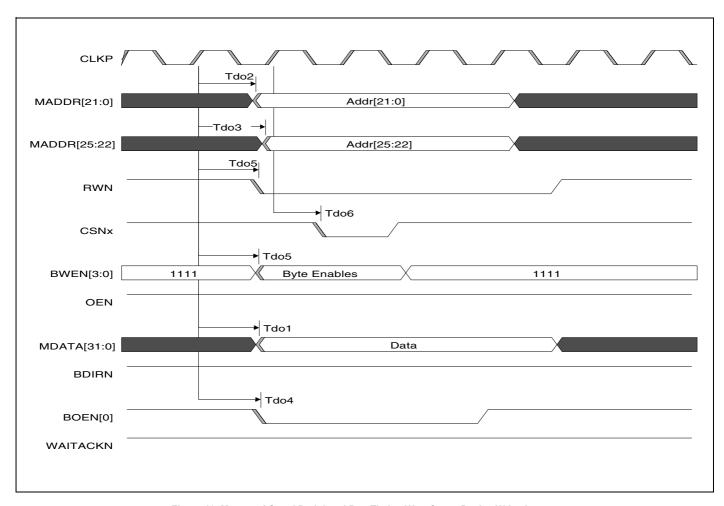


Figure 12 Memory AC and Peripheral Bus Timing Waveform - Device Write Access

Ciarra I	C	Reference	100	MHz	133	MHz	11:4	0 1141	Timing
Signal	Symbol	Edge	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
Ethernet ^{1,2}		<u> </u>						<u> </u>	<u> </u>
MIIRXCLKP, MIITXCLKP	Tperiod1	none	399.96	400.04	399.96	400.04	ns	10 Mbps	Figure 13
	Thigh1,Tlow1		140	260	140	260	ns		
	Trise1,Tfall1		_	3	_	3	ns		
MIIRXCLKP, MIITXCLKP	Tperiod1	none	39.996	40.004	39.996	40.004	ns	100 Mbps	
	Thigh1,Tlow1		14	26	14	26	ns		
	Trise1,Tfall1		_	2	_	2	ns		
MIIRXDP[3:0], MIIRXDVP,	Tsu2	MIIRXCLKP	5	_	5	_	ns		
MIIRXERP	Thld2	rising	3	_	3	_	ns		
MIITXDP[3:0], MIITXENP, MIITXERP	Tdo3	MIITXCLKP rising	7	13	7	13	ns		
MIIMDCP	Tperiod4	none	30	_	30	_	ns		
	Thigh4,Tlow4		14	_	14	_	ns		
	Trise4		_	11	_	11	ns		
	Tfall4			8	_	8	ns		
MIIMDIOP	Tsu5	MIIMDCP	6	_	6	_	ns		
	Thld5	rising	0.5	_	0.5	_	ns		
	Tdo5		3	7	3	7	ns		

¹ Ethernet clock (MIIRXCLKP and MIITXCLKP) frequency must be equal to or less than 1/2 CLKP frequency. ² MIICOLP and MIICRSP are asynchronous signals.

Table 7 Ethernet AC Timing Characteristics

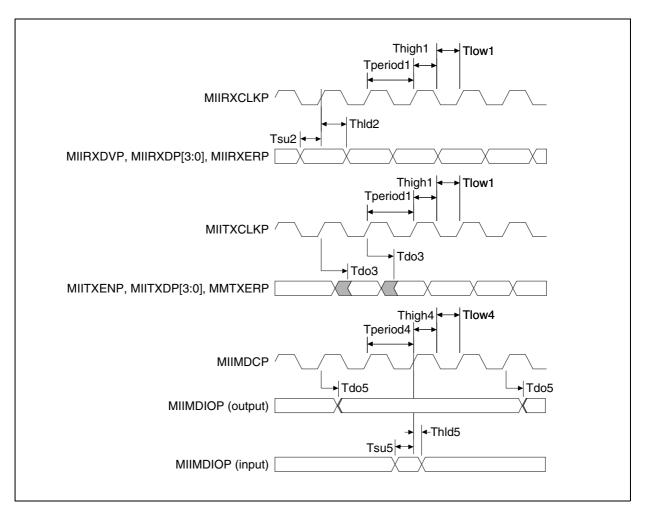


Figure 13 Ethernet AC Timing Waveform

0: 1		Reference	100	MHz	133	MHz			Timing
Signal	Symbol	Edge	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
ATM Interface, Utopia Mod	le ^{1,2}	<u> </u>						<u> </u>	<u> </u>
RXCLKP, TXCLKP ¹	Tperiod1	none	_	40	_	40	ns	25 MHz Utopia	Figure 14
	Thigh1,Tlow1		16	_	16	_	ns		
	Trise1,Tfall1		_	4	_	4	ns		
RXCLKP, TXCLKP ¹	Tperiod1	none	_	30	_	30	ns	33 MHz Utopia	
	Thigh1,Tlow1		12	_	12	_	ns		
	Trise1,Tfall1		_	3	_	3	ns		
RXCLKP, TXCLKP	Tperiod1	none	_	20	_	20	ns	50 MHz Utopia	
	Thigh,Tlow1		8	_	8	_	ns		
	Trise1,Tfall1		_	2	_	2	ns		
TXFULLN	Tsu2	TXCLKP	2	_	2	_	ns		
	Thld2	rising	2	_	2	_	ns		
TXDATA[7:0], TXSOC, TXENBN, TXADDR[1:0]	Tdo3	TXCLKP rising	4	8	4	8	ns		
RXDATA[7:0], RXEMP-	Tsu4	RXCLKP	3	_	3	_	ns		
TYN, RXSOC	Thld4	rising	2	_	2	_	ns		
RXADDR[1:0], RXENBN	Tdo5	RXCLKP rising	3	8	3	8	ns		

Table 8 ATM AC Timing Characteristics

 $^{^{2\}cdot}$ All Utopia Mode pins are multiplexed on the ATM interface pins as described in Table 9.

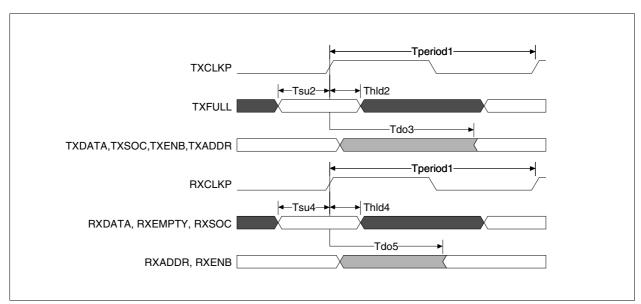


Figure 14 ATM AC Timing Waveform

 $^{^{1\}cdot}$ ATM Utopia clock (RXCLKP and TXCLKP) frequency must be equal to or less than 1/2 CLKP frequency.

ATM Pin Name	Utopia Level 1	Utopia Level 2
ATMINP[0]	RXDATA[0]	RXDATA[0]
ATMINP[1]	RXDATA[1]	RXDATA[1]
ATMINP[2]	RXDATA[2]	RXDATA[2]
ATMINP[3]	RXDATA[3]	RXDATA[3]
ATMINP[4]	RXDATA[4]	RXDATA[4]
ATMINP[5]	RXDATA[5]	RXDATA[5]
ATMINP[6]	RXDATA[6]	RXDATA[6]
ATMINP[7]	RXDATA[7]	RXDATA[7]
ATMINP[8]	RXCLKP	RXCLKP
ATMINP[9]	RXEMPTYN	RXEMPTYN
ATMINP[10]	RXSOC	RXSOC
ATMINP[11]	TXFULLN	TXFULLN
ATMIOP[0]	RXENBN	RXENBN
ATMIOP[1]	TXCLKP	TXCLKP
ATMOUTP[0]	TXDATA[0]	TXDATA[0]
ATMOUTP[1]	TXDATA[1]	TXDATA[1]
ATMOUTP[2]	TXDATA[2]	TXDATA[2]
ATMOUTP[3]	TXDATA[3]	TXDATA[3]
ATMOUTP[4]	TXDATA[4]	TXDATA[4]
ATMOUTP[5]	TXDATA[5]	TXDATA[5]
ATMOUTP[6]	TXDATA[6]	TXDATA[6]
ATMOUTP[7]	TXDATA[7]	TXDATA[7]
ATMOUTP[8]	TXSOC	TXSOC
ATMOUTP[9]	TXENBN	TXENBN
GPIOP[22]		TXADDR[0]
GPIOP[23]		TXADDR[1]
GPIOP[24]		RXADDR[0]
GPIOP[25]		RXADDR[1]

Table 9 ATM I/O Pin Description

Signal	Symbol	Symbol Reference			133	IVIHZ			Timing
	Symbol	Edge	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
USB									
USBCLKP ¹	Tperiod1	none	19.79	21.87	19.79	21.87	ns		Figure 15
	Thigh1,Tlow1		8.3	_	8.3	_	ns		
	Trise1,Tfall1		_	3	_	3	ns		
	Tjitter1		1	0.8	1	0.8	ns	1/4th of the minimum Source data jitter	
USBDN, USBDP	Trise2		4	20	4	20	ns	Universal Serial Bus Specification (USBS) Revision 1.1: Figures 7.6 and 7.7.	
	Tfall2		4	20	4	20	ns	USBS Revision 1.1: Figures 7.6 and 7.7.	
USBDN and USBDP Rise and Fall Time Matching			90	111.11	90	111.11	%	USBS Revision 1.1: Note 10, Section 7.1.2.	
Data valid period	Tstate		60	_	60	_	ns		
Skew between USBDN and USBDP			1	0.4	1	0.4	ns	USBS Revision 1.1: Section 7.1.3	
Source data jitter			_	3.5	_	3.5	ns	USBS Revision 1.1:	
Receive data jitter			-	12	_	12	ns	Table 7-6	
Source EOP length	Tseop		160	175	160	175	ns		
Receive EOP length	Treop		82	_	82	_	ns		
EOP jitter			-2	5	-2	5	ns		
Full-speed Data Rate	Tfdrate		11.97	12.03	11.97	12.03	MHz	Average bit rate, USBS Section 7.1.11.	
Frame Interval			0.9995	1.0005	0.9995	1.0005	ms	USBS Section 7.1.12.	
Consecutive Frame Interval Jitter			_	42	_	42	ns	Without frame adjust- ment.	
			-	126	-	126	ns	With frame adjust- ment.	

Table 10 USB AC Timing Characteristics

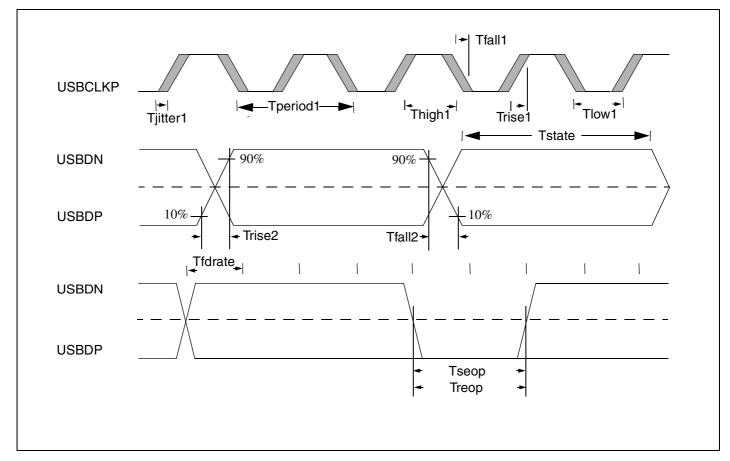


Figure 15 USB AC Timing Waveform

Cianal	Comple al	Reference	100	MHz	133	MHz	11:4	Conditions	Timing	
Signal	Symbol	Edge	Min	Max	Min	Max	Unit	Conditions	Diagram Reference	
UART										
U0SINP, U0RIN, U0DCDN,	Tsu ¹	CLKP rising	5	_			ns			
U0DSRN, U0CTSN, U1SINP, U1DSRN, U1CTSN	Thld ¹		3	_			ns			
U0SOUTP, U0DTRN, U0RTSN, U1SOUTP, U1DTRN, U1RTSN	Tdo ¹	CLKP rising	1	12			ns			
¹ These are asynchronous si	These are asynchronous signals and the values are provided for ATE (test) only.									

Table 11 UART AC Timing Characteristics

Simpl	Sumbal	Reference	100	MHz	133	MHz	Unit	Conditions	Timing Diagram
Signal	Symbol	Edge	Min	Max	Min	Max	Onit	Conditions	Reference
GPIOP									
GPIOP[31:0] ¹	Tsu1	CLKP rising	4	_	4		ns		Figure 16
	Thld1]	1.4	_	1.4	_	ns		
	Tdo1		2	8	2	8	ns		
GPIOP[35:32] ²	Tsu1]	3	_	3	_	ns		
	Thld1]	1	_	1	_	ns		
	Tdo1		3	8	3	8	ns		

¹ GPIO[31:0] can be asynchronous signals; the values are provided for ATE (test) only. ² GPIOP[35:32] are synchronous signals.

Table 12 GPIOP AC Timing Characteristics

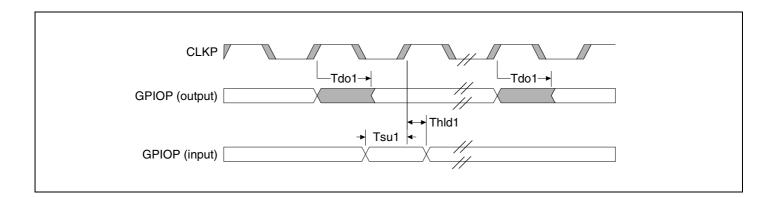


Figure 16 GPIOP AC Timing Waveform

Signal	Symbol	Reference	100	MHz	133	MHz	Unit	Conditions	Timing
Signal	Symbol	Edge	Min	Max	Min	Max	Unit	Conditions	Diagram Reference
EJTAG and JTAG									
JTAG_TCK	Tperiod1	none	100	_	100	_	ns		Figure 17
	Thigh1,Tlow1		40	_	40	_	ns		
	Trise1,Tfall1		_	5	_	5	ns		
EJTAG_DCLK ¹	Tperiod2	none	10.0	10.0	7.5	10.0	ns		
	Thigh2,Tlow2		2.5	_	2.5	_	ns		
	Trise2,Tfall2		_	3.5	_	3.5	ns		
JTAG_TMS, JTAG_TDI,	Tsu3	JTAG_TCK rising	3.0	_	3.0	_	ns		
JTAG_TRST_N	Thld3		1.0	_	1.0	_	ns		
JTAG_TDO	Tdo4	JTAG_TCK falling	2.0	12.0	2.0	12.0	ns		
	Tdo5	EJTAG_DCLK rising	-0.7 ²	1.0	-0.7 ²	1.0	ns		
JTAG_TRST_N	Tpw6	none	100	_	100	_	ns		
	Tsu6	JTAG_TCK rising	2	_	2	_	ns		
EJTAG_PCST[2:0]	Tdo7	EJTAG_DCLK rising	-0.3 ²	3.3	-0.3 ²	3.3	ns		

^{1.} EJTAG_DCLK is equal to the internal CPU pipeline clock.

Table 13 JTAG AC Timing Characteristics

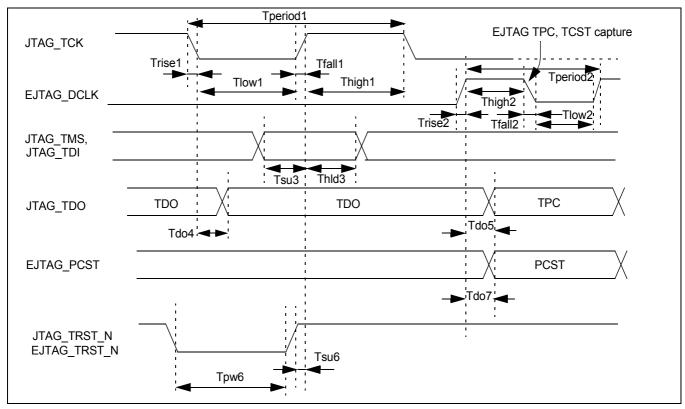


Figure 17 JTAG AC Timing Waveform

 $^{^{2\}cdot}$ A negative delay denotes the amount of time before the reference clock edge.

Table 14 shows the pin numbering for the Standard EJTAG connector. All the even numbered pins are connected to ground. Multiplexing of pin functions should be considered when connecting EJTAG_TRST_N and EJTAG_PCST.

For details on using the JTAG connector, see the JTAG chapters in the RC32351 user reference manual.

PIN	SIGNAL	RC32351 I/O	TERMINATION ¹
1	EJTAG_TRST_N	Input	10 k Ω pull-down resistor. A pull-down resistor will hold the EJTAG controller in reset when not in use if the EJTAG_TRST_N function is selected with the boot configuration vector. Refer to the User Manual.
3	JTAG_TDI	Input	10 kΩ pull-up resistor
5	JTAG_TDO	Output	$33~\Omega$ series resistor
7	JTAG_TMS	Input	10 kΩ pull-up resistor
9	JTAG_TCK	Input	10 kΩ pull-up resistor ²
11	System Reset	Input	10 k Ω pull-up resistor is used if it is combined with the system cold reset control, COLDRSTN.
13	EJTAG_PCST[0]	Output	$33~\Omega$ series resistor
15	EJTAG_PCST[1]	Output	$33~\Omega$ series resistor
17	EJTAG_PCST[2]	Output	$33~\Omega$ series resistor
19	EJTAG_DCLK	Output	$33~\Omega$ series resistor
21	Debug Boot	Input	This can be connected to the boot configuration vector to control debug boot mode if desired. Refer to Table 2 on page 12 and the RC32351 user reference manual.
23	VccI/O	Output	Used to sense the circuit board power. Must be connected to the VCC I/O supply of the circuit board.

Table 14 Pin Numbering of the JTAG and EJTAG Target Connector

Output Loading for AC Timing

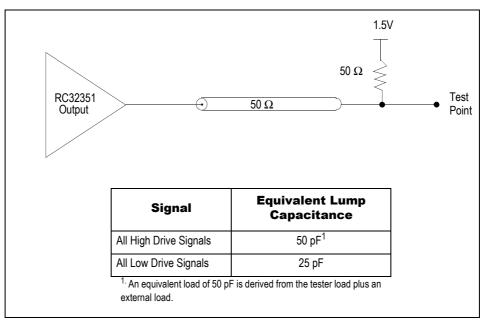


Figure 18 Output Loading for AC Timing

^{1.} The value of the series resistor may depend on the actual printed circuit board layout situation.

^{2.} JTAG_TCK pull-up resistor is not required according to the JTAG (IEEE1149) standard. It is indicated here to prevent a floating CMOS input when the EJTAG connector is unconnected.

Phase-Locked Loop (PLL)

The processor aligns the pipeline clock, PClock, to the master input clock (CLKP) by using an internal phase-locked loop (PLL) circuit that generates aligned clocks. Inherently, PLL circuits are only capable of generating aligned clocks for master input clock (CLKP) frequencies within a limited range.

PLL Analog Filter

The storage capacitor required for the Phase-Locked Loop circuit is contained in the RC32351. However, it is recommended that the system designer provide a filter network of passive components for the PLL power supply.

VCCP (PLL circuit power) and VssP (PLL circuit ground) should be isolated from Vcc Core (core power) and Vss (common ground) with a filter circuit such as the one shown in Figure 19.

Because the optimum values for the filter components depend upon the application and the system noise environment, these values should be considered as starting points for further experimentation within your specific application.

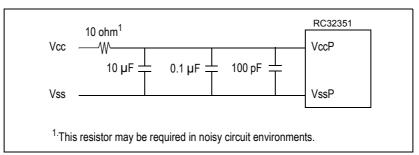


Figure 19 PLL Filter Circuit for Noisy Environments

Recommended Operating Temperature and Supply Voltage

Grade	Temperature	Vss ¹ VssP ⁵	V _{cc} I/O ²	V _{cc} Core ³ V _{cc} P ⁴
Commercial	0°C to +70°C Ambient	0V	3.3V±5%	2.5V±5%

¹Vss supplies a common ground.

Table 15 Temperature and Voltage

Capacitive Load Deration

Refer to the RC32355 IBIS Model which can be found at the IDT web site (www.idt.com).

² Vccl/O is the I/O power.

³ VccCore is the internal logic power.

⁴ VccP is the phase lock loop power.

⁵VssP is the phase lock loop ground.

Power-on RampUp

The 2.5V core supply (and 2.5V V_{cc} PLL supply) can be fully powered without the 3.3V I/O supply. However, the 3.3V I/O supply cannot exceed the 2.5V core supply by more than 1 volt during power up. A sustained large power difference could potentially damage the part. Inputs should not be driven until the part is fully powered. Specifically, the input high voltages should not be applied until the 3.3V I/O supply is powered.

There is no special requirement for how fast V_{cc} I/O ramps up to 3.3V. However, all timing references are based on a stable V_{cc} I/O.

DC Electrical Characteristics

 $(T_{ambient} = 0$ °C to +70°C Commercial, Vcc I/O = +3.3V±5%, V_{cc} Core and V_{cc} P = +2.5V±5%)

	Para- meter	Min	Max	Unit	Pin Numbers	Conditions
LOW Drive Output with Schmitt Trigger	I _{OL}	7.3	_	mA	1-4,6-8,10-16,18,20-25,27-29,32,33,35-37,	V _{OL} = 0.4V
	I _{OH}	-8.0	1	mA	39-42,44,46-48,50,52,53,56,58-60,62-69, 71-77,82-85,87-94,96-99,101-105,167,	V _{OH} = (V _{CC} I/O - 0.4)
Input (STI)	V _{IL}	_	0.8	٧	205-208	_
	V_{IH}	2.0	(V _{cc} I/O + 0.5)	V		_
	V _{OH}	V _{cc} - 0.4	-	V		_
HIGH Drive	I _{OL}	9.4	_	mA	49,51,54,55,106-108,110,112-117,119, 121,123-128,130,132-137,139,141,143, 150,152,154-159,161,163-166,168-170, 172,174-179,181,185-190,192,194-200,	V _{OL} = 0.4V
Output with Standard Input	I _{OH}	-15	_	mA		V _{OH} = (V _{CC} I/O - 0.4)
	V _{IL}	_	0.8	٧		_
	V_{IH}	2.0	(V _{cc} I/O + 0.5)	V	202,204	_
	V_{OH}	V _{cc} - 0.4	_	V		_
Clock Drive	I _{OL}	39	_	mA	183	V _{OL} = 0.4V
Output	I _{OH}	-24	_	mA		V _{OH} = (V _{CC} I/O - 0.4)
Capacitance	C _{IN}	_	10	pF	All pins	_
Leakage	I/O _{LEAK}	_	20	μΑ	All pins	_

Table 16 DC Electrical Characteristics

USB Electrical Characteristics

	Parameter	Min	Max	Unit	Conditions
USB Interf	ace	<u> </u>	l .	<u> </u>	
V _{di}	Differential Input Sensitivity	-0.2		V	I(D+)-(D-)I
V _{cm}	Differential Input Common Mode Range	0.8	2.5	V	
V _{se}	Single ended Receiver Threshold	0.8	2.0	V	
C _{in}	Transceiver Capacitance		20	pF	
I _{li}	Hi-Z State Data Line Leakage	-10	10	μs	0V < V _{in} < 3.3V
USB Upsti	ream/Downstream Port	•		•	,
V _{oh}	Static Output High	2.8	3.6	V	15km <u>+</u> 5% to Gnd ^[7]
V _{ol}	Static Output Low		0.3	V	
Z _o	USB Driver Output Impedance	28	44	Ω	Including $R_{ext} = 20 \Omega$

Table 17 USB Interface Characteristics

Power Consumption

Note: This table is based on a 2:1 CPU bus (PClock to CLKP) clock ratio.

Pai	Parameter		100MHz		MHz	Unit	Conditions
			Max.	Typical	Max.		Conditions
I _{CC} I/O		60	110	80	130	mA	
I _{CC core}	Normal mode	300	350	400	450	mA	C _L = 0
	Standby mode ¹	240	290	320	370	mA	$T_a = 25^{\circ}C$ VccP = 2.625V (for max. values)
Power	Normal mode	0.95	1.30	1.26	1.63	W	V _{cc} core = 2.625V (for max. values)
Dissipation	Standby mode ¹	0.80	1.09	1.06	1.42	W	V _{cc} I/O = 3.46V (for max. values) VccP = 2.5V (for typical values) V _{cc} core = 2.5V (for typical values) V _{cc} I/O = 3.3V (for typical values)

^{1.} RISCore 32300 CPU core enters Standby mode by executing WAIT instructions; however, other logic continues to function. Standby mode reduces power consumption by 0.6 mA per MHz of the CPU pipeline clock, PClock.

Table 18 RC32351 Power Consumption

Power Curve

The following graph contains a power curve that shows power consumption at various bus frequencies.

Note: The system clock (CLKP) can be multiplied by 2, 3, or 4 to obtain the CPU pipeline clock (PClock) speed.

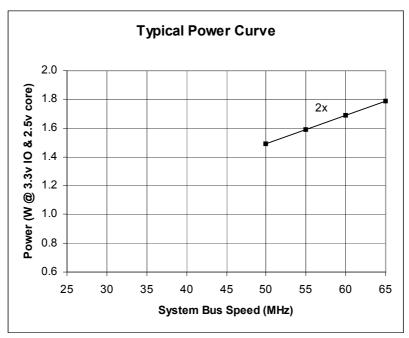


Figure 20 Typical Power Usage

Absolute Maximum Ratings

Symbol	Parameter	Min ¹	Max ¹	Unit
V _{CC} I/O	I/O Supply Voltage	-0.3	4.0	V
V _{CC} Core	Core Supply Voltage	-0.3	3.0	V
V _{CC} P	PLL Supply Voltage	-0.3	3.0	V
Vimin	Input Voltage - undershoot	-0.6	_	V
Vi	I/O Input Voltage	Gnd	V _{CC} I/O+0.5	V
Ta, Commercial	Ambient Operating Temperature	0	70	degrees C
Tstg	Storage Temperature	-40	125	degrees C

Table 19 Absolute Maximum Ratings

^{1.} Functional and tested operating conditions are given in Table 15. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

Package Pin-out — 208-Pin PQFP

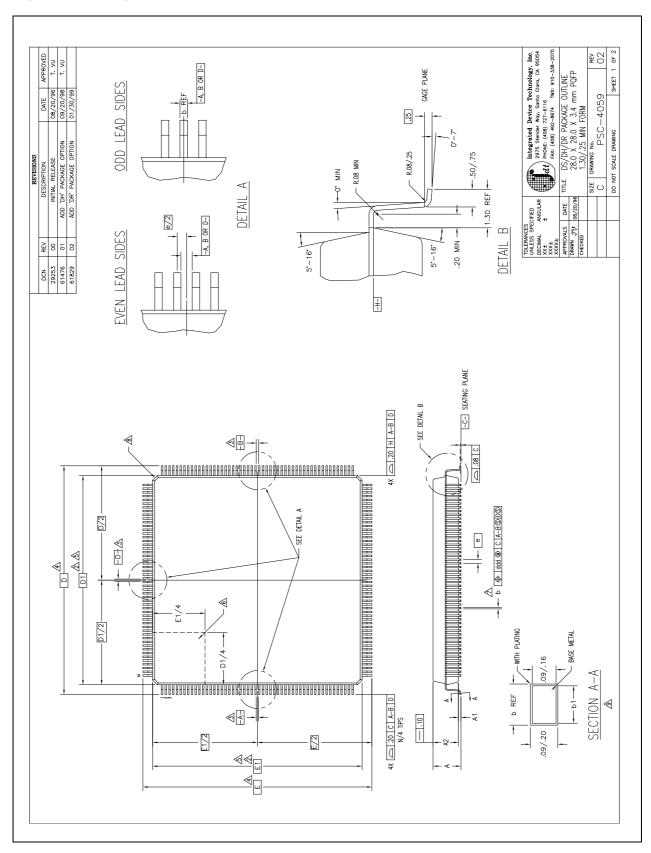
The following table lists the pin numbers and signal names for the RC32351.

Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt
1	ATMOUTP[0]		53	JTAG_TDO		105	BGN		157	MDATA[28]	
2	ATMOUTP[1]		54	GPIOP[16]	1	106	CSN[0]		158	MDATA[13]	
3	ATMINP[02]		55	GPIOP[17]	1	107	CSN[1]		159	MDATA[29]	
4	ATMOUTP[2]		56	GPIOP[18]	1	108	CSN[2]		160	Vcc I/O	
5	Vss		57	Vss		109	Vcc I/O		161	MDATA[14]	
6	ATMOUTP[3]		58	JTAG_TCK		110	CSN[3]		162	Vss	
7	ATMINP[03]		59	GPIOP[19]	1	111	Vss		163	MDATA[30]	
8	ATMOUTP[4]		60	GPIOP[20]	1	112	OEN		164	MDATA[15]	
9	Vcc I/O		61	Vcc I/O		113	RWN		165	MDATA[31]	
10	ATMOUTP[5]		62	GPIOP[21]	1	114	BDIRN		166	CLKP	
11	ATMINP[04]		63	JTAG_TDI		115	BOEN[0]		167	WAITACKN	
12	ATMOUTP[6]		64	GPIOP[22]	1	116	BOEN[1]		168	MADDR[00]	
13	ATMOUTP[7]		65	GPIOP[23]	2	117	BWEN[0]		169	MADDR[11]	
14	ATMINP[05]		66	GPIOP[24]	1	118	Vcc I/O		170	MADDR[01]	
15	ATMOUTP[8]		67	JTAG_TMS		119	BWEN[1]		171	Vcc I/O	
16	ATMOUTP[9]		68	GPIOP[25]	2	120	Vss		172	MADDR[12]	
17	Vss		69	GPIOP[26]		121	BWEN[2]		173	Vss	
18	ATMINP[06]		70	Vss		122	Vcc Core		174	MADDR[02]	
19	Vcc Core		71	GPIOP[27]	1	123	BWEN[3]		175	MADDR[13]	
20	GPIOP[00]	1	72	COLDRSTN		124	MDATA[00]		176	MADDR[03]	
21	GPIOP[01]	1	73	GPIOP[28]	1	125	MDATA[16]		177	MADDR[14]	
22	ATMINP[07]		74	GPIOP[29]	1	126	MDATA[01]		178	MADDR[04]	
23	GPIOP[02]	2	75	GPIOP[30]	1	127	MDATA[17]		179	MADDR[15]	
24	GPIOP[03]	1	76	GPIOP[31]	2	128	MDATA[02]		180	Vcc I/O	
25	ATMINP[08]		77	USBCLKP		129	Vcc I/O		181	MADDR[05]	
26	Vcc I/O		78	Vcc I/O		130	MDATA[18]		182	Vcc Core	
27	GPIOP[04]	2	79	USBDN		131	Vss		183	SYSCLKP	
28	GPIOP[05]	1	80	USBDP		132	MDATA[03]		184	Vss	
29	ATMINP[09]		81	Vss		133	MDATA[19]		185	MADDR[16]	
30	VccP ¹		82	MIICRSP		134	MDATA[04]		186	MADDR[06]	
31	VssP ¹		83	MIICOLP		135	MDATA[20]		187	MADDR[17]	
32	ATMINP[10]		84	MIITXDP[0]		136	MDATA[05]		188	MADDR[07]	
33	GPIOP[06]	1	85	MIITXDP[1]		137	MDATA[21]		189	MADDR[18]	
34	Vss		86	Vcc Core		138	Vcc Core		190	MADDR[08]	
35	GPIOP[07]	1	87	MIITXDP[2]		139	MDATA[06]		191	Vcc I/O	
36	ATMINP [11]		88	MIITXDP[3]		140	Vcc I/O		192	MADDR[19]	
37	GPIOP[08]	2	89	MIITXENP		141	MDATA[22]		193	Vss	1

Table 20: 208-pin QFP Package Pin-Out (Part 1 of 2)

Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt
38	Vcc Core		90	MIITXCLKP		142	Vss		194	MADDR[09]	
39	GPIOP[09]	2	91	MIITXERP		143	MDATA[07]		195	MADDR[20]	
40	GPIOP[10]	2	92	MIIRXERP		144	MDATA[23]		196	MADDR[10]	
41	GPIOP[11]	2	93	MIIRXCLKP		145	SDCLKINP		197	MADDR[21]	
42	GPIOP[12]	2	94	MIIRXDVP		146	MDATA[08]		198	CASN	
43	Vcc I/O		95	Vcc I/O		147	MDATA[24]		199	RASN	
44	GPIOP[13]	2	96	MIIRXDP[0]		148	MDATA[09]		200	SDWEN	
45	Vss		97	MIIRXDP[1]		149	MDATA[25]		201	Vcc I/O	
46	GPIOP[14]		98	MIIRXDP[2]		150	MDATA[10]		202	SDCSN[0]	
47	GPIOP[15]		99	MIIRXDP[3]		151	Vcc I/O		203	Vss	
48	GPIOP[35]		100	Vss		152	MDATA[26]		204	SDCSN[1]	
49	GPIOP[34]		101	MIIDCP		153	Vss		205	ATMINP[00]	
50	GPIOP[33]		102	MIIDIOP		154	MDATA[11]		206	ATMIOP[0]	
51	GPIOP[32]		103	RSTN		155	MDATA[27]		207	ATMIOP[1]	
52	INSTP		104	BRN		156	MDATA[12]		208	ATMINP[01]	

¹ VccP and VssP are the Phase Lock Loop (PLL) power and ground. PLL power and ground should be supplied through a special filter circuit.


Table 20: 208-pin QFP Package Pin-Out (Part 2 of 2)

Alternate Pin Functions

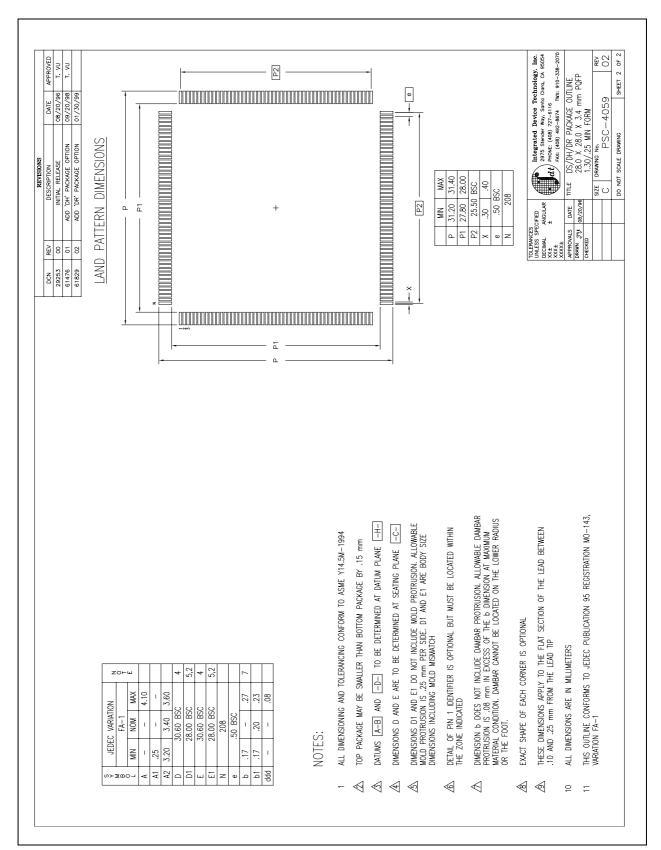
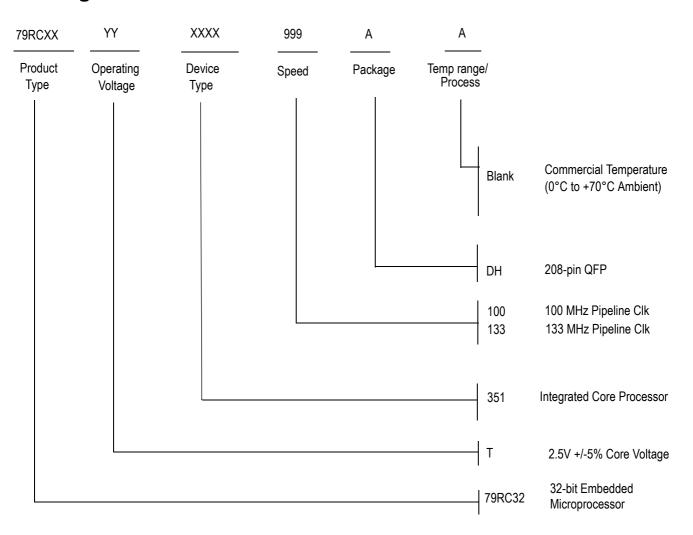

Pin	Primary	Alt #1	Alt #2	Pin	Primary	Alt #1	Alt #2
20	GPIOP[00]	U0SOUTP		55	GPIOP[17]	CSN[5]	
21	GPIOP[01]	U0SINP		56	GPIOP[18]	DMAREQN	
23	GPIOP[02]	U0RIN	JTAG_TRST_N	59	GPIOP[19]	DMADONEN	
24	GPIOP[03]	U0DCRN		60	GPIOP[20]	USBSOF	
27	GPIOP[04]	U0DTRN	CPUP	62	GPIOP[21]	CKENP	
28	GPIOP[05]	U0DSRN		64	GPIOP[22]	TXADDR[0]	
33	GPIOP[06]	U0RTSN		65	GPIOP[23]	TXADDR[1]	DMAP[0]
35	GPIOP[07]	U0CTSN		66	GPIOP[24]	RXADDR[0]	
37	GPIOP[08]	U1SOUTP	DMAP[3]	68	GPIOP[25]	RXADDR[1]	DMAP[1]
39	GPIOP[09]	U1SINP	DMAP[2]	71	GPIOP[27]	MADDR[22]	
40	GPIOP[10]	U1DTRN	EJTAG_PCST[0]	73	GPIOP[28]	MADDR[23]	
41	GPIOP[11]	U1DSRN	EJTAG_PCST[1]	74	GPIOP[29]	MADDR[24]	
42	GPIOP[12]	U1RTSN	EJTAG_PCST[2]	75	GPIOP[30]	MADDR[25]	
44	GPIOP[13]	U1CTSN	EJTAG_DCLK	76	GPIOP[31]	DMAFIN	EJTAG_TRST_N
54	GPIOP[16]	CSN[4]					

Table 21 Alternate Pin Functions


Package Drawing - 208-pin QFP

Package Drawing - page two

Ordering Information

Valid Combinations

79RC32T351 -100DH 208-pin QFP package, Commercial Temperature

79RC32T351 -133DH 208-pin QFP package, Commercial Temperature

CORPORATE HEADQUARTERS

6024 Silver Creek Valley Road San Jose, CA 95138 for SALES:

800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support:

email: rischelp@idt.com phone: 408-284-8208