NEC NEC Electronics

Description

The μ PD23128A is a 131,072-bit edge-enabled Readonly Memory utilizing MOS N-channel silicon gate technology. The device is organized as 16,384 words by 8 bits and operates from a single +5V power supply. All inputs and outputs are fully TTL-compatible. The device has one programmable chip select with three-state outputs that allow memory expansion without the use of external logic. Programming is accomplished during the fabrication process. Pinout is compatible with 27128 EPROMs.

Features

\Box	Fast	access	time:	200ns max	(

All inputs and outputs TTL-compatible

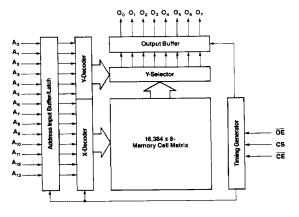
 \square Single +5V ± 10% power supply

☐ Three-state outputs for direct bus compatibility

Edge-enabled operation

Mask-programmable chip select for memory expansion

Low-power standby mode


Pin Configuration

A ₇	1	27 26 25 24 23 22 21 20 19	V _{cc} (+5V) CS CA A ₁ A ₈ A ₁ A ₉ A ₁₀ CE CC
- 1		19 18	₽ o, □ o.
0, [1		17 16	₽••
0 ₂	4	15	

Pin Identification

in			
Symbol	Function		
NC	No Connection.		
A ₀ -A ₁₃	Address Inputs.		
00-07	Three-state Data Outputs.		
GND	Ground.		
CE	Chip Enable.		
ŌĒ	Output Enable.		
CS	Mask-programmable Chip Select		
Vcc	Single +5V Power Supply.		
	Symbol NC A ₀ -A ₁₃ O ₀ -O ₇ GND CE CS CS		

Block Diagram

Absolute Maximum Ratings*

Supply Voltage, V _{CC}	-0.5V to +7V -0.5V to +7V		
Input Voltage, V _i			
Output Voltage, Vo	-0.5V to +7V		
Operating Temperature, Tops	- 10°C to + 70°C		
Storage Temperature, T _{STG}	-65°C to +150°C		

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

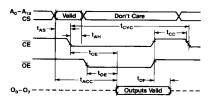
Capacitance

TA = 25°C

			Limits			
Parameter	Symbol	Min	Тур	Mex	Unit	Test Conditions
Input Capacitance	C _I			10	• pF	f = 1MHz
Output Capacitance	C _o			15	ρF	f = 1MHz

DC Characteristics

T_A = -10°C to +70°C; V_{CC} = +5V ± 10%


	Limits				Test	
Parameter	Symbol	Min	Тур	Max	Unit	
Input High Voltage	V _{IH}	+ 2.0		V _{CC} +1	٧	
Input Low Voltage	V _{IL}	~0.5		+ 0.8	٧	
Output High Voltage	V _{OH}	+ 2.4			٧	I _{OH} = -400µA
Output Low Voltage	VoL			+0.4	v	I _{QL} = +3.2mA
Input Leakage Current High	I _{LIH}			+ 10	μΑ	V ₁ = V _{CC}
Input Leakage Current Low	I _{LIL}			- 10	μА	V _I = 0V
Output Leakage Current High	I _{LOH}			+ 10	μΑ	V _O = V _{CC} , chip deselected
Output Leakage Current Low	LOL			-10	μΑ	V _D = 0V, chip deselected
Power Supply Current	I _{CC1}		+ 25	+ 40	mA	t _{CYC} = 350ns
rower Supply Current	I _{CC2}		+7	+ 15	mA	Standby mode

AC Characteristics

T_A = -10°C + 70°C; V_{CC} = +5V ± 10%

	_	Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Cycle Time	tcyc	300			ns	
Address Set-up Time	t _{AS}	0			ns	
Address Hold Time	t _{AH}	50			ns	Output load =
Chip Enable Access Time	t _{CE}			200	пв	1 TTL + 100pF input voltage (t _R , t _F) = 20ns
Output Enable Access Time	t _{OE}			100	ns	Timing reference levels: input and
Access Time	t _{ACC}			200	ns	output voltages = 0.8V and 2.0V
Output Disable Time	t _{DF}	0		70	ns	- 0.07 and 2.09
Chip Enable Off Time	tee	50			ns.	

Timing Waveform

Definitions

Cycle Time, t_{CYC}

The minimum time between data access cycles as measured from one chip enable pulse to the next.

Address Set-up Time, tas

The minimum time between application of a valid address to be latched into the device, and the negative transition of the chip enable pulse.

Address Hold Time, tah

The minimum time that valid address inputs must be held after the latching chip enable pulse reaches a logic zero level.

Chip Enable Access Time, t_{CE}

The minimum time between application of a valid chip enable input and the corresponding valid outputs.

Output Enable Access Time, toe

The minimum time between application of a valid output enable input and the corresponding valid outputs.

Access Time, t_{ACC}

The minimum time between application of valid inputs and chip selects and the corresponding valid outputs.

Output Disable Time, tope

The maximum delay between output enable or chip enable becoming false and data outputs going to a high impedance state.

Chip Enable Off Time, t_{CC}

The minimum time that chip enable must be off (at Logic 1) before the next access cycle may be initiated.

Custom Programming Instructions

Bit pattern submittal options

The customer's unique bit pattern can be submitted in several convenient methods that are easy for the ROM customer, and readily verifiable for accuracy. The bit pattern can be delivered to NEC contained within:

- 1. One programmed 27128 EPROM
- 2. Two programmed 2764 EPROMs
- 3. Four programmed 2732 EPROMs

Bit pattern verification

For customer verification of the submitted bit pattern, several alternatives are also available. The following are those found to be most expeditious.

Customer Pattern Submitted Via	Verification Routine
1. One programmed 27128 EPROM	Customer sends NEC one additional erased 27128. NEC programs the spare 27128 with the data from the programmed 27128, and returns it to the customer for verification.
2. Two programmed 2764 EPROMs	Customer sends NEC two additional erased 2764s. NEC programs the spare 2764s with the data from the programmed 2764s and returns them to the customer for verification.
3. Four programmed 2732 EPROMs	Customer sends NEC four additional erased 2732s. NEC programs the spare 2732s with the data from the programmed 2732s and returns them to the customer for verification.

Package Outlines

For information, see Section 9.

Plastic, µPD23128AC

23128ADS-8-84-CAT-L