SRAM # 1 MEG x 1 SRAM PIN ASSIGNMENT (Top View) LOW VOLTAGE Q d 12 WE [13 17 h A0 16 0 15 CE ### **FEATURES** - All I/O pins are 5V tolerant - High speed: 15, 17, 20, 25, 35 and 45ns - High-performance, low-power, CMOS double-metal - Single +3.3V ±0.3 power supply - Easy memory expansion with CE option - All inputs and outputs are TTL-compatible - Complies to JEDEC low-voltage TTL standards #### OPTIONS MARKING Timing 15ns access -1517ns access -17 20ns access -20 25ns access -25 35ns access -35 45ns access -45 Packages Plastic DIP (400 mil) None Plastic SOI (400 mil) DI Plastic SOJ (300 mil) SJ 2V data retention L 2V data retention, low power L.P Temperature | - | remperature | • | | |---|-------------|-------------------|------| | | Commercial | (0°C to +70°C) | None | | | Industrial | (-40°C to +85°C) | IT | | | Automotive | (-40°C to +125°C) | ΑT | | | Extended | (-55°C to +125°C) | XT | Part Number Example: MT5LC1001DJ-25 L NOTE: Not all combinations of operating temperature, speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations. #### GENERAL DESCRIPTION The MT5LC1001 is organized as a 1,048,576 x 1 SRAM using a four-transistor memory cell with a high-speed, lowpower CMOS process. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology. For flexibility in high-speed memory applications, Micron offers chip enable (CE) capability. This enhancement can place the outputs in High-Z for additional flexibility in system design. Writing to this device is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accom- #### 28-Pin SOJ 28-Pin DIP (SD-3) (SA-5) (SD-2) 28 Vcc A10 [1 A10 [1 28 7 Vcc 27 A9 27 A9 A11 [2 A11 [2 26 D A8 25 D A7 24 D A6 A12 3 A12 f 3 26 A8 A13 🛭 4 A13 I 4 25 D A7 A14 C 5 A14 fl 5 24 7 46 A15 6 23 D A5 23 T A5 A4 NC A15 f 6 NC | 7 22 22 A4 NC II 7 A16 2 8 21 A16 [8 21 h NC A17 0 9 20 L A3 19 A2 A18 [10 A17 6 9 20 A3 A19 [11 A18 10 19 A2 17 A0 18 A1 A19 [11 16 D 15 D CE WE d 13 Vss [14 plished when WE remains HIGH while CE goes LOW. The device offers a reduced power standby mode when disabled. This allows system designers to meet low standby power requirements. The "LP" version provides a reduction in both CMOS standby current (ISB2) and TTL standby current (ISB1) over the standard part. This is achieved through the use of gated inputs on the WE and address lines, which also facilitates the design of battery-backed systems. That is, the gated inputs simplify the design effort and circuitry required to protect against inadvertent battery current drain during power-down, when inputs may be at undefined levels. All devices operate from a single +3.3V power supply and all inputs and outputs are fully TTL-compatible and 5V tolerant. These low-voltage parts are ideal for mixed 3.3V and 5V systems. 3.3 VOLT SRAM # **FUNCTIONAL BLOCK DIAGRAM** # **TRUTH TABLE** | MODE | CE | WE | INPUT | OUTPUT | POWER | |---------|----|----|------------|--------|---------| | STANDBY | Н | Х | DON'T CARE | HIGH-Z | STANDBY | | READ | L | Н | DON'T CARE | Q | ACTIVE | | WRITE | L | L | DATA-IN | HIGH-Z | ACTIVE | MT5LC1001 REV. 12/93 **ADVANCE** MT5LC1001 1 MEG x 1 SRAM ### ABSOLUTE MAXIMUM RATINGS* Voltage on Vcc Supply Relative to Vss-0.5V to +4.6V VIN-0.5V to +6.0V Storage Temperature (plastic)-55°C to +150°C Power Dissipation1W Short Circuit Output Current50mA *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. # ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $(0^{\circ}C \le T_{\Delta} \le 70^{\circ}C; Vcc = 3.3V \pm 0.3V)$ | DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES | |------------------------------|---------------------------------------|--------|------|-----|-------|-------| | Input High (Logic 1) Voltage | | ViH | 2.0 | 5.5 | V | 1, 2 | | Input Low (Logic 0) Voltage | - | ViL | -0.3 | 0.8 | V | 1, 2 | | Input Leakage Current | 0V ≤ VIN ≤ Vcc | ILı | -1 | 1 | μА | | | Output Leakage Current | Output(s) disabled
0V ≤ Vouτ ≤ Vcc | ILo | -1 | 1 | μА | | | Output High Voltage | loн = -4.0mA | Vон | 2.4 | | V | 1 | | Output Low Voltage | loL = 8.0mA | Vol | | 0.4 | V | 1 | | Supply Voltage | | Vcc | 3.0 | 3.6 | V | 1 | | | | | | | | M | AX | | | | | |------------------------------------|--|-----------------|--------|---------|-----|-----|-----|-----|-----|-------|-------| | DESCRIPTION | CONDITIONS | SYMBOL | VER | VER -15 | -17 | -20 | -25 | -35 | -45 | UNITS | NOTES | | Power Supply
Current: Operating | CE ≤ ViL; Vcc = MAX
outputs open
f = MAX = 1/tRC | Icc | ALL | 85 | 75 | 65 | 55 | 45 | 40 | mA | 3, 15 | | Power Supply
Current: Standby | CE ≥ ViH; Vcc = MAX
outputs open | tputs open IsB1 | STD, L | 20 | 18 | 14 | 12 | 8 | 6 | mA | | | | f = MAX = 1/tRC | | LP | 500 | 500 | 500 | 500 | 500 | 500 | μΑ | | | | CE ≥ Vcc - 0.2V;
Vcc = MAX | ISB2 | STD, L | 300 | 300 | 300 | 300 | 300 | 300 | μΑ | | | | $Vin \ge Vcc - 0.2V \text{ or}$ $Vin \le Vss + 0.2V$ | 1582 | LP | 100 | 100 | 100 | 100 | 100 | 100 | μА | | ### **CAPACITANCE** | DESCRIPTION | CONDITIONS | SYMBOL | MAX | UNITS | NOTES | |--------------------|----------------------------------|--------|-----|-------|-------| | Input Capacitance | T _A = 25°C; f = 1 MHz | Cı | 8 | pF | 4 | | Output Capacitance | Vcc = 3.3V | Co | 8 | pF | 4 | **ADVANCE** MT5LC1001 1 MEG x 1 SRAM # **ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS** (Note 5, 13) (0°C \leq T_A \leq 70°C; Vcc = 3.3V \pm 0.3V) | | | | 15 | -17 -20 | | -25 | | -35 | | -45 | | | | | | |----------------------------------|-----------------|-----|-----|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|----------| | DESCRIPTION | SYM | MIN | MAX | UNITS | NOTES | | READ Cycle | | | | | | | | | | | | | | | , | | READ cycle time | ^t RC | 15 | | 17 | | 20 | | 25 | | 35 | | 45 | | ns | | | Address access time | tAA* | | 15 | | 17 | | 20 | | 25 | | 35 | | 45 | ns | | | Chip Enable access time | tACE | | 15 | | 17 | | 20 | | 25 | L | 35 | | 45 | ns | | | Output hold from address change | tOH | 3 | | 3 | | 3 | | 5 | | 5 | | 5 | L | ns | | | Chip Enable to output in Low-Z | †LZCE | 5 | | 5 | | 3 | | 5 | | 5 | | 5 | | ns | 7 | | Chip disable to output in High-Z | THZCE | | 6 | | 7 | | 8 | | 10 | | 15 | | 18 | ns | 6, 7 | | Chip Enable to power-up time | ^t PU | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | ns | | | Chip disable to power-down time | tPD | | 15 | | 17 | | 20 | | 25 | | 35 | | 45 | ns | <u> </u> | | WRITE Cycle | | - | | | | | | | | | | | | | | | WRITE cycle time | tWC | 15 | | 17 | | 20 | | 25 | | 35 | | 45 | | ns | | | Chip Enable to end of write | tcw | 10 | | 12 | | 12 | | 15 | | 20 | | 25 | | ns | | | Address valid to end of write | 1AW | 10 | | 12 | | 12 | | 15 | | 20 | | 25 | | ns | <u></u> | | Address setup time | tAS | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | ns | | | Address hold from end of write | †AH | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | ns | | | WRITE pulse width | ^t WP | 9 | | 12 | | 12 | | 15 | | 20 | | 25 | İ | ns | | | Data setup time | †DS | 7 | | 8 | | 8 | | 10 | | 15 | | 20 | | ns | | | Data hold time | †DH | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | ns | | | Write disable to output in Low-Z | tLZWE | 3 | | 3 | | 3 | | 5 | | 5 | | 5 | | ns | 7 | | Write Enable to output in High-Z | †HZWE | | 6 | | 7 | | 8 | | 10 | | 15 | | 18 | ns | 6, 7 | ADVANCE # IRON # MT5LC1001 1 MEG x 1 SRAM ### **AC TEST CONDITIONS** | Input pulse levels | Vss to 3.0V | |-------------------------------|---------------------| | Input rise and fall times | 3ns | | Input timing reference levels | 1.5V | | Output reference levels | 1.5V | | Output load | See Figures 1 and 2 | Fig. 1 OUTPUT LOAD **EQUIVALENT** Fig. 2 OUTPUT LOAD **EQUIVALENT** ### **NOTES** - 1. All voltages referenced to Vss (GND). - 2. Overshoot: ViH \leq +6.0V for t \leq ^tRC/2 Undershoot: $Vil \ge -2.0V$ for $t \le {}^{t}RC/2$ Power-up: ViH \leq +6.0V and Vcc \leq 3.1V for $t \le 200$ msec. - 3. Icc is dependent on output loading and cycle rates. - 4. This parameter is sampled. - 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted. - 6. tHZCE and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ±200mV from steady state voltage. - 7. At any given temperature and voltage condition, tHZCE is less than tLZCE, and tHZWE is less than LZWE. - 8. WE is HIGH for READ cycle. - 9. Device is continuously selected. All chip enables and output enables are held in their active state. - 10. Address valid prior to, or coincident with, latest occurring chip enable. - 11. tRC = Read Cycle Time. - 12. Chip enable and write enable can initiate and terminate a WRITE cycle. - 13. Contact Micron for IT/AT/XT timing and current specifications; they may differ from the commercial temperature range specifications shown in this data sheet. - 14. Typical values are measured at 3.3V, 25°C and 25ns cycle time. - 15. Typical currents are measured at 25°C. # DATA RETENTION ELECTRICAL CHARACTERISTICS (L and LP versions only) | DESCRIPTION | CONDITIONS | SYMBOL | MIN | TYP | MAX | UNITS | NOTES | |---|---|------------------|-----------------|-----|-----|-------|-------| | Vcc for Retention Data | | VDR | 2 | | | ٧ | | | Data Retention Current
L version | CE ≥ Vcc -0.2V Other inputs: Vin ≥ Vcc -0.2V or Vin ≤ Vss+0.2V Vcc = 2V | | ICCDR | TBD | 50 | μА | 15 | | Data Retention Current LP version | CE ≥ Vcc -0.2V
Vcc = 2V | | ICCDR | TBD | 50 | μА | 15 | | Chip Deselect to Data
Retention Time | | ^t CDR | 0 | | | ns | 4 | | Operation Recovery Time | | ^t R | ^t RC | | - | ns | 4, 11 | 3.3 VOLT SRAM # LOW Vcc DATA RETENTION WAVEFORM ### READ CYCLE NO. 18,9 ^tRC ADDR VALID ^tAA ^tOH DATA VALID PREVIOUS DATA VALID Q # READ CYCLE NO. 2 7, 8, 10 ^tRC CE ^tACE ^tHZCE [†]LZCE DATA VALID - HIGH-Z t_{PD} t_{PU} Icc DON'T CARE UNDEFINED ### WRITE CYCLE NO. 1 12 (Chip Enable Controlled) ### WRITE CYCLE NO. 27, 12 (Write Enable Controlled) W UNDEFINED 3.3 VOLT SRAM