
idea-L
Screen Editor

Introduction

User’s Manual

MS-Windows Based
Ver. V3.30

Printed in Japan

Document No. U10094EJ2V0UMJ1 (2nd edition)
Date Published January 2001 N CP(K)

© 1997

[MEMO]

* IBM-PC is a trademark of International Business Machines Corporation.

* MS-DOS and MS-Windows are either registered trademarks or trademarks of Microsoft Corporation in the

United States and / or other countries.

* i386SX and i486SX are trademarks of Intel Corporation. in the USA.

M8E 00. 4

The information in this document is current as of April, 1997. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).

•

•

•

•

•

•

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Madrid Office
Madrid, Spain
Tel: 91-504-2787
Fax: 91-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore
Tel: 65-253-8311
Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP Brasil
Tel: 55-11-6462-6810
Fax: 55-11-6462-6829

J00.7

- i -

CONTENTS

1. INTRODUCTION... 1
1.1 What is idea-L ?... 1
1.2 Operation Overview of idea-L ... 2
1.3 Before Setting Up idea-L ... 3
1.4 Setting Up idea-L .. 4

1.4.1 Backing up the setup disks..4

1.4.2 Installation..5

1.5 A Look at idea-L Operation ... 12

2. TUTORIAL 15
2.1 Idea Processor Functions ... 15

2.1.1 Now, let's try it!...15

2.1.2 An idea processor?!...17

2.1.3 Grouping ..18

2.1.4 Forming a hierarchy...23

2.1.5 Forming another group and hierarchy ...27

2.1.6 Abstracting...30

2.1.7 Editing practice ..32

2.1.8 Saving to a file ...33

2.2 Library Functions 35
2.2.1 Creating a function...36

2.2.2 Registering functions ...46

2.2.3 Using functions ..49

2.3 Creating a Source File... 68
2.4 Using Old Programs... 73

3. RESTRICTIONS.. 77

- ii -

[MEMO]

1

1. INTRODUCTION

1.1 What is idea-L?

A major problem in program development for single-chip microcontrollers is the increase in the number of software

development steps as the program size increases. One solution is to develop software assets (software libraries).

However, developing software assets takes time and effort. In addition, enabling their reuse by other programmers

demands more time and effort.

Thus, a library support tool loaded in the idea processor was developed. It is called idea-L (idea el). idea-L is

equipped with functions capable of producing software assets without undue strain on everyday software

development and easily applying these assets.

idea-L is an editor that runs on MS-Windows and requires the operating environment to be described later.

idea-L is an ordinary editor with an added idea processor and a library tool function. The name idea-L is the

combination of idea in idea processor and L for library tool, and embodies the expectation of "ideal software asset

management."

2

1.2 Operation Overview of idea-L

Figure 1-2-1 is a block diagram of the overall idea-L system.

.ASM

Idea Processor Section

Detailed Design

Function Files

File containing each

function to be registered

.FNC

Paste

.ILB

Library Files
File arranging and storing each

function

Library Control Section

Listing

Grouping

Forming a
Hierarchy

Abstracting

Register

Browse

Search

idea-L

.C

.PLB

.ASM

.PLB

.ASM

Source Files

Compiler and Assembler

Previously
written source
files

.IDM

.IDL The data file (.IDL) and source
files (.IDM) in the idea-L format
have hierarchical structures.

Personal Library File
Files collecting only the functions from the
library files which are used by source files

Figure 1-2-1. Block Diagram of the Overall idea-L System

idea-L is a software development tool for NEC single-chip microcontrollers. It is broadly divided into an idea

processor section that has the functions from job management to program editing and the library control section that

has the functions from function registration to application.

3

1.3 Before Setting Up idea-L

The following environment is required to set up idea-L .

• Required environment

Hardware

Recommended Environment

NEC personal computer with an i486SX or newer CPU, IBM PC Series, or compatible machine

Minimum 5.6 Mbytes of memory

(At least 6.5 Mbytes for the high resolution mode)

Minimum 10-Mbyte hard disk capacity

Display with a minimum resolution of 1,024 × 768 dots

Mouse

Minimum Execution Environment

NEC personal computer with an i386SX or newer CPU, IBM PC Series, or compatible machine

(Function extension processor required in PC-98XL)

Minimum 3.6 Mbytes of memory

(At least 4.5 Mbytes for the high resolution mode)

Minimum 5-Mbyte hard disk capacity

Display with a minimum resolution of 640 × 480 dots

Mouse

Software

Japanese MS-DOS Ver. 3.3D or later

MS-Windows Ver. 3.1 or later

4

1.4 Setting Up idea-L

Before beginning the setup, check the hardware, software, and idea-L specified in section 1.3, "Before Setting Up

idea-L ."

1.4.1 Backing up the setup disks

Before starting the installation, to prepare for unlikely but possible problems, make backup disks of the original

floppy disks in the package. After creating the backup disks, use these backup disks in the installation that follows.

Store the original disks in a safe place.

1. Use three floppy disks for backup.

2. Start Windows 3.1 and start File Manager.

3. Run the "Copy Disk (C)..." command in the "Disk (D)" menu.

4. When the command is executed, the dialog box for copying floppy disks appears. It displays the "Copy Source

Drive (S):" and "Copy Destination Drive (D):" items.

5. Specify the copy source and copy destination drives.

If the drive differs from the displayed drive name, click the arrow (↓) displayed to the right of the drive name and

change the drive name.

6. Set system disk 1 of idea-L in the drive specified by "Copy Source Drive (S):". Click the “OK” button.

7. Similarly, back up system disks 2 and 3 of idea-L .

8. After making each copy, affix a label to the backup disk to prevent mix-ups.

5

1.4.2 Installation

The execution example reads idea-L from drive C: and installs the executable files in A:\nectools\bin, the help files

in A:\nectools\hlp, the sample programs in A:\nectools\smp, and auxiliary data in A:\nectools\doc. Windows is

immediately started.

1. Start the installation.

(1) Insert backup disk 1 in the floppy disk drive.

(2) Select "Run" in the "File" menu after selecting the Program Manager icon.

(3) Enter the following in the command line input.

Figure 1-4-1. Specifying and Running a File Name

(4) Click the OK button.

After initializing the setup, the installer starts.

Figure 1-4-2. Initializing the Setup

6

Figure 1-4-3. Welcome to NEC Setup

(5) To continue the installation, select "Continue."

To exit the installation, select "Exit."

2. Verify the installation.

(1) If the "Continue" button was selected, the following message appears.

Figure 1-4-4. Verifying the Installation

(2) After checking the installation, select "Continue."

(3) To exit the installation, select "Exit."

7

3. Specify the install directories.

(1) The dialog box for specifying the installation destinations appears.

Figure 1-4-5. Specifying Installation Destinations

(2) After entering the install directories in the text boxes, select "Continue."

(3) If "Back" is selected, the selection dialog for the installation item returns.

(4) If "Original" is selected, the specified directories indicate the default directories. The root default for the

installation destination becomes \nectools of the drive on which Windows is installed. If the tools are

installed after they have already been installed, that root is used. If the root is edited, the directories below it

are linked and changed.

(5) If "Exit" is selected, the installation exits.

(6) Read the supplemental explanation since it is registered to an icon after the installation ends.

(7) If a specified directory is not valid, the following message appears.

Figure 1-4-6. Message for an Invalid Path

8

If there is insufficient disk space, an error occurs, and the following message appears.

Figure 1-4-7. Message for Insufficient Disk Space

4. Specify the group registered in the Program Manager.

(1) The dialog for specifying the registered group name appears.

Figure 1-4-8. Specifying the Registered Group Name

(2) After entering the group name to be registered in the text box, select "Continue." If the specified group does

not exist, that group is created. If the specified group is already used and registered by the installer, that

group is used.

(3) If "Back" is selected, the dialog for specifying the installation destination returns.

(4) If "Exit" is selected, the installation exits.

9

5. Start to copy the files.

(1) If a registered group is specified, the dialog to start copying the files appears.

(2) If "Continue" is selected, copying the files starts.

Figure 1-4-9. File Copy Start

If "Back" is selected, the dialog for specifying the registered group name returns.

If "Exit" is selected, the installation exits.

6. Copying the files starts.

Figure 1-4-10. Dialog During File Copy

10

(1) If "Cancel" is selected during a file copy, the following message appears.

Figure 1-4-11. Setup Cancel Message

If "Yes" is selected, the installation exits.

If "No" is selected, the file copy restarts.

7. Exchange the media.

(1) When the following message appears, insert backup disk 2 in the floppy disk drive.

Figure 1-4-12. Exchange Disk Message

Similarly, when this message appears, insert backup disk 3 in the floppy disk drive.

8. The registered group and icon are created.

Figure 1-4-13. Creating the Registered Group

11

9. The installation ends.

(1) The following message appears.

Figure 1-4-14. Setup Completed Message

(2) If "OK" is selected, the installation ends.

10. When the installer exits

(1) The following message is output.

Figure 1-4-15. Setup Stopped Message

(2) If "Continue is selected, the dialog where exit was selected returns.

(3) If "Exit" is selected, the following message appears.

Figure 1-4-16. Setup Error Termination Message

(4) If "OK" is selected, the installer exits.

12

1.5 A Look at idea-L Operation

First, let's start idea-L . Double click the "idea-L V3.1" icon in the Program Manager.

Double click

Figure 1-5-1. Start idea-L

As shown in Figure 1-5-2, the idea-L startup screen appears after the initialization screen.

Initialization screen

Startup screen

Figure 1-5-2. The idea-L Initialization Screen and the idea-L Startup Screen

13

The editing window for editing the source program opens.

Next, we will end idea-L . Click the File menu.

Click

Figure 1-5-3. Click the File Menu

Since the pull-down menu for file appears, click the "Exit idea-L" command.

Click

Figure 1-5-4. Exit idea-L

idea-L exits.

14

[MEMO]

15

2. TUTORIAL

This chapter describes the application of idea-L by using a sample program as an example.

Times font text in the balloons used in the figures in this chapter indicates a user action. Helvetica indicates an

explanation.

User action Explanation

Press the key. This is displayed.

Figure 2-1. Text Characters in the Balloons

2.1 Idea Processor Functions

2.1.1 Now, let's try it!

Open the sample program. The sample program is nectools\smp\ideal\example on the drive where idea-L was

installed.

To open the sample program, click on the "Open..." command in the "File" menu. The "Open" dialog box appears,

so double click "example1.id1."

Click.

Double click.

Figure 2-1-1. Open the File Menu

16

Open Example1. Example1 specifies the mechanism control section for a CD changer. Figure 2-1-2 shows the

specification of the mechanism control section. Figure 2-1-3 shows the name of each part of the CD changer.

Pickup

Magazine

Disk

Figure 2-1-3. Internal View of the CD Changer

Normally, when writing the specification, the specification for each operating condition is assembled. However,

when writing the program, each action is organized and programmed. The reason is the viewpoints of the

specification writer and the programmer differ.

Figure 2-1-2. Specification of the Mechanism Control Section of a CD Changer

17

2.1.2 An idea processor?!

 The idea processor is a tool for organizing and abstracting the ideas in a list. The cycle of the thought process

apparent to people, such as listing, grouping, forming hierarchies, and abstracting ideas, is supported. Program

development closely resembles the thought cycle of people in terms of organizing the specifications (idea), grouping,

forming hierarchies, and abstracting.

Abstraction becomes one idea and derives broader abstractions. The contents of an abstracted program become

a hierarchical (structured) module that is easy to reuse. If the interface of this module is standardized by the real-

time operating system, it can be registered and managed as one independent function or task.

Based on this idea processor function, idea-L is not simply an editor used in the program creation process in

software development, but becomes a tool that can be integrated and used from the upstream specification testing

process to the program creation process.

In addition, there is a function in this idea processor to make large programs easy to read. idea-L omits the

display of the lowest level (program) on the editing screen and displays the comments expressing the algorithm in a

hierarchy. Furthermore, only the topmost level (abstracted module) can be displayed.

Generally, it is difficult to grasp the entire process flow on one screen for a long assembler program. However,

idea-L can display only the topmost level in order to understand the process flow on one screen, and can display

only the required portions in detail for editing. These functions indirectly contribute to better production efficiency in

software development.

Listing

Grouping

Forming a
Hierarchy

Abstracting

Detailed design

Figure 2-1-4. Idea Processor Functions

18

2.1.3 Grouping

Now, we will return to the explanation of example1.

Although there are various viewpoints about how to organize example1, we will first divide the actions of example1

into the pickup and the magazine.

Therefore, the lines related to the action of the pickup are collected at one location.

Line 1 is a line related to the pickup. The next line related to the pickup is line 3. Therefore, we will move line 3

between lines 1 and 2.

If the mouse cursor is moved to the first character "*" in line 3, the shape of the mouse cursor becomes . Press

the mouse (hold down the button) at the position where the mouse cursor became . The mouse cursor changes to

 to point to the line. In this state, drag the mouse between line 1 and line 2 (move the mouse while pressing the

button) and drop the mouse at that position (release the button). Line 3 is moved between lines 1 and 2.

Drag to this position.

Press at this position.

The line is moved.

Figure 2-1-5. Moving a Line

Similarly, we will move the lines related to the pickup to one location. There is also a method to visually check

and move the contents of each line. However, the method to be used here uses the string search of idea-L to move

the lines.

19

First, as shown in Figure 2-1-6, use the mouse to specify the character range of "pickup" in line 2. Next, click the

"Find String..." command in the "Edit" menu. This will display the "Find String" dialog box. Insert "pickup" which is

the string in the specified range in the "Find What" text box. Click the "Find Next" button. The string of "pickup" is

searched for in line 3 and later lines.

An insertion point appears.

Click on the left side of the string.

The string is highlighted.

Drag the mouse to the right.

Click.

Enter the string in the
specified ran ge.

Click.

Figure 2-1-6. Searching for a String Based on a Range Specification

20

Since "pickup" is searched for and is highlighted, move to that line.

Found the string in the
search.

Move to the line
containing pickup.

Figure 2-1-7. Successful String Search

21

A search string that was specified once is remembered until the range is specified again.

Click the mouse at the beginning of the line at the beginning of the search. The insertion point (cursor displayed

at the position displaying the character being input) is moved to the beginning of the line.

Next, click the "Find Next" button in the "Find String [Editing]" dialog box.

This will search for the string "pickup" after the insertion point. If the string exists, that line is moved to.

Click.

The insertion point
appears.

The search string is
remembered.

Click.

Successful search.

Figure 2-1-8. Repeat Search for the String

If the search is successful, that line is moved to. Similarly, move all of the lines related to the remaining pickups.

If all of the lines have been moved to, click the "Cancel" button in the "Find String" dialog box. The "Find String"

dialog box exits and disappears from the screen.

22

The lines related to the
pickup were collected.

Click.

Move the pickup
line.

Figure 2-1-9. Moving All of the Lines Containing Pickup

23

2.1.4 Forming a hierarchy

When grouping is completed, next the hierarchy is formed. Forming a hierarchy adds a line for naming each

group and indents the entire group contents.

First, click the mouse at the end of the first line in the group. The insertion point appears at the end of the first

line. After pressing the "HOME CLR" key to move the insertion point to the beginning of the line, press the return

key. A blank line is inserted before this line. The comment statement naming the group is entered in this blank line.

Enter "; pickup" and "; magazine" at this position.

Type in the comment
from the keyboard.

The insertion point appears.

Click.

The insertion point moves to
the beginning of the line.

Press the "HOME CLR" key.

Insert a ablank line.

Press the return key.

Figure 2-1-10. Adding Comment Lines

24

After adding the line naming the group, all of the grouped contents are indented.

First, specify the range of lines related to pickup. Press the mouse at the end of the first line and drag it down to

the last line in the pickup, and then release the button. After the range is specified, move the mouse cursor to the

beginning of the line of the lines specified in the range (any line will do) and press it. Since the mouse cursor

changes to , drag to the right and drop.

25

Drag.

Press.

Drag to the right.

The beginning of the line
changes from "*" to ">."

Drop.

Figure 2-1-11. Selecting Multiple Lines and Moving One Level Down

26

The lines in the specified range are indented to the right. The character at the beginning of the line "; pickup"

changed from "*" to ">." This symbol means that the contents indented in the lines of "; pickup" are one level down.

Therefore, the line having a lower level is called the header. The line "; pickup" is the header for all 12 lines

(including the blank lines) related to the pickup.

Similarly, the parts related to the magazine are entered in the level below "; magazine."

We will form the magazine hierarchy by only operating the keyboard without using the mouse.

Press the [SHIFT]+ [↓] keys to position the insertion point at the position shown in Figure 2-1-12 and specify the

entire range of the magazine. Next, press the [SHIFT]+[CTRL]+ [→] keys. The specified range moves to the lower

level.

The insertion point appears.

Press the [SHIFT]+ [↓] keys
to specify the range.

Press the [SHIFT]+[CTRL]+
[→]keys.

Figure 2-1-12. Completing the Hierarchy

27

2.1.5 Forming another group and hierarchy

Forming the groups and hierarchies is usually not finished in one try. Even in example1, if the lines for pickup are

examined, detailed classifications are still possible. For example, subdivisions can be made into the following four

actions.

• Move the pickup to the disk position.

• Set the pickup on the disk.

• Take the pickup off the disk.

• Return the pickup to the home position.

Therefore, the lines related to the pickup can be divided into four types. Let's regroup the lines related to the

same action.

Order with the lines for moving the pickup to the disk position in one group followed by the group for setting the

pickup on the disk.

• ª

Collect the lines for
moving the pickup
into one group.

Move the lines and
collect into one group.

Collect the lines for
moving the pickup
into one group.

Collect the lines for setting
the pickup into one group.

Figure 2-1-13. Collect the Lines Related to Moving and Setting into One Group

28

The problem of whether multiple lines can be moved may be encountered during grouping. In idea-L , multiple,

consecutive lines can be moved.

Figure 2-1-14 is an example of moving multiple lines.

First, press the mouse at the beginning of a line in the specification range of multiple, consecutive lines to change

the mouse cursor to . Drag and drop this at the top. This moves multiple lines.

Multiple lines are
moved.

Finished

Drag and drop at this
position.

Figure 2-1-14. Moving Multiple Lines and Completing the Grouping

29

If the internal grouping for the pickup is finished, the following hierarchy is made in the same way.

The headers become ";move," ";set," ";take off," and ";return." Form the hierarchy shown in Figure 2-1-15.

Insert ";move".

Drag to the right
and drop.

Finished Detailed
Grouping and Forming
the Hierarchy

Figure 2-1-15. Completing the Hierarchy for the Pickup

30

2.1.6 Abstracting

The headers were formed in the hierarchy. By double clicking the mouse on a header, the lower level is closed

(hidden).

By double clicking the mouse on the header with a hidden lower level, the hidden lower level opens (appears).

This closed state is called an abstraction in the idea processor.

Double click...

The lower level related
to moving the pickup is
hidden.

Figure 2-1-16. Closing the Lower Level

31

Let's only operate the keyboard and not use the mouse. Move the insertion point to the header and press the

[CTRL]+[-] keys. The lower level of this header is hidden. Press the [CTRL]+[*] keys when the insertion point is

placed at a header with a hidden lower level to open the hidden lower level.

Similarly, hide the lower level for the other headers.

Move the insertion point.

The lower level is hidden.

Press the [CTRL]+[-] keys.

All of the lower levels
are hidden.

Figure 2-1-17. Completing the Abstraction

By displaying only four lines for the pickup as shown in Figure 2-1-17, the contents are organized and abstracted.

32

2.1.7 Editing practice

Finally, grouping, forming a hierarchy, and abstracting for the magazine are performed in essentially the same way

as for the pickup. Try to abstract the entire mechanism control section.

Storing

Ejecting the
magazine

Drawer action

Figure 2-1-18. Grouping the Magazine

Figure 2-1-19. Forming the Magazine Hierarchy

Abstraction
Completed

More Abstraction

Figure 2-1-20. Completing the Abstraction

33

2.1.8 Saving to a file

This step saves a file that was abstracted by the idea processor.

First, click the "File" menu. When the pull-down menu appears, click the "Save" command.

Click.

Click.

Figure 2-1-21. Click the File Menu

34

If you want to save under another file name, click the "Save As..." command in the pull-down menu. When the

"Save As" dialog box appears, enter the file name in the text box and click the "OK" button. In this case, this

example saves "example1" with the file name "ex11". Try this and see.

Click.

Enter the file name for
saving.

Click.

Figure 2-1-22. Saving With Another Name

This ends section 2.1, "Idea Processor Functions."

Before starting section 2.2, "Library Functions," click the "Close" command in the "File" menu to exit the window

used in section 2.1, "Idea Processor Functions."

35

2.2 Library Functions

Typically, when a programmer uses libraries, he begins by reading a thick manual. However, this task does not

demand completely remembering the library functions. Usually, the programmer only remembers the keywords

(sometimes, the entry location).

If this task is performed efficiently, the programmer looks up the keyword when needed and can check unclear (or

unknown) function data.

However in this task, if the programmer uses this function any number of times in software development, he

becomes able to use this type of operation without referring to the manual.

Therefore, the library functions are not necessarily required tools when the functions are included. There are no

problems even if functions are directly included in the source file. The library function is a tool that supports the

programmer's knowledge.

Section 2.2, "Library Functions," describes the creation, registration, and use of functions by using an example

(CD changer program using the 78K/0 assembler language).

36

2.2.1 Creating a function

A function will be created. Since functions are being written, a function will be completed as the sample program.

The sample program is nectools\smp\ideal\example.

Click the "Open" command in the "File" menu. Since the "Open" dialog box appears, click the function file (*.fnc)

in the "List of Files of Type" drop-down list. The list of functions in the list box appears, so double click "pick_up.fnc."

Click.

Double click.

Figure 2-2-1. Open a Function File

37

pick_up.fnc is read. Its contents are divided into three windows and opened.

Argument Editing Window

Function Editing Window

Description Editing Window

Figure 2-2-2. Open State of a Function File

The function is described before writing the function.

A library file function is described in an assembler language macro.

When the user describes the function (macro) in a program and executes the "Save Source File..." command, the

source file and the personal library file are created. The personal library file is an abstraction of the function body

used by the program from the library file. When writing a function, the macro body, arguments, and function

description are written.

Personal library file (.PLB)

Assembler file (.ASM)

idea-L Screen

Execute the "Save Source File..." command.

Figure 2-2-3. Function Structure

38

The "pick_up" function is a macro that calls the pickup subroutine of some CD changer. The descriptions related

to the arguments are still not in this macro. The argument relationships are described to complete the function.

The input conditions of the pickup subroutine, "_pick_up," are:

Input conditions of the "_pick_up" subroutine

Dummy Argument Contents

action ax ← 1, Move the pickup.

2, Set the pickup.

3, Release the pickup.

4, Return the pickup to the home position.

CD_number de ← CD number

First, as shown in Figure 2-2-4, describe "action" in the first dummy argument and "CD_number" in the second

dummy argument.

Input

Figure 2-2-4. Setting the Dummy Arguments

39

Next, the side that accepts the arguments in the macro body is described. Describe as shown in Figure 2-2-5.

Input

Figure 2-2-5. Argument Description

This completes the descriptions of the argument portion in the function editing window.

Next, the argument editing window is set.

While returning again to the description of the function contents, there are four types of actions in this pickup.

These actions are passed as action numbers via the ax register. However, when a function is called in a program, in

order to make the meaning of the number indicating the action easy to understand when viewed later and due to the

increasing possibility of input errors, the action itself is described by a string constant that exactly represents it and

not by directly describing a numerical value. Although this will be described in detail in section 2.2.3, "Using

functions," there are menu functions to select the argument candidates of the function in the browser editing window

of the library. The argument candidates are set in the argument editing window.

40

An argument is
displayed in magenta.

Figure 2-2-6. Click the Argument Editing Window

As shown in Figure 2-2-7, four types of actions are described in the first argument, action. Nothing is described in

the second argument, CD_number.

Input

Figure 2-2-7. Description of the Argument Candidates

When the arguments of the function are set in the browser editing window, they can be selected from these four

types. The next section converts a string into a numerical value. The SET pseudo-instruction converts a string into a

numerical value in the assembler. Now we will use this.

41

Specify the range of the four lines input in the argument editing window by selecting multiple lines as in section

2.1.4, "Forming a hierarchy." After specifying, press the [CTRL]+[c] keys to copy to the clipboard. Next, click the

function editing window, press the [CTRL]+[v] keys at the position in Figure 2-2-8, and paste the contents of the

clipboard.

After specifying the range,
press [CTRL]+[c].

Press [CTRL]+[v].

Figure 2-2-8. Copy the Argument Candidates and Paste (1)

Paste the copied
string.

Figure 2-2-9. Copy the Argument Candidates and Paste (2)

42

As shown in Figure 2-2-10, pasting lines by using the SET pseudo-instruction is completed.

Input

Figure 2-2-10. Assigning Numerical Values to the Strings of the Argument Candidates

The function that sets the numerical value by selecting a string was finished. (For example, when "_move" is

selected in the first argument, the numerical value of 1 is set to the first dummy argument, "action.")

43

Next, the description of this function is written. Click in the description editing window. Double click the title line to

open the lower level. Enter "call the pickup action" from the keyboard.

Double click.

The lower level appears.

Input.

Figure 2-2-11. Enter a Comment Line in the Description Editing Window of the Function File

44

If necessary, the lower level can be opened in other parts and explanations can be written. The entries provided

in the example are the standards (defaults) of the description editing window.

Explanations can be written
in other parts.

Figure 2-2-12. Hierarchical Structure of the Description Editing Window

After writing and editing are finished in the three editing windows (function, argument, description), save by

clicking the "Save" command in the "File" menu.

Click

Figure 2-2-13. Saving a Function File

After saving, click the "Close" command in the "File" menu to exit this file.

This completes pick_up.fnc.

45

Figure 2-2-14 shows the contents of sub_pu.fnc.

pick_up.fnc is the macro that sets the arguments and calls the _pick_up subroutine. The macro of the actual

subroutine body is described in the sub_pu function file.

Figure 2-2-14. Contents of the sub_pu Function File

46

2.2.2 Registering functions

After a function is created, we will register it in the library.

Click the "Open" command in the "File" menu. Click "Library File (*.ilb)" in the "List Files of Type" drop-down list in

the "Open" dialog box. When the list of the libraries in a list box is displayed, double click the "cd_chg.ilb" library file.

Click.

Double click.

Figure 2-2-15. Open a Library File

Open the cd_chg library file. The library editing window appears. As in the idea processor, this window has the

functions from grouping to abstracting.

Double click the pickup part to display the lower level. Click at the end of the line "Call the function for pickup,"

then the insertion point appears at the end of the line. Click the "Function Registration..." command in the "Library"

menu. Since the dialog box for function registration appears, click "pick_up.fnc" in the "Function File" list box and

then click the "OK" button.

47

Click the function
to be registered...

Click.

Double click.

Click.

The lower level appears.

Figure 2-2-16. Registering a Function to a Library File

48

The specified function is registered. The level opens and the function name is displayed in magenta.

The function was registered.

Figure 2-2-17. Completing the Function Registration

Similarly, we will register the function of the subroutine for the pickup actions.

Move the insertion point to the end of the line of the pickup function and register the sub_pu function. After the

function is registered in two libraries, click the "Save" command in the "File" menu to save.

Click.

Register the sub_pu
function at this position.

Figure 2-2-18. Finish and Save All Function Registrations

After saving the file, click the "Close" command in the "File" menu to exit this file.

49

2.2.3 Using functions

The registration of the function to a library file ended, and the level for using functions was entered. Before doing

this, however, the library directory must be set.

In idea-L , the library directory can be set in two places. Each directory has its priority set to the first candidate or

the second candidate to be able to use it. For example, when a personal library has priority, the personal library is

set to the first candidate. A shared library is set to the second candidate.

Now, we will set library directories.

Click the "Change Library Directory..." command in the "Library" menu. Since the "Change Library Directory"

dialog box appears, set a directory of "ch_chg.ilb" as the library directory.

Click.

After selecting the directory
of the example....

Click.

Figure 2-2-19. Setting the Library Directory

This completes the preparation.

50

Open "example2.idl" as a sample program that uses functions.

Click the "Open" command in the "File" menu. Double click "example2.idl" in the "Open" dialog box.

Click.

Double click.

Figure 2-2-20. Open example2

51

Figure 2-2-21. Contents of example2

The four ways to use a function are

(a) Use a known function

(b) Use while examining the arguments

(c) Search for the target function from the library

(d) Examine the function data

52

(a) Use a known function

If the name, contents, and arguments of the function to be used are known, the function is directly described

without using a library function. Since this is clearly a function, append ";~#" to the end of the function.

Always describe ";~#" in a
function.

Figure 2-2-22. Using a Known Function

53

(b) Use while examining the arguments

Sometimes the function name is recalled, but the order and contents of the functions are unclear. In this

example, the target function is searched for by function name, detailed information about its arguments is

verified, and the arguments are completed.

In the next example, it is assumed that the function name of "pick_up" is recalled, but its arguments are not

known. We will use the function while investigating its arguments. First, enter the function name as shown in

Figure 2-2-23. Next, use the mouse to click the first input character "*" in the input lines to specify the range of

lines.

Input.

Click.

Figure 2-2-23. Range Specification of a Function with Unclear Arguments

54

Click the "Find Function..." command in the "Library" menu to display the "Find Function" dialog box. The

function name in the range specified in Figure 2-2-23 is entered in the "Find What" text box. If you do not know

which directory the library file is in, select the "All Files" check box as in Figure 2-2-24 and search.

Click.

Click.

Enter the function name. Click.

Figure 2-2-24. Function Search

55

If the function is found, the library browsing window appears and the information related to the target function is

displayed.

The contents showing the functions registered in the library and the arguments of each function are displayed in

the library browsing window. If the displayed contents are insufficient, select the "Description..." button shown

in Figure 2-2-25 to display the Description window.

Click.

Figure 2-2-25 Checking the Function Contents

56

When setting this example, the contents of the arguments are not known. Therefore, we will check the contents

of the arguments. Double click "Argument Description" in the Description window to display the list of dummy

arguments. There is a lower level at the "action" dummy argument in the list. Double click and see what

happens. In the lower level, there is a list of candidate arguments for the "action" dummy argument.

Double click.

The description of
the arguments in
the lower level are
displayed.

Double click again.

The list of candidate
arguments in the
lower level is
displayed.

Figure 2-2-26. Checking the Function Contents

57

The contents can be checked in the Description window. If the target action is a temporary release operation,

select "_release" from the drop-down list for the "action" dummy argument.

Next, the "CD_number" dummy argument is not in the drop-down list as is the "action" dummy argument and is

directly typed into the input text box. Click the "CD_number" dummy argument text box and type in the

characters "CD_ID".

Figure 2-2-27. Setting the Function Arguments

The list of the candidate
arguments is displayed.

Click.

Click.

Enter “CD_ID”.

58

After setting the arguments, this function is pasted in the program. To paste, click the "Paste Macro" button.

The "pick_up" function is pasted into the program as in Figure 2-2-28 with the set arguments.

Click...

The function is pasted with the
arguments.

Figure 2-2-28. Pasting a Function

59

(c) Search for the target function in the library

Sometimes the target use is clear, but the function name is not known.

Whether this kind of function can be rapidly searched for in the library becomes a necessary condition of an

easy-to-use library. In idea-L , in order to understand the entire library or its details, the library browsing window

provided. In this example, we will use the library browsing window to paste the function suited to the objective

in the program.

As a pre-condition, the objective of the example is to search for the subroutine of the "pick_up" function in the

library file.

As shown in Figure 2-2-29, move the insertion point to a position in the function.

Next, click the "Browsing..." command in the "Library" menu.

Click.

The insertion point moves to this position.

Figure 2-2-29. Specifying a Library File

60

The library browsing window appears.

As shown in Figure 2-2-30, search for the "sub_pu" function and click. To check the contents of this function,

click the "Description..." button.

Double click

Click "Description" to
check the contents of
this function.

Click on the target function.

Double click

Figure 2-2-30. Searching for the Target Function

61

The Description window of the function appears. Since the Description window is basically the idea processor,

double click a line in the lower level to display the detailed contents.

Function description

Function body

Figure 2-2-31. Function Description

Since this is the target function, it is pasted.

To paste, click the "Paste" button of the library browsing window. The target function was pasted in the

program.

The function is pasted.

Figure 2-2-32. Pasting a Function

62

(d) Examine the function data

If a program written by another person will be used in your program, unknown functions are sometimes

described in the program. There are no problems if the contents are easy to understand based on the name

and arguments of this function and they match your objective. However, converting the arguments to the format

in your program is a major problem. This example assumes this scenario.

The last line in the lower level of "Main" becomes the header. Double click this line. The lines in the function in

the lower level were displayed. The discussion continues with the lines of this function as the part used from

the other program.

Double click.

An unknown function
was encountered.

Figure 2-2-33. Encountering an Unknown Function

63

Now, we will examine the contents of this function. Specify this line as the range and click the "Find Function..."

command in the "Library" menu.

Click.

Specify the range
of the function
you wish to

i

Figure 2-2-34. Examining an Unknown Function

64

If the function was found, the library browsing window appears. In order to learn about detailed contents, click

the "Description..." button. Since this displays the Description window, check the contents of this function.

Click.

Magazine
Function

Figure 2-2-35. Learning About a Function

65

The arguments still have not been checked. So we will check the arguments. Double click the "Explanation of

the argument" line to check its contents.

Double click.

The contents of the
dummy arguments
were determined.

Figure 2-2-36. Examining a Function

66

If the contents of the "CD_number" dummy argument is changed from "CD_NUM" to "CD_ID" in the argument

window, we will assume it can be used in the program.

Change the contents of the "CD_number" dummy argument.

Change the argument.

Enter "CD_ID".

Figure 2-2-37. Change the Argument

67

If the change ends, finally click the "Paste Macro" button. This function is pasted in the program.

The function is pasted with
changed arguments.

Click.

Figure 2-2-38. Paste the Function with Changed Arguments

68

2.3 Creating a Source File

A written program is given to the compiler and assembler to create the source file.

Now we will create a source file.

The "EXAMPLE2.IDL" window is opened on the current screen.

First, click the "Save Source File..." command in the "File" menu.

Click.

Figure 2-3-1. Creating a Source File

69

The "Save Source File" dialog box appears.

Figure 2-3-2. Save Source File Dialog Box

70

Click the "OK" button to create the source file. The following two files will be created.

• Source program file [EXAM0001.ASM]

Source program

• Personal library file [EXAM0001.PLB]

This file collects the actual macros (functions) used in the source program. It is included in the source

file.

Figure 2-3-3 shows the contents of the two files that are created.

Figure 2-3-3. Created File Group

Finally, click the "Close" command in the "File" menu to exit "EXAMPLE2.IDL."

71

To Change the Name of a Source Program File

idea-L automatically sets the source program file name in the "Save Source File" command. If you wish to create

the file with any file name, perform the following procedure.

Click the file name you wish to change in the source "File Name" list box in the "Save Source File" dialog box.

After selecting either the "Use C language" or the "Use assembly language" radio button for the "Source file type,"

click the "Change File Name" button. This displays the "Change Source File Name" dialog box so type in the new file

name in the source "File Name" text box. When finished making the input, click the "OK" button. This changes the

file name of the source program.

The file nam e is d isp layed.

Enter "CD_che.ASM " as
the new file nam e.

Click.

C lick...

C lick.

The file nam e of the source
program is changed.

Select the language used.

Figure 2-3-4. Changing the File Name of a Source Program

72

Errors During Compiling or Assembly

If a compiling or an assembly error occurs, do the following.

.IDL

Display
screen files
(error display)

.IDM

idea-L

Compiler and Assembler

.ASM
.C

The file saving the error
information is read by idea-L .

Use the idea-L tag jump
function to jump to the error
line and correct the error.

The display screens
during compiling and
assembly are saved in
files.

Figure 2-3-5. Process Flow for Error Correction

73

2.4 Using Old Programs

idea-L can read source files in a conventional text format. Now, we will open and abstract a text source program.

First, click the "Open..." command in the "File" menu. The file "Open" dialog box appears, so click the "List Files

of Type" list box and select "Text (*.c, *.h, *.asm, *.txt)."

Click.

Click here to display the drop-
down list.

Drag the scroll bar button to
move the items.

Select text.

Figure 2-4-1. Selecting a Text File

74

Double click the file name "example3.asm."

Double click.

Figure 2-4-2. Open a Conventional Source Program

Open the "example3.asm" window. example3.asm is a text source program. The file name becomes the header,

and the entire program is its lower level.

If the comment lines in the program are examined, their structure is "a comment line is added in the line before the

program."

Comment line

Comment line

Program line

Program line

Structure of Comment
line + Actual program line

Figure 2-4-3. Conventional Source Program

75

We will use the idea-L function to form a hierarchy.

Drag the mouse to
specify the range.

Click the
mouse at this
position.

The selected lines become the
lower level of the comment line of
the immediately preceding line.

Drag and drop at this
position.

Figure 2-4-4. Make a Hierarchy of the Program Lines

Form hierarchies of all of the lines in the same way.

Abstract.

Figure 2-4-5. Completed Hierarchy of the Program Lines

76

Double click the header line to hide the lower level.

Double click to
abstract.

Figure 2-4-6. Abstract the Source Program

77

3. RESTRICTIONS

Be careful when using because the following restrictions apply in idea-L .

�Multiple idea-Ls cannot be executed simultaneously.

→If multiple idea-L s were started, the idea-L currently being started becomes active.

� The same IDL file and text file cannot be used simultaneously.

→The file opened last is opened as read only and a message appears.

� A text file containing control codes other than new lines (0DH, 0AH) and tab (09H) cannot be opened.

�Restrictions of each editing window

• Restrictions on the number of lines

→Each editing window can have up to 129,024 lines.

• Restrictions on the number of characters in one line

→One line has up to 255 characters.

• Restrictions on the levels in the hierarchy

→The argument window can be created with up to three levels.

→The library editing window can be created with up to five levels.

→Otherwise, up to 127 levels can be created.

• Restrictions on the number of types of functions

→Up to 1,000 types of functions can be registered in one library file.

• Restrictions on the number of arguments

→Up to 32 dummy arguments can be set.

• Restrictions on the number of argument candidates

→Up to 32 (lines of) argument candidates for one dummy argument can be set.

• Restrictions on function names and names of the argument candidates

→They have a maximum of 32 characters.

� In "Save As" and "Copy the idea-L file," file names including the dollar sign ($) or tilde (~) in the extension cannot

be used.

• In the directories for saving files and creating assembler files, do not use file names in which the extension

combines the dollar sign ($) and the tilde (~). idea-L creates temporary files when saving a file or creating an

assemble file. However, since the extension of a temporary file combines the dollar sign and the tilde, the file

names may clash, and a file may be overwritten or erased.

Examples) abc.$~$, abc.~$~, abc.$$~...

� The "Options," "Environment Settings," and "Window" menus can be set to display underlines in the insertion point

line. However, the underline disappears when the window switches.

� Since the file specification format of an INCLUDE statement created by idea-L is in parentheses "()" when using a

macro library, a macro library in the idea-L format cannot be used in 17K, 75X, and V800 systems.

78

[MEMO]

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-2719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6462-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: 044-435-9608

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 00.6

Name

Company

From:

Tel. FAX

Facsimile Message

