MEMORY Mobile FCRAMTM cmos

16M Bit (1 M word x 16 bit)

Mobile Phone Application Specific Memory

MB82DS01181E-70L-A

CMOS 1,048,576-WORD x 16 BIT Fast Cycle Random Access Memory with Low Power SRAM Interface

DESCRIPTION

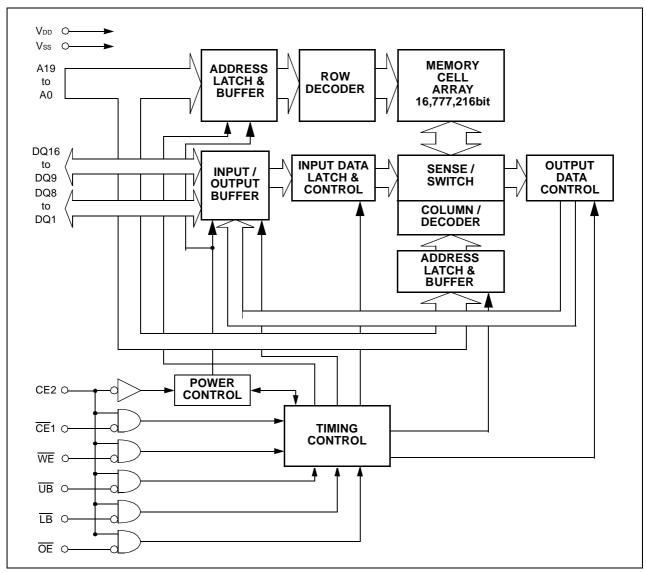
The Fujitsu MB82DS01181E is a CMOS Fast Cycle Random Access Memory (FCRAM) with asynchronous Static Random Access Memory (SRAM) interface containing 16,777,216 storages accessible in a 16-bit format. This MB82DS01181E is suited for mobile applications such as Cellular Handset and PDA.

■ FEATURES

- Asynchronous SRAM Interface
- Fast Random Access Time tc= 70ns (-70)
- Low Voltage Operating Condition
 V_{DD} = +1.7V to +1.95V
- Wide Operating Temperature
 T_A = -30°C to +85°C

- Byte Control by $\overline{\mathsf{LB}}$ and $\overline{\mathsf{UB}}$
- Low Power Consumption

 IDDA1 = 20mA max


 IDDS1 = 100μA max
- Power Down mode

MB82DS01181E -70L-A

■ PIN DESCRIPTION

Pin Name	Description		
A ₁₉ to A ₀	Address Input		
CE1	Chip Enable (Low Active)		
CE2	Chip Enable (High Active)		
WE Write Enable (Low Active)			
ŌĒ	Output Enable (Low Active)		
ŪB	Upper Byte Control (Low Active)		
LB	Lower Byte Control (Low Active)		
DQ16-9	Upper Byte Data Input/Output		
DQ8-1	Lower Byte Data Input/Output		
V _{DD}	Power Supply		
Vss	Ground		

■ BLOCK DIAGRAM

■ FUNCTION TRUTH TABLE

Mode	Note	CE2	CE1	WE	ŌĒ	LB	UB	A19-0	DQ8-1	DQ16-9	Ірр	Data Retention							
Standby (Deselect)		Н	Н	Х	Х	Х	Х	Х	High-Z	High-Z	IDDS								
Output Disable	*1			Н	Н	Х	Х	*3	High-Z	High-Z									
Output Disable (No Read)						Н	Н	Valid	High-Z	High-Z									
Read (Upper Byte	•)				Н	L	Н	L	Valid	High-Z	Output Valid								
Read (Lower Byte	•)												П		L	Н	Valid	Output Valid	High-Z
Read (Word)		Н	L			L	L	Valid	Output Valid	Output Valid	Idda	100							
No Write						Н	Н	Valid	Invalid	Invalid									
Write (Upper Byte)					Н	L	Valid	Invalid	Input Valid									
Write (Lower Byte)			L	Н	L	Н	Valid	Input Valid	Invalid									
Write (Word)						L	L	Valid	Input Valid	Input Valid									
Power Down	*2	L	Х	Х	Х	Х	Х	Х	High-Z	High-Z	IDDP	No							

Notes $L = V_{IL}$, $H = V_{IH}$, X can be either V_{IL} or V_{IH} , High-Z = High Impedance

^{*1:} Should not be kept this logic condition longer than $1\mu s$. Please contact local FUJITSU representative for the relaxation of $1\mu s$ limitation.

^{*2:} Power Down mode can be entered from Standby state and all DQ pins are in High-Z state.

^{*3:} Can be either V_{IL} or V_{IH} but must be valid before Read or Write.

■ ABSOLUTE MAXIMUM RATINGS

(See WARNING below.)

Parameter	Symbol	Value	Unit
Voltage of VDD Supply Relative to Vss	V_{DD}	-0.5 to +3.6	V
Voltage at Any Pin Relative to Vss	VIN, VOUT	-0.5 to +3.6	V
Short Circuit Output Current	І оит	<u>+</u> 50	mA
Storage Temperature	Тѕтс	-55 to +125	°C

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

(See WARNING below.)

Parameter	Notes	Symbol	Min.	Max.	Unit
Supply Voltage		V _{DD}	1.7	1.95	V
Supply Voltage		Vss	0	0	V
High Level Input Voltage	*1	Vih	V _{DD} *0.8	V _{DD} +0.2	V
Low Level Input Voltage	*2	VıL	-0.3	V _{DD} *0.2	V
Ambient Temperature		TA	-30	85	°C

(Referenced to Vss)

Notes *1: Maximum DC voltage on input and I/O pins are V_{DD}+0.2V. During voltage transitions, inputs may positive overshoot to V_{DD}+1.0V for periods of up to 5 ns.

*2: Minimum DC voltage on input or I/O pins are -0.3V. During voltage transitions, inputs may negative overshoot Vss to -1.0V for periods of up to 5ns.

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

■ PACKAGE PIN CAPACITANCE

Test conditions: T_A = 25°C, f = 1.0 MHz

Symbol	Description	Test Setup	Тур.	Max.	Unit
C _{IN1}	Address Input Capacitance	Vin = 0V	_	5	pF
C _{IN2}	Control Input Capacitance	Vin = 0V	_	5	pF
Сю	Data Input/Output Capacitance	Vio = 0V	_	8	pF

■ DC CHARACTERISTICS

(Under Recommended Operating Conditions unless otherwise noted)Note *1,*2,*3

Parameter	Symbol	Test Conditions		Min.	Max.	Unit
Input Leakage Current	lц	VIN = Vss to VDD		-1.0	+1.0	μА
Output Leakage Current	ILO	Vout = Vss to Vpp, Output	Disable	-1.0	+1.0	μΑ
Output High Voltage Level	Vон	$V_{DD} = V_{DD}(min), I_{OH} = -0.5$	mA	1.4	_	V
Output Low Voltage Level	Vol	IoL = 1mA		_	0.4	V
VDD Power Down Current	IDDPS	$V_{DD} = V_{DD}$ max., $V_{IN} = V_{IH}$ or V_{IL} , $CE2 \le 0.2V$		_	10	μΑ
V Standby Current	IDDS	$V_{DD} = V_{DD} \text{ max.},$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $\overline{CE1} = CE2 = V_{IH}$		_	1	mA
VDD Standby Current	IDDS1	$\begin{split} &V_{DD} = V_{DD} \text{ max.,} \\ &\underline{V_{IN}} \leq 0.2 \text{V or } V_{IN} \geq V_{DD} - 0.2 \text{V,} \\ &\overline{CE} 1 = CE2 \geq V_{DD} - 0.2 \text{V} \end{split}$		_	100	μΑ
VDD Active Current	IDDA1	V _{DD} = V _{DD} max., V _{IN} = V _{IH} or V _{IL} ,	trc / twc =	_	20	mA
	IDDA2	CE1 = V _I L and CE2= V _I H,	t _{RC} / t _{WC} = 1μs	_	3	mA

Notes *1: All voltages are referenced to Vss.

*2: DC Characteristics are measured after following POWER-UP timing.

*3: lout depends on the output load conditions.

MB82DS01181E -70L-A

■ AC CHARACTERISTICS

(Under Recommended Operating Conditions unless otherwise noted)

READ OPERATION

Dovometer	Cumbal	Va	lue	Unit	Notes
Parameter	Symbol	Min.	Max.	Unit	Notes
Read Cycle Time	trc	80	1000	ns	*1, *2
CE1 Access Time	t ce	_	70	ns	*3
OE Access Time	toe	_	45	ns	*3
Address Access Time	t AA	_	70	ns	*3, *5
LB / UB Access Time	t BA	_	30	ns	*3
Output Data Hold Time	tон	5	_	ns	*3
CE1 Low to Output Low-Z	tclz	5	_	ns	*4
OE Low to Output Low-Z	t olz	0	_	ns	*4
LB / UB Low to Output Low-Z	t BLZ	0	_	ns	*4
CE1 High to Output High-Z	t cHz	_	20	ns	*3
OE High to Output High-Z	tонz	_	20	ns	*3
LB / UB High to Output High-Z	t BHZ	_	20	ns	*3
Address Setup Time to CE1 Low	tasc	-5	_	ns	
Address Setup Time to OE Low	taso	10	_	ns	
Address Invalid Time	tax	_	10	ns	*5
Address Hold Time from CE1 High	t CHAH	-5	_	ns	*6
Address Hold Time from OE High	tонан	-5	_	ns	
WE High to OE Low Time for Read	t whol	15	1000	ns	*7
CE1 High Pulse Width	t CP	15	_	ns	

Notes *1: Maximum value is applicable if $\overline{CE}1$ is kept at Low without any address change. If the relaxation is needed by system operation, please contact local FUJITSU representative for the relaxation of 1µs limitation.

- *2: Address should not be changed within minimum trc.
- *3: The output load 50pF with 50ohm termination to VDD*0.5 V.
- *4: The output load 5pF without any other load.
- *5: Applicable when $\overline{CE}1$ is kept at Low.
- *6: trc(min) must be satisfied.
- *7: If actual value of twhol is shorter than specified minimum values, the actual table of following Read may become longer by the amount of subtracting actual value from specified minimum value.

■ AC CHARACTERISTICS (Continued)

WRITE OPERATION

Dozomator	Cumbal	Va	lue	l lni4	Netes
Parameter	Symbol	Min.	Max.	Unit	Notes
Write Cycle Time	t wc	80	1000	ns	*1, *2
Address Setup Time	tas	0	_	ns	*2
CE1 Write Pulse Width	tcw	45	_	ns	*3
WE Write Pulse Width	t wp	45	_	ns	*3
LB / UB Write Pulse Width	t bw	45	_	ns	*3
LB / UB Byte Mask Setup Time	t BS	-5	_	ns	*4
LB / UB Byte Mask Hold Time	t BH	-5	_	ns	*5
Write Recovery Time	t wr	0	_	ns	*6
CE1 High Pulse Width	tcp	15	_	ns	
WE High Pulse Width	twhp	15	1000	ns	
LB / UB High Pulse Width	t внр	15	1000	ns	
Data Setup Time	tos	20	_	ns	
Data Hold Time	tон	0	_	ns	
OE High to CE1 Low Setup Time for Write	t oncl	-5	_	ns	*7
OE High to Address Setup Time for Write	toes	0	_	ns	*8
LB and UB Write Pulse Overlap	t BWO	20	_	ns	

- Notes *1: Maximum value is applicable if $\overline{\text{CE}}1$ is kept at Low without any address change. If the relaxation is needed by system operation, please contact local FUJITSU representative for the relaxation of 1µs limitation.
 - *2: Minimum value must be equal or greater than the sum of write pulse (tcw, twp or tbw) and write recovery time (twrc, twr or tbr).
 - *3: Write pulse is defined from High to Low transition of $\overline{CE1}$, \overline{WE} , or \overline{LB} / \overline{UB} , whichever occurs last.
 - *4: Applicable for byte mask only. Byte mask setup time is defined to the High to Low transition of $\overline{\text{CE}}1$ or $\overline{\text{WE}}$ whichever occurs last.
 - *5: Applicable for byte mask only. Byte mask hold time is defined from the Low to High transition of CE1 or WE whichever occurs first.
 - *6: Write recovery is defined from Low to High transition of $\overline{CE1}$, \overline{WE} , or \overline{LB} / \overline{UB} , whichever occurs first.
 - *7: If $\overline{\mathsf{OE}}$ is Low after minimum toHCL, read cycle is initiated. In other word, $\overline{\mathsf{OE}}$ must be brought to High within 5ns after $\overline{\mathsf{CE}}$ 1 is brought to Low. Once read cycle is initiated, new write pulse should be input after minimum trc is met.
 - *8: If \overline{OE} is Low after new address input, read cycle is initiated. In other word, \overline{OE} must be brought to High at the same time or before new address valid. Once read cycle is initiated, new write pulse should be input after minimum t_{RC} is met.

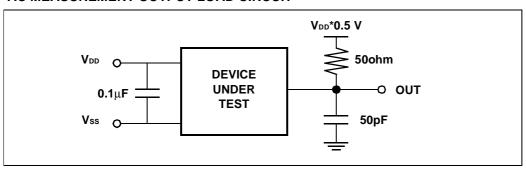
■ AC CHARACTERISTICS (Continued)

POWER DOWN PARAMETERS

Parameter	Symbol	Value		Unit	Note
Farameter	Symbol	Min.	Max.	Onit	Note
CE2 Low Setup Time for Power Down Entry	t csp	10	_	ns	
CE2 Low Hold Time after Power Down Entry	t _{C2LP}	80	_	ns	
CE1 High Hold Time following CE2 High after Power Down Exit [SLEEP mode only]	tснн	300	_	μs	*1
CE1 High Setup Time following CE2 High after Power Down Exit	t chs	0	_	ns	

Notes *1: Applicable also to power-up.

OTHER TIMING PARAMETERS

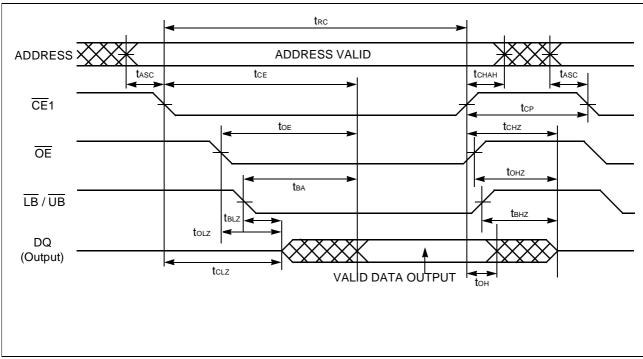

Parameter	Symbol	Va	lue	Unit	Note
Farameter	Syllibol	Min.	Max.	Onit	
CE1 High to OE Invalid Time for Standby Entry	t chox	10	_	ns	
CE1 High to WE Invalid Time for Standby Entry	t chwx	10	_	ns	*1
CE1 High Hold Time following CE2 High after Power-up	t cнн	300	_	μs	
Input Transition Time	t⊤	1	25	ns	*2

Notes *1: Some data might be written into any address location if tchwx(min) is not satisfied.

AC TEST CONDITIONS

Symbol	Description	Test Setup	Value	Unit	Note
VIH	Input High Level		VDD * 0.8	V	
Vıl	Input Low Level		VDD * 0.2	V	
VREF	Input Timing Measurement Level		VDD * 0.5	V	
t⊤	Input Transition Time	Between V _I L and V _I H	5	ns	

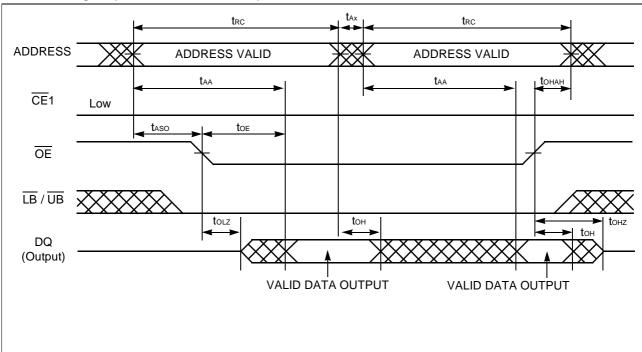
AC MEASUREMENT OUTPUT LOAD CIRCUIT



^{*2:} The Input Transition Time (t₁) at AC testing is 5ns as shown in below. If actual t₁ is longer than 5ns, it may violate AC specification of some timing parameters.

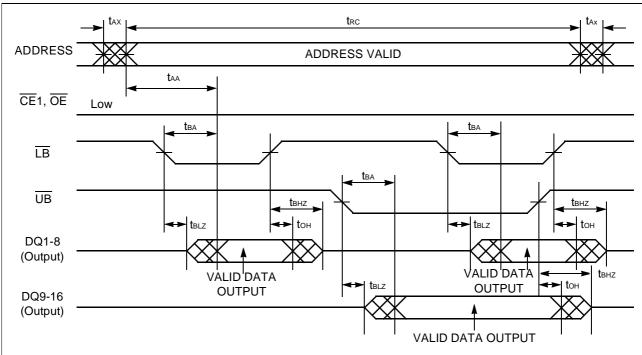
■ TIMING DIAGRAMS

READ Timing #1 (Basic Timing)


See Note.

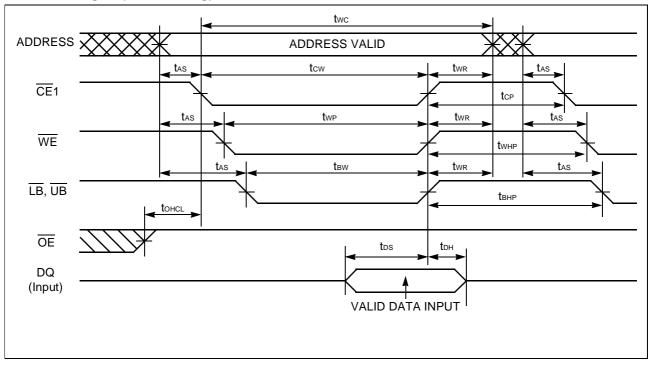
Note: This timing diagram assumes CE2=H and $\overline{\text{WE}}$ =H.

READ Timing #2 (OE & Address Access)


See Note.

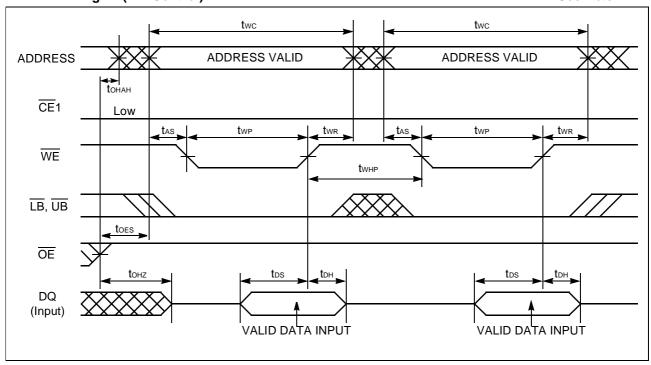
Notes:This timing diagram assumes CE2=H and $\overline{\text{WE}}\text{=H}.$

READ Timing #3 (LB / UB Byte Access)


See Note.

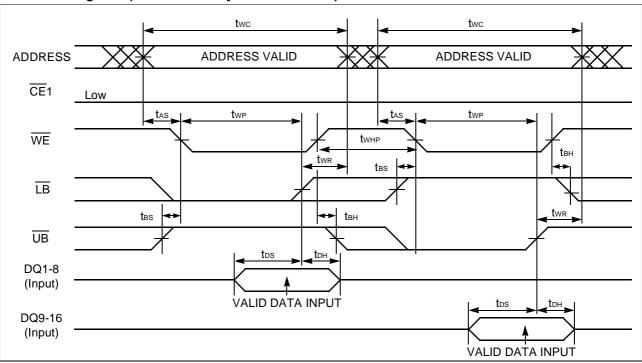
Note: This timing diagram assumes CE2=H and $\overline{\text{WE}}$ =H.

WRITE Timing #1 (Basic Timing)


See Note.

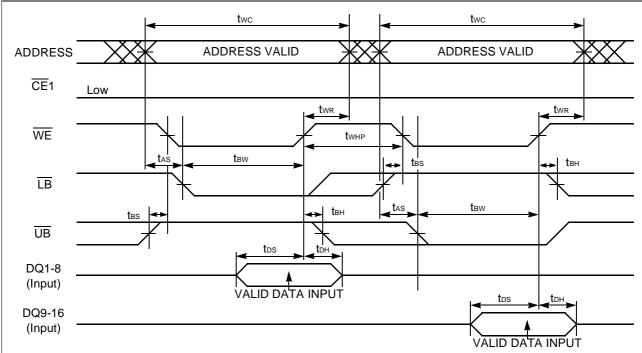
Notes: This timing diagram assumes CE2=H.

WRITE Timing #2 (WE Control)


See Note.

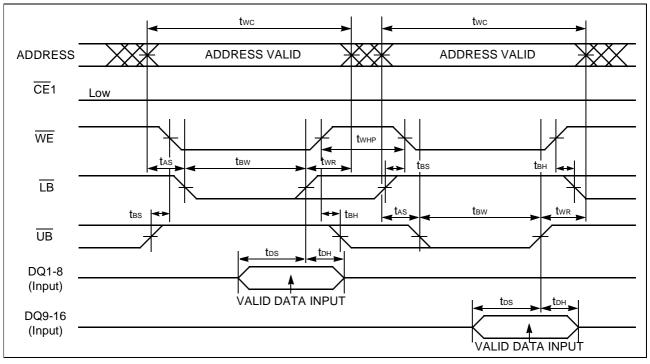
Note: This timing diagram assumes CE2=H.

WRITE Timing #3-1 (WE / LB / UB Byte Write Control)


See Note.

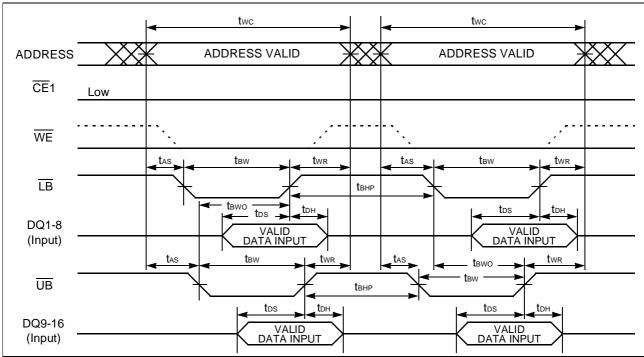
Note: This timing diagram assumes CE2=H and \overline{OE} =H.

WRITE Timing #3-2 (WE / LB / UB Byte Write Control)


See Note.

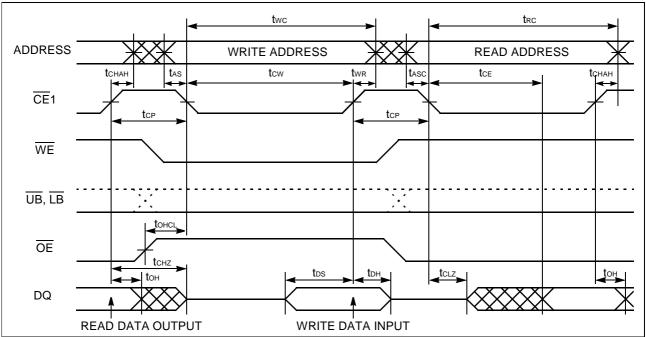
Note: This timing diagram assumes CE2=H and $\overline{\text{OE}}$ =H.

WRITE Timing #3-3 (WE / LB / UB Byte Write Control)


See Note.

Note: This timing diagram assumes CE2=H and \overline{OE} =H.

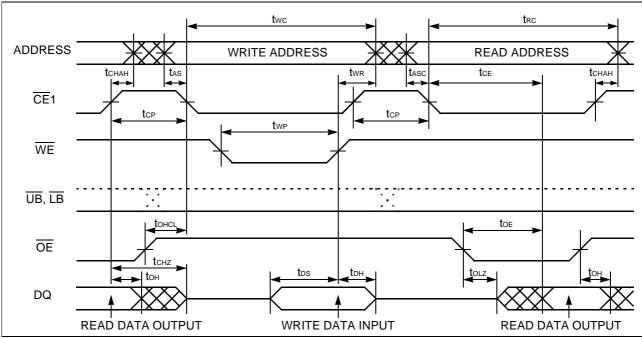
WRITE Timing #3-4 (WE / LB / UB Byte Write Control)


See Note.

Note: This timing diagram assumes CE2=H and \overline{OE} =H.

READ / WRITE Timing #1-1 (CE1 Control)

See Note.

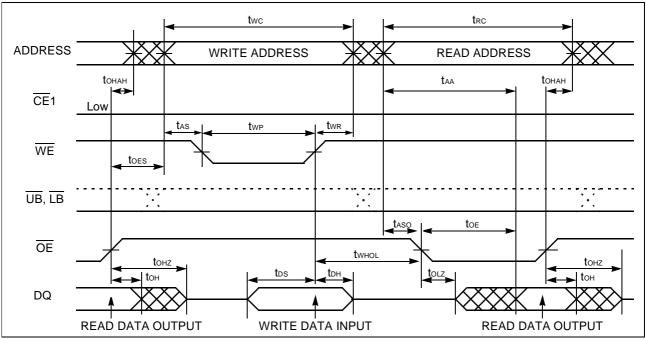


Notes *1: This timing diagram assumes CE2=H.

*2: Write address is valid from either $\overline{CE}1$ or \overline{WE} of last falling edge.

READ / WRITE Timing #1-2 (CE1 / WE / OE Control)

See Note.

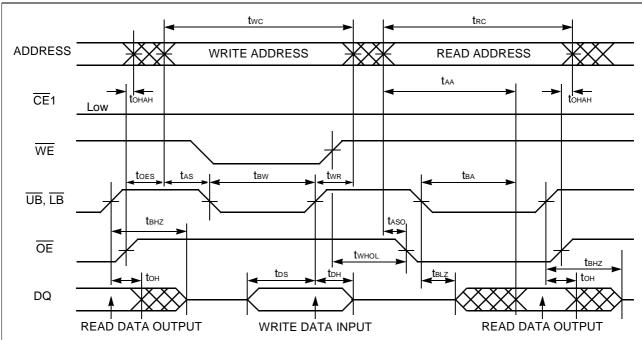


Notes *1: This timing diagram assumes CE2=H.

*2: OE can be fixed Low during write operation if it is CE1 controlled write at Read-Write-Read sequence.

READ / WRITE Timing #2 (OE, WE Control)

See Note.

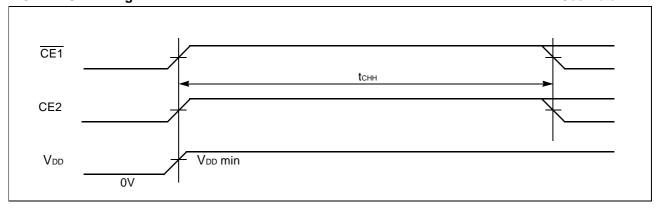


Notes *1: This timing diagram assumes CE2=H.

*2: $\overline{CE}1$ can be tied to Low for \overline{WE} and \overline{OE} controlled operation.

READ / WRITE Timing #3 (\overline{OE} , \overline{WE} , \overline{LB} , \overline{UB} Control)

See Note.



Notes *1: This timing diagram assumes CE2=H.

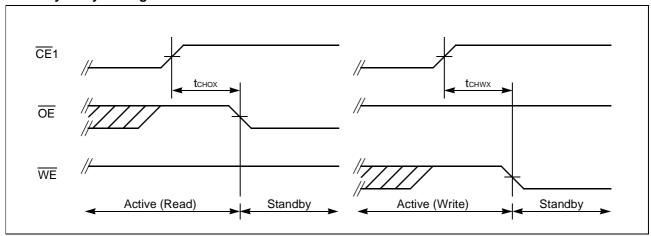
*2: $\overline{CE}1$ can be tied to Low for \overline{WE} and \overline{OE} controlled operation.

POWER-UP Timing

See Note.

Note: The tchh specifies after V_{DD} reaches specified minimum level and applicable both $\overline{CE1}$ and CE2.

POWER DOWN Entry and Exit Timing


See Note.

Note: This Power Down mode can be also used as a reset timing if POWER-UP timing above could not be satisfied and Power-Down program was not performed prior to this reset.

Standby Entry Timing after Read or Write

See Note.

Note: Both tchox and tchwx define the earliest entry timing for Standby mode.

If either of timing is not satisfied, it takes trc (min) period for Standby mode from CE1 Low to High transition.

■ BONDING PAD

Bonding Pad Layout

Please contact local FUJITSU representative for pad layout and pad coordinate information.

Bonding Pad Description

Pin Name	Description
A ₁₉ to A ₀	Address Input
CE1	Chip Enable (Low Active)
CE2	Chip Enable (High Active)
WE	Write Enable (Low Active)
ŌĒ	Output Enable (Low Active)
ŪB	Upper Byte Control (Low Active)
LB	Lower Byte Control (Low Active)
DQ16-9	Upper Byte Data Input/Output
DQ8-1	Lower Byte Data Input/Output
V _{DD}	Power Supply
Vss	Ground
TEST/OPEN	Test/Open (This pad should be left open. Do not use.)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Marketing Division
Electronic Devices
Shinjuku Dai-Ichi Seimei Bldg. 7-1,
Nishishinjuku 2-chome, Shinjuku-ku,
Tokyo 163-0721, Japan
Tel: +81-3-5322-3324

Fax: +81-3-5322-3386

http://edevice.fujitsu.com/jp

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94088-3470, U.S.A.

Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany

Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fme.fujitsu.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741

Tel: +65-6281-0770 Fax: +65-6281-0220

http://www.fmal.fujitsu.com/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

http://www.fmk.fujitsu.com/

F0409

© 2003 - 2004 FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any thirdparty's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.