

NDL7660P

1 310 nm OPTICAL CATV/ANALOG APPLICATIONS INGAASP MQW-DFB LASER DIODE MODULE

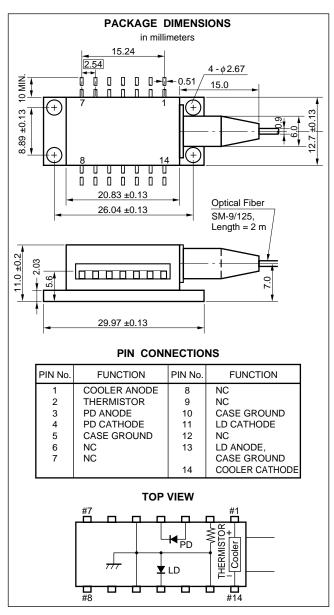
DESCRIPTION

NDL7660P is a 1 310 nm DFB (Distributed Feed-Back) laser diode, that has a newly developed Multiple Quantum Well (MQW) structure, butterfly package module with optical isolator. It is especially designed for a 6 mW light source of CATV analog applications.

FEATURES

Low noise RIN = -155 dB/Hz
 Low distortion CSO = -60 dBc
 CTB = -65 dBc

High output power
 Long wavelength
 Pf = 6.0 mW MIN.
 \(\rho_p = 1 310 \) nm


High isolation 40 dBInternal InGaAs monitor PD

· Internal thermoelectric cooler

- Hermetically sealed 14 pin butterfly package
- Singlemode fiber pigtail
- · Wide operating temperature range
- · High reliability

ORDERING INFORMATION

Part Number	Available Connector
NDL7660P	Without Connector
NDL7660PC	With FC-UPC Connector
NDL7660PD	With SC-UPC Connector

ABSOLUTE MAXIMUM RATINGS (Tc = 25 °C)

Parameter	Symbol	Ratings	Unit
Operating Case Temperature	Tc	−20 to +65	°C
Storage Temperature	T _{stg}	-40 to +70	°C
Lead Soldering Temperature (10 s)	T _{sld}	260	°C
Optical Output Power	Pf	15	mW
Forward Current of LD	lF	150	mA
Reverse Voltage of LD	VR	2.0	٧
Forward Current of PD	lF	10	mA
Reverse Voltage of PD	VR	20	V
Cooler Current	lc	1.0	Α
Cooler Voltage	Vc	2.0	V

ELECTRO-OPTICAL CHARACTERISTICS (TLD = 25 °C, Tc = -20 °C to +65 °C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Threshold Current	Ith			20	35	mA
Forward Voltage	VF	IF = 30 mA	0.9	1.2	1.4	V
Optical Output Power from Fiber (Recommended Operating Point)	P _{op} *1		6.0			mW
Spontaneous Emission Power from Fiber	Ps	lb = lth			50	μW
Differential Efficiency from Fiber	η d	$P_f \leq P_{op}$	0.16	0.22		W/A
Peak Emission Wavelength	λ_{P}	$P_f = P_{op}$	1 290	1 310	1 330	nm
Sub-mode Suppression Ratio	SMSR	$P_f = P_{op}$	30	35		dB
1 dB Bandwidth	f	$P_f = P_{op}$	900			MHz
Relative Intensity Noise	RIN*2	$P_f = P_{op}$		-155	-150	dB/Hz
Composite Second Order Distortion	CSO ^{*3}	$P_f = P_{op}$		-60	-55	dBc
Composite Triple Beat Distortion	CTB*3	$P_f = P_{op}$		-65	-60	dBc
Carrier to Noise Ratio	CNR ^{*3}	$P_f = P_{op}$	50			dBc
Isolation	ls		35	40		dB

*1. Recommended P_{op} value is supplied to each device.

*2. Conditions: $P_f = P_{op}$, CW

Measuring Bandwidth: 50 MHz to 600 MHz

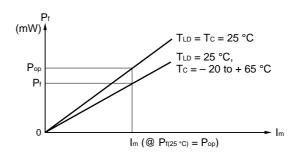
Optical Reflection -40 dB

*3. Conditions: $P_f = P_{op}$, Optical Modulation Index = 3.5 %/channel

79 channel unmodulated carriers (55.25 MHz to 547.25 MHz)

Optical Reflection -40 dB, Optical Loss = 5.5 dB

2

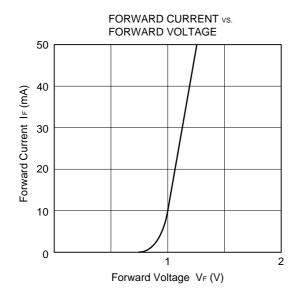

ELECTRO-OPTICAL CHARACTERISTICS

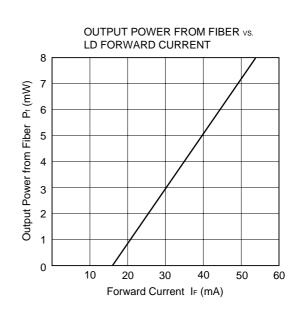
(Applicable to Monitor PD: T_{LD} = 25 °C, T_C = -20 °C to +65 °C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Monitor Current	Im	V _R = 5 V, P _f = P _{op}	50	200		μΑ
Dark Current	lσ	VR = 5 V		2	10	nA
Tracking Error	γ^{*4}	I _m = const.			0.5	dB

*4. Tracking Error : γ

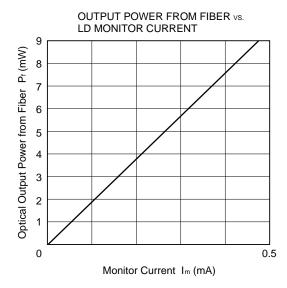
$$\gamma = 10 \log \frac{P_f}{P_{op}}$$

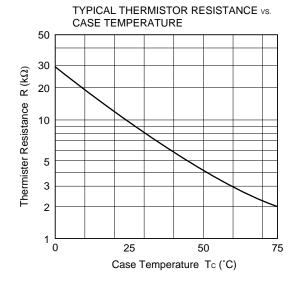

ELECTRO-OPTICAL CHARACTERISTICS

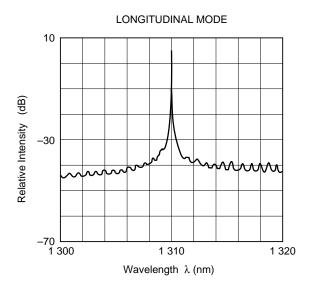

(Applicable to Thermistor and TE Cooler: TLD = 25 °C, Tc = -20 °C to +65 °C)

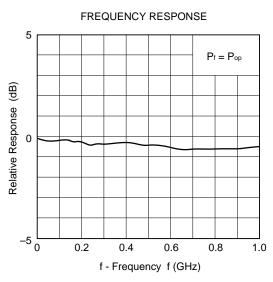
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Thermistor Resistance	R*5	TLD = 25 °C	9.5	10	10.5	kΩ
Cooler Current	lc	ΔT = 40 K		0.6	0.8	Α
Cooler Voltage	Vc	ΔT = 40 K		1.1	1.5	V
Cooling Capacity	∆T ^{*6}	Ic = 0.8 A, P _f = P _{op}	40			K

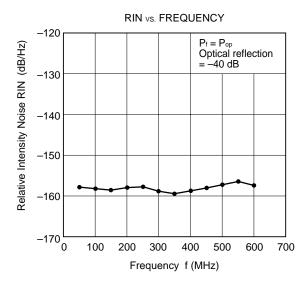
^{*5.} B Constant = $3400 \pm 100 \text{ K}$


TYPICAL CHARACTERISTICS (Tc = 25 °C)






^{*6.} $\Delta T = |Tc - TLD|$



DFB LASER DIODE FAMILY FOR CATV/ANALOG APPLICATIONS

Features		Pop: (Operating poin	t power (min.	value)		Remarks
Packages	3 mW min.	4 mW min.	6 mW min.	8 mW min.	12 mW min.	15 mW min.	Remarks
14 pin BFY module with SMF	NDL7680P	NDL7650P	NDL7660P	NDL7670P	NDL7672P	NDL7673P	BFY module with monitor PD, TEC, thermistor, isolator

REFERENCE

Document Name	Document No.
NEC semiconductor device reliability/quality control system	LEI-1201
Quality grade on NEC semiconductor devices	IEI-1209
Semiconductor device mounting technology manual	C10535E
Guide to quality assurance for semiconductor devices	MEI-1202
Semiconductor selection guide	X10679E

5

CAUTION

Within this module there exists GaAs (Gallium Arsenide) material which is a harmful substance if ingested. Please do not under any circumstances break the hermetic seal.

AVOID EXPOSURE-Invisible Laser Radiation is emitted from this aperture

NEC Corporation NEC Building, 7-1, Shiba 5-chome, Minato-ku, Tokyo 108-01, Japan
Type number:
Manufactured:
Serial Number:
This product conforms to FDA
regulations as applicable
to standards 21 CFR Chapter 1.
Subchapter J.

The export of this product from Japan is prohibited without governmental license. To export or re-export this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M4 94.11