
PCI Bus Software Support
for Alchemy™ Au1500™

Processor from AMD

Application Note
1.3Revision:
August 2002Issue Date:

© 2002 Advanced Micro Devices, Inc. All rights reserved.
The contents of this document are provided in connection with Advanced Micro Devices,
Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the
accuracy or completeness of the contents of this publication and reserves the right to make
changes to specifications and product descriptions at any time without notice. No license,
whether express, implied, arising by estoppel or otherwise, to any intellectual property
rights is granted by this publication. Except as set forth in AMD’s Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or
implied warranty, relating to its products including, but not limited to, the implied warranty
of merchantability, fitness for a particular purpose, or infringement of any intellectual prop-
erty right.

AMD’s products are not designed, intended, authorized or warranted for use as compo-
nents in systems intended for surgical implant into the body, or in other applications
intended to support or sustain life, or in any other application in which the failure of
AMD’s product could create a situation where personal injury, death, or severe property or
environmental damage may occur. AMD reserves the right to discontinue or make changes
to its products at any time without notice.

Contacts

www.amd.com pcs.support@amd.com

Trademarks

AMD, the AMD Arrow logo, and combinations thereof, and Au1000, Au1100, Au1500, and Alchemy are trademarks of
Advanced Micro Devices, Inc.

MIPS32 is a trademark of MIPS Technologies.

Microsoft and Windows are trademarks of Microsoft Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

PCI Bus Software Support for the Au1500Rev. 1.3 August 2002
1. Introduction

The Au1500 System-On-a-Chip, SOC[1], features an integrated 33/66MHz PCI 2.2 compliant bus for
connecting to a variety of external peripherals. This document describes software techniques for
supporting the Au1500’s integrated PCI bus.

This document focuses on the software support and considerations that are needed for an Au1500
integrated PCI controller configured as a host bridge.

For information pertaining to the Au1500 configured as a PCI satellite, see “Satellite Mode” on
page 17.

This document assumes the reader is familiar with the PCI Local Bus Specification version 2.2 [2].

2. MIPS32™ Architecture Memory Map

In the MIPS architecture, all addresses (instruction fetches, data loads and data stores) are virtual
addresses [3]. As a result, address translation is always performed on program instruction fetches and
data accesses. The type of address translation depends upon the upper bits of the program address.
The MIPS architecture defines the KUSEG, KSEG0 and KSEG1 regions according to these upper
bits of the program’s virtual address. The program’s 32-bit memory space is thus divided:

Figure 1: MIPS 32-bit Memory Map

The KUSEG region extends from 0x00000000 to 0x7FFFFFFF, a 2GB space which uses translation
look-a-side buffers, TLBs, to determine the corresponding physical address. The KUSEG region is
accessible while the CPU is in either user mode or kernel mode.

The KSEG0 region extends from 0x80000000 to 0x9FFFFFFF, a 512MB space which has a direct
correlation to a physical address. In addition, the KSEG0 region is inherently cacheable; meaning that
both instruction and data caching is occuring for references to this area. The KSEG0 region is only
accessible while the CPU is in kernel mode.

Reserved/KSEG2

KSEG1

KSEG0

KUSEG

Reserved/KSEG3

0x00000000

0x80000000

0xA0000000

0xC0000000

0xE0000000
Application Note 3

Rev. 1.3 August 2002PCI Bus Software Support for the Au1500
The KSEG1 region extends from 0xA0000000 to 0xBFFFFFFF, a 512MB space which also has a
direct correlation to a physical address. However, the KSEG1 region is inherently non-cacheable;
meaning that any instruction or data reference will bypass the cache and directly access physical
memory. The KSEG1 region is only accessible while the CPU is in kernel mode.

For the KSEG0 and KSEG1 regions, the corresponding physical address is bits 28:0 of the virtual
address with address bits 31:29 zero. That is, KSEG0 and KSEG1 map directly onto the first 512MB
of physical memory. For example, KSEG0 address 0x80000000 and KSEG1 address 0xA0000000
both map directly onto physical address 0x00000000. The KSEG0 and KSEG1 regions provide two
views of physical memory; one cacheable and one non-cacheable.

The address translation mechanism of the MIPS architecture always presents a physical address to the
memory controllers (and other address decode logic).

3. Au1500 36-Bit Physical Addresses

From the information/memory map in “MIPS 32-bit Memory Map” on page 3, it is apparent that
there is no room to locate a 32-bit PCI address space directly within the MIPS 32-bit memory map!
Fortunately, the MIPS32 architecture specifies a 36-bit physical address space to accomodate large
address spaces, such as the PCI bus. The Au1500 takes advantage of the 36-bit physical address and
locates the PCI address space as such:

Since 36-bit physical addresses are not directly visible to the processor (i.e. through the KSEG0 or
KSEG1 regions), the PCI space must be mapped into the system using a TLB and then accessed using
virtual address pointers (a 32-bit pointer which is translated by a TLB into a 36-bit physical address).
The address translation steps are depicted in “Au1500 PCI Address Translation” on page 5.

Table 1. Au1500 PCI Address Space Mapping

36-Bit Physical Address PCI Function

0x4 XXXXXXXX PCI Memory Space

0x5 XXXXXXXX PCI I/O Space

0x6 XXXXXXXX PCI Configuration Space
4 Application Note

PCI Bus Software Support for the Au1500Rev. 1.3 August 2002
Figure 2: Au1500 PCI Address Translation

The PCI controller decodes the upper bits of the 36-bit system bus physical address to determine if
the cycle is a configuration, memory or I/O cycle. The lower 32-bits of the 36-bit system bus physical
address are connected to the PCI bus AD[31:0].

4. Software Support

The technique for supporting the PCI bus is largely dependent upon the driver model for the software
run-time system (i.e. operating system). For example, drivers in the Linux operating system run in
“kernel” mode (i.e. privileged and likely in either KSEG0 or KSEG1 regions), where as drivers in the
Windows CE operating system run in “user” mode (i.e. each driver is in its own thread with its own
address space).

In Linux, drivers run at the kernel privileged mode and typically execute from either KSEG0 or
KSEG1 space. That is, drivers expect the registers and/or memory of a peripheral to be directly
visible in the KSEG0 or KSEG1 regions. Enabling PCI bus support in this environment is challenging
since, at the time of this writing, the drivers do not have a readily-available facility for mapping a 36-
bit address into a 32-bit address which can be accessed by the driver. Nonetheless, a scheme is in
place to support Au1500 PCI in Linux.

In Windows CE, drivers run in a non-privileged mode as a thread of the I/O process, DEVICE.EXE.
Each device driver has its own address space, and must explicitly map in the the physical address(es)
of the peripheral’s resources. Device drivers utilize the MmMapIoSpace() function call which does
support 36-bit physical addresses and greatly facilitates PCI bus support on the Au1500.

Many real-time operating systems, RTOS, do not use virtual memory, but rather execute entirely from
the KSEG0 and/or KSEG1 regions. Device drivers for these operating systems may expect the
peripheral resources to be directly memory mapped. Without virtual memory, supporting the PCI bus

Au1

SBUS

PCI
AD[31:0]

32-Bit Virtual
Address

TLB 36-Bit Physical
Address

Au1500

CBE[3:0]
Application Note 5

Rev. 1.3 August 2002PCI Bus Software Support for the Au1500
is more challenging, but in most cases can be easily solved with the use of static or “wired” TLB
entries to directly map regions on the PCI bus of interest to the RTOS.

Most other operating systems or applications without operating systems can use one or more of the
techniques described herein.

NOTE: This document assumes a little-endian core configuration. Since PCI is inherently little-
endian, with both the Au1 core and PCI in little-endian, each has the same “view” of memory.
Utilizing the Au1 core in big-endian mode is possible, and the issues are discussed in “Big-Endian
Considerations” on page 17.

5. Au1500 PCI Host Bridge Configuration

The Au1500 integrated PCI controller must be configured before it is utilized. This document
assumes configuration of a host bridge (via the PCI_CFG pin). The steps necessary to configure the
controller are as follows.

1. Enable the PCI bus 33 and/or 66 MHz clock source.

2. Take the Au1500 PCI controller and PCI bus out of reset.

3. Configure the Au1500 PCI controller registers.

The PCI controller requires these steps, in order, to ensure proper operation.

5.1 Enable PCI Bus Clock

The 33 or 66 MHz PCI clock can be generated either internally or externally, depending upon the
application/board-design. For issues pertaining to PCI clock generation, see the “PCI Clock
Generation” applications note.

If the PCI clock is generated internally, the clock generator registers must be programmed to generate
the PCI clock.

If the PCI clock is generated externally, it must be enabled and running.

5.2 Enable PCI controller

The PCI bus signal RST# must be asserted for at least 100 microseconds after the PCI clock has
stablized. It then must be negated for a minimum of 5 PCI clocks before accessing the PCI bus.
Additional reset timing parameters are in the PCI 2.2. specification: “4.2.3.2. Timing Parameters”
and “4.3.2. Reset”.

The PCI bus RST# signal also resets the Au1500 PCI controller. As such, RST# must be driven low
and then high according to the PCI reset timing to reset both the PCI bus and the Au1500 integrated
PCI controller. The Au1500 PCI controller must be taken out of reset and 5 PCI clocks elapsed before
any of its configuration registers can be accessed.
6 Application Note

PCI Bus Software Support for the Au1500Rev. 1.3 August 2002
On the Au1500, GPIO200 defaults to an output that drives low (a zero). This pin is intended to drive
the PCI bus RST# signal. If the board-design utilizes GPIO200 in this capacity, then software must
drive GPIO200 according to the PCI bus reset timing. The following code snippet de-asserts RST# by
driving GPIO200 high (no need to drive it low since it defaults to low).
li t0, 0xB1700000 /* base address of GPIO2 */
li t1, 3 /* gpio2_enable[MR=1,CE=1]
sw t1, 0x0010(t0) /* gpio2_enable, provide clocks */
li t1, 1 /* gpio2_enable[MR=0,CE=1]
sw t1, 0x0010(t0) /* gpio2_enable, take away reset */
li t1, 1 /* gpio2_dir[GPIO200=1], output
sw t1, 0x0000(t0) /* gpio2_dir, set GPIO200 as output */
li t1, 0x00010001 /* gpio2_output[GPIO200ENA=1,GPIO200=1] */
sw t1, 0x0008(t0) /* gpio2_output, GPIO200 = 1 */

Note: NOTE: If GPIO200 (or other GPIO) is not used to control PCI RST#, then PCI RST# must
also be tied to the Au1500 RSTIN signal. See the Au1500 Specification Update for additional
information.

5.3 Configure the PCI Controller

The PCI controller contains configuration registers which are located at physical address 0x0
14005000 (KSEG1 address 0xB4005000). A simple host bridge setup is provided in Table 2 on
page 7.

Table 2. Host Bridge Configuration

Register
KSEG1

Address
Value

pci_cmem 0xB4005000 0x00000000

pci_config 0xB4005004 0x0000000F

pci_b2bmask_cch 0xB4005008 0x00000000

pci_b2bbase0_venid 0xB400500C 0x00000000

pci_b2bbase1_id 0xB4005010 0x00000000

pci_mwmask_dev 0xB4005014 0xE0000000

pci_mwbase_rev_ccl 0xB4005018 0x00000000

pci_err_addr 0xB400501C -

pci_spec_intack 0xB4005020 -

pci_id 0xB4005100 0x00001755

pci_statcmd 0xB4005104 0x02A00356

pci_classrev 0xB4005108 0x00000000
Application Note 7

Rev. 1.3 August 2002PCI Bus Software Support for the Au1500
The Au1500 host bridge is enabled for operation when pci_statcmd[BUS_MASTER], bit 2, is set.
The bridge will not generate PCI cycles until this bit is set. Furthermore,
pci_statcmd[MEMORY_SPACE], bit 1, must be set if the Au1500 memory window (see next
section) is to be utilized.

5.3.1 Au1500 Memory Window

The registers pci_mwmask_dev, pci_mwbase_rev_ccl and pci_mbar provide a window into the
Au1500 memory. The window size can vary, as illustrated in Table 3 on page 8.

The example PCI controller configuration above creates a 512MB window starting at Au1500
physical address 0x0000000, which is visible in PCI memory space starting at PCI address
0x00000000. The configuration creates a simple 1:1 mapping of Au1500 memory space into the PCI
space, and vice-versa. The 512MB window intentionally corresponds to the same size as the MIPS
KSEG0/KSEG1 region which covers all SDRAM and static bus memories.

5.3.2 Memory Window Considerations

Software likely needs at least these bus address translation routines:
1. Au1 KSEG0/1 address to PCI address,

2. PCI address to Au1 KSEG0/1 address,

pci_hdrtype 0xB400510C 0x00000000

pci_mbar 0xB4005110 0x00000008

pci_timeout 0xB4005140 0x00000080

Table 3. Au1500 Memory Windows

Window Size mwmask Window Size mwmask

64KB 0xFFFF 16MB 0xFF00

128KB 0xFFFE 32MB 0xFE00

256KB 0xFFFC 64MB 0xFC00

512KB 0xFFF8 128MB 0xF800

1MB 0xFFF0 256MB 0xF000

2MB 0xFFE0 512MB 0xE000

4MB 0xFFC0 1GB 0xC000

8MB 0xFF80 2GB 0x8000

Table 2. Host Bridge Configuration (Continued)

Register
KSEG1

Address
Value
8 Application Note

PCI Bus Software Support for the Au1500Rev. 1.3 August 2002
3. Au1 physical address to PCI address, and

4. PCI address to Au1 physical address

The bus address translation routines are necessary since a MIPS virtual address is not [necessarily]
equivalent to a PCI physical address. More specifically, the pci_mwbase and pci_mbar registers
permit mapping a window of Au1500 memory anywhere in PCI memory space. These bus address
translation routines know how to compute, for a given memory location, a PCI address from an Au1
address, and vice versa. In particular, device drivers for PCI devices should use these bus address
translation routines when handling PCI memory addresses, particularly for DMA pointers/buffers.

For example, with the simple host bridge configuration above, the bus address translation routines
merely manipulate the three most significant bits of the address corresponding to the MIPS KSEG0/
KSEG1 designations. In more complicated schemes, the bus address translation routines must include
the pci_mwbase and/or pci_mbar value in the address calculations.

In determining the Au1500 memory window size and location, the following items should be taken
into consideration:

1. PCI accesses into Au1500 memory must occur to memory that is pre-fetchable.

2. The Au1 MIPS vector table may be exposed in PCI space, so it may be possible to damage
the vector table.

3. The Au1500 memory window is located in PCI space via pci_mbar. This register is not visi-
ble to the PCI auto-configuration routine.

PCI-initiated memory accesses to Au1500 memory must be to pre-fetchable memory. When a PCI-
initiated memory access occurs to Au1500 memory, up to 8 words are transferred. As a result, it is not
possible to access the integrated peripherals or other memory locations (such as FIFOs, registers, etc.)
that have side-effects. In most instances, only the Au1500 SDRAM should be accessed from PCI.

Depending upon how the Au1500 memory window is configured, the Au1 core MIPS vector table in
RAM (virtual address 0x80000000, physical address 0x00000000) may be exposed in the PCI space.
Depending upon the application and/or the development status of the associated software, this may
not be desirable. If the Au1 core vector table must be protected, then the pci_mwbase register must be
changed, along with the bus address translation routines, to avoid exposing the MIPS vector table in
PCI space.

During the PCI bus auto-configuration, PCI device MBARs are programmed with address ranges that
do not conflict with other PCI devices. However, the Au1500 itself is not visible during a PCI bus
auto-configuration, so the Au1500 pci_mbar register is programmed independent of the standard PCI
auto-configuration code. See “Auto-Configuration Considerations” on page 11 for more information.

5.3.3 Application-specific Values

The registers pci_b2bmask_cch, pci_b2bbase0_venid, pci_b2bbase1_id, pci_b2bbase1_id,
pci_mwmask_dev, pci_id, pci_classrev all contain bitfields that correlate to values in the Au1500
PCI controller configuration space header. The values that are appropriate for the PCI configuration
space header are determined by the application. Consult “Appendix D: Class Codes” of the PCI 2.2
specification, as well as the PCI Special Interest Group, PCISIG, for appropriate values.
Application Note 9

Rev. 1.3 August 2002PCI Bus Software Support for the Au1500
6. PCI Configuration Cycles

PCI configuration cycles are used to configure devices that are attached to the PCI bus. The
configuration space is normally scanned by software to identify and more importantly configure the
devices for proper behavior on the PCI bus.

The PCI configuration space address is derived from the Au1 36-bit physical address: bits [35:32]=6
indicate PCI configuration space, bit [31] indicates a Type 0 or Type 1 configuration cycle, and bits
[30:2] are copied directly to the PCI_AD[30:2].

Note: NOTE: The Au1500 PCI controller does not respond to a configuration cycle from itself. As
such it will not be detected by a PCI bus scan.

6.1 Type 0 Configuration Cycles

Type 0 configuration cycles are the most common. The address phase of a Type 0 configuration cycle
is the following:

Figure 3: Type 0 Configuration Cycle

Bit 31 of the 36-bit physical address is a zero and causes the PCI controller to emit “00” on
PCI_AD[1:0]. During the address phase, only one bit is permitted to be set in the Device number
field. The single “1” bit denotes the IDSEL of a PCI target device for the configuration cycle. A total
of 20 target devices is supported. The following table enumerates the 20 possible configuration
spaces.

Table 4. Au1500 Type 0 Configuration Cycle Base Addresses

Device
Number

IDSEL
36-Bit Physical

 Address
Device
Number

IDSEL
36-Bit Physical

Address

0 PCI_AD[11] 0x6 00000800 10 PCI_AD[21] 0x6 00200000

1 PCI_AD[12] 0x6 00001000 11 PCI_AD[22] 0x6 00400000

2 PCI_AD[13] 0x6 00002000 12 PCI_AD[23] 0x6 00800000

3 PCI_AD[14] 0x6 00004000 13 PCI_AD[24] 0x6 01000000

4 PCI_AD[15] 0x6 00008000 14 PCI_AD[25] 0x6 02000000

5 PCI_AD[16] 0x6 00010000 15 PCI_AD[26] 0x6 04000000

6 PCI_AD[17] 0x6 00020000 16 PCI_AD[27] 0x6 08000000

31 11 10 8 7 2 1 0

Device Function Register 00PCI_AD[31:0]
10 Application Note

PCI Bus Software Support for the Au1500Rev. 1.3 August 2002
6.2 Type 1 Configuration Cycles

Type 1 configuration cycles are used to configure PCI devices on a remote PCI bus. The address
phase of a Type 1 configuration cycle is the following:

Figure 4: Type 1 Configuration Cycle

Bit 31 of the 36-bit physical address is a one and causes the PCI controller to emit “01” on
PCI_AD[1:0]. Bits [30:2] of the 36-bit physical address are copied directly to bits AD[30:2]. The
following table illustrates the 36-bit physical addresses for Type 1 configuration space addresses.

In the table above, “df” represents the device number and function number which form
PCI_AD[15:8], and “bb” represents the bus number which forms PCI_AD[23:16].

6.3 Auto-Configuration Considerations

At boot and/or run-time, PCI auto-configuration software scans the PCI configuration space in search
of PCI devices. When a device is detected, the device is allocated PCI memory and/or I/O space and
its MBAR(s) are programmed with a unique base address. When completed, the PCI bus scan creates
a conflict-free address map for the PCI bus.

7 PCI_AD[18] 0x6 00040000 17 PCI_AD[28] 0x6 10000000

8 PCI_AD[19] 0x6 00080000 18 PCI_AD[29] 0x6 20000000

9 PCI_AD[20] 0x6 00100000 19 PCI_AD[30] 0x6 40000000

Table 5. Au1500 Type 1 Configuration Cycle Base Addresses

Bus
36-Bit Physical

Address
Bus

36-Bit Physical
Address

0 0x6 8000df00 4 0x6 8004df00

1 0x6 8001df00 5 0x6 8005df00

2 0x6 8002df00 255 0x6 80FFdf00

3 0x6 8003df00 bb (<= 255) 0x6 80bbdf00

Table 4. Au1500 Type 0 Configuration Cycle Base Addresses (Continued)

Device
Number

IDSEL
36-Bit Physical

 Address
Device
Number

IDSEL
36-Bit Physical

Address

31 30 11 10 8 7 2 1 0

Reserved Function Register 01Bus DevicePCI_AD[31:0]
Application Note 11

Rev. 1.3 August 2002PCI Bus Software Support for the Au1500
In general, standard PCI auto-configuration software works as intended with the Au1500 PCI bus, but
there are a few additional items to take into consideration (these items are handled outside the
standard PCI bus scan):

1. The Au1500 PCI controller does not respond to a configuration cycle from itself. As such,
the Au1500 memory window is not detected during a PCI bus scan.

2. Devices on the PCI bus which are fast-back-to-back capable should be allocated space in the
area defined by the Au1500 PCI controller back-to-back windows.

The Au1500 PCI controller does not respond to configuration cycles initiated by itself. Consequently,
the PCI auto-configuration software is not aware of the Au1500 memory window. This behavior has
two inter-related side-effects which must be accomodated by software:

• The location and size of the Au1500 memory window must be determined in advance, so that...

• The PCI auto-configuration software must allocate memory regions that do not conflict with the
Au1500 memory window.

PCI auto-configuration software is usually instructed as to the address ranges from which PCI device
memory and I/O addresses can be assigned; therefore, once the Au1500 memory window location (in
PCI space) and size are known, the PCI auto-configuration software must be instructed to avoid the
Au1500 memory window.

The Au1500 PCI controller supports fast back-to-back transactions. The pci_b2bmask, pci_b2bbase0
and pci_b2bbase1 registers form two windows for utilizing fast back-to-back PCI signalling on
outgoing memory transactions. To take advantage of this performance feature, the following must be
accomodated by software:

• The location and size of the fast back-to-back windows must be determined in advance, so that...

• The PCI auto-configuration software should allocate memory regions from the fast back-to-back win-
dows for devices that advertise the fast back-to-back capability.

During the PCI bus-scan, for those PCI devices that are fast back-to-back capable (Command register
bit 9 is set), the PCI auto-configuration software assigns, if possible, a memory region from the
Au1500 PCI controller fast back-to-back windows. PCI auto-configuration software is usually
instructed as to the address ranges to which fast back-to-back transactions are possible; therefore,
once the Au1500 fast back-to-back windows location (in PCI space) and size are known, the PCI
auto-configuration software is provided the fast back-to-back address range so that fast back-to-back
devices can be assigned base addresses within this range.

Note: NOTE: When allocating PCI memory addresses, the range 0xC0000000 to 0xDFFFFFFF
may be desirable since a 1:1 processor-to-PCI mapping can be created. More specifically, an
Au1 core access to MIPS KSEG2 virtual address 0xC0000000 can be mapped via TLBs to a
PCI access to 0xC0000000, a 1:1 mapping. In certain software environments this may greatly
simplify accessing the PCI devices (e.g. the PCI device MBAR value can be used as a pointer).
This 512MB address range should easily accomodate most PCI memory space needs (Au1500
memory window, fast back-to-back window and general device memory space).
12 Application Note

PCI Bus Software Support for the Au1500Rev. 1.3 August 2002
6.4 Software Techniques

Most operating systems have a PCI configuration space support application programming interface,
API, similar to the following: [4]
uint8 pciCfgRd8 (bus, device, func, reg);
uint16 pciCfgRd16 (bus, device, func, reg);
uint32 pciCfgRd32 (bus, device, func, reg);
void pciCfgWr8 (bus, device, func, reg, data);
void pciCfgWr16 (bus, device, func, reg, data);
void pciCfgWr32 (bus, device, func, reg, data);

For Type 0 configuration cycles, the lower 32-bits of the 36-bit physical address are computed in this
fashion:

addr = ((1 << device) << 11) | (func << 8)| reg;

For Type 1 configuration cycles, the lower 32-bits of the 36-bit physical address are computed in this
fashion:

addr = (1 << 31) | (bus << 16) | (device << 11) | (func << 8) | reg;

With the lower 32-bits of the physical address computed, it is necessary to create a valid TLB entry in
order to obtain a mapping onto the PCI configuration space.

There are three primary approaches for mapping PCI configuration space and performing PCI
configuration cycles:

Technique #1) Allocate a fixed TLB entry, and dynamically map/unmap the TLB to the computed 36-
bit PCI configuration cycle address, or

Technique #2) Allocate a fixed TLB entry which covers most of the configuration space, or

Technique #3) Dynamically map/unmap the 36-bit PCI configuration address from the current
process address space.

6.4.1 Configuration Space Access Technique #1

Technique #1 is for operating systems (e.g. Linux, RTOSes, or other operating environments), in
which device drivers do NOT have their own unique address space, and therefore can not
dynamically map/unmap PCI configuration space on demand.

A TLB entry (e.g. TLB index 0) must be allocated for the specific purpose of PCI configuration
cycles. The MIPS CP0 register Wired (i.e. CP0 register 6) must be adjusted accordingly to prevent
random TLB updates from over-writing the entry allocated to the PCI configuration space. The
PageMask should be set to 4KB.

Furthermore, a TLB-translated address range (KUSEG, KSEG2 or KSEG3) must be reserved for the
purpose of providing a 4KB window into PCI configuration space. This 4KB window is sufficient to
cover a PCI Configuration header and is the single window for all PCI configuration accesses.
Application Note 13

Rev. 1.3 August 2002PCI Bus Software Support for the Au1500
Note: NOTE: The least significant bit of the device number field is masked off during address
translation with a 4KB PageMask (a 4KB PageMask utilizes bits [31:12] of the virtual
address). As a result, least significant bit of the device number field (bit 11) must be included
in the computation of the register offset from the virtual base of the PCI configuration space.

The CCA encoding for the TLB entry must be the value 2 for non-cached accesses.

After a PCI configuration space access, examine the pci_config[ERD,ET,EF,EP] bits for access
errors.

See the sample PCI bus scan code which demonstrates this technique.

6.4.2 Configuration Space Access Technique #2

Technique #2 is quite similar to technique #1, but it simplifies the management of the PCI
configuration space. If the hardware design allows, more specifically all device IDSELs are
connected to one of PCI_AD[24:11] and no Type 1 configuration cycles are needed, then a single
fixed (i.e. wired) TLB entry can be established to cover the useful PCI configuration space. Thus the
PCI configuration space is not continually mapped and unmapped during run-time.

A TLB entry (e.g. TLB index 0) must be allocated for the specific purpose of PCI configuration
cycles. The MIPS CP0 register Wired (i.e. CP0 register 6) must be adjusted accordingly to prevent
random TLB updates from over-writing the entry allocated to the PCI configuration space. The TLB
PageMask is set to 16MB and utilizes both EntryLo0 and EntryLo1 to map a continguous 32MB of
PCI configuration space.

A TLB-translated address range (KUSEG, KSEG2 or KSEG3) must be reserved for the purpose of
providing a 32MB window into PCI configuration space. This is not a general purpose solution, but
may suit many embedded hardware and software designs. The PCI configuration headers for devices
with IDSEL connected to one of PCI_AD[24:11] are then directly visible in this KUSEG/KSEG2/
KSEG3 address range.

The CCA encoding for the TLB entry must be the value 2 for non-cached accesses.

After a PCI configuration space access, examine the pci_config[ERD,ET,EF,EP] bits for access
errors.

See the sample PCI bus scan code which demonstrates this technique.

6.4.3 Configuration Space Access Technique #3

Technique #3, on the other hand, permits device drivers in operating systems that do support a
separate virtual address space for device drivers (e.g. Windows CE) to dynamically map/unmap PCI
configuration address space. The driver utilizes the established mapping/unmapping routines and the
resulting virtual pointers to access PCI configuration space, and therefore the need to dedicate a fixed
TLB entry and reserve a KUSEG address is un-necessary.

In all techniques, the CCA encoding for the TLB entry must be the value 2 for non-cached accesses.
14 Application Note

PCI Bus Software Support for the Au1500Rev. 1.3 August 2002
7. PCI Memory Space

The Au1 core is able to generate non-cache-able accesses, cache-able accesses and fast back-to-back
accesses to PCI memory. All PCI accesses first travel through the Au1500 TLB to yield a 36-bit
physical address and a CCA encoding to determine cache-ability. The Au1500 PCI controller also
features different types of windows into PCI space to improve performance.

7.1 Non-cache-able Accesses

Non-cache-able accesses are designated by the TLB producing the 36-bit physical address
0x4 xxxxxxxx with a CCA encoding of 2 or 7. On a read to non-cache-able PCI memory space, the
Au1 core stalls waiting for data, and on a write, the data flows through the write-buffer, stalling only
if the write-buffer is full.

A CCA encoding of 2 prevents gathering in the write buffer, which in turns causes single-beat
accesses to PCI memory. CCA encoding 7 permits gathering in the write buffer, which in turns allows
for burst transfers on the PCI bus. See Au1500 data book “2.3 Write Buffer” for more information.

In general, non-cache-able PCI memory space accesses occur when referencing PCI device registers
and/or memory and tend to be the most frequent type of PCI memory space access.

7.2 Cache-able Accesses

Generally speaking, PCI memory space on the Au1500 is non-cache-able. However, the Au1500 PCI
controller features the pci_cmem register which creates a cache-able window into PCI memory space.
To utilize this feature, the pci_cmem must be enabled and the TLB must produce a physical address
that hits in pci_cmem address range and a CCA encoding of 4.

The pci_cmem[CM_BASE] value is inherently prepended with 0x0 to compare against a 36-bit
physical address (the Au1 core cache tags are for a 32-bit physical address). If the physical address
hits in pci_cmem, then a cache-able PCI memory access takes place.

Note: NOTE: It is NOT possible to use the TLB (with CCA 4) by itself to acheive cache-able PCI
memory space accesses. The Au1 core cache tags are 32-bit physical address tags, and so a
36-bit physical address, like PCI memory space 0x4 xxxxxxxx, is inherently non-cache-able.

The cache-able PCI memory window can be located anywhere, and in particular, within the first
512MB of memory; the MIPS KSEG0 region. However, to use the cache-able PCI memory window
in KSEG0, the Config[K0] field, the CCA encoding for the KSEG0 region, must be set to 4. Do note,
though, that changing KSEG0 to CCA 4 may not be suitable for all/most applications since it may
introduce more processor stalls (since the critical word is no longer accessed first).

A very important consideration in determining to use the cache-able PCI memory window is that
cache-able PCI memory window is NOT coherent with the PCI memory space. As such, the cache-
able PCI memory window may not be suitable for all applications.
Application Note 15

Rev. 1.3 August 2002PCI Bus Software Support for the Au1500
The address and mask values for pci_cmem are application-specific; there is no general-purpose
setting for pci_cmem. As such, the need for this performance feature must be determined by the
application designer.

A graphics video frame buffer would benefit from the cache-able PCI memory window. Note that that
the PCI auto-configuration software must allocate the frame buffer MBAR in an address covered by
pci_cmem. This may require more careful planning of the PCI memory space address map.

7.3 Fast Back-To-Back Accesses

The Au1500 PCI controller supports fast back-to-back accesses. If the 36-bit physical from the TLB
hits in the Au1500 PCI controller fast back-to-back range (as determined by pci_b2bmask,
pci_b2bbase0 and pci_b2bbase1), then the Au1500 controller will use fast back-to-back signalling.

7.4 Direct Memory Access, DMA

PCI devices can perform direct memory accesses, DMA, into Au1500 memory. For PCI device DMA
into Au1500 memory, the Au1500 memory window must be enabled, see “Au1500 Memory
Window” on page 8.

PCI devices that perform DMA are PCI bus masters. The Au1500 internal PCI bus arbiter can be used
to grant different PCI bus masters (up to 4) the bus, or an external arbiter can be used. The decision is
application specific, and the choice of arbiter must be reflected in the pci_config[AEN] bit.

The device drivers for PCI devices should utilize the bus address translation routines previously
described in “Memory Window Considerations” on page 8. DMA engines need PCI space address
pointers, and software needs virtual address pointers. The bus address translation routines are used to
convert pointers from PCI address space to MIPS virtual address space.

7.5 Miscellaneous

All PCI memory accesses are first translated by the TLB into a PCI physical address. Since the TLB
is of finite size (32 entries), it is possible that TLB faults will occur while accessing PCI memory
space. Performance to PCI memory space improve by utilizing static, or wired, TLB entries. With
static TLB entries, TLB faults are eliminated so as to remove the overhead involved in a TLB fault.
Of course, the number of static TLB entries to use and which PCI spaces to cover are application
specific.

8. PCI I/O Space

All PCI accesses first travel through the Au1500 TLB to yield a 36-bit physical address. PCI I/O
space accesses are designated by the TLB producing the 36-bit physical address 0x5 xxxxxxxx. On a
read to PCI I/O space, the Au1 core stalls waiting for data, and on a write, the data flows through the
write-buffer, stalling only if the write-buffer is full.
16 Application Note

PCI Bus Software Support for the Au1500Rev. 1.3 August 2002
PCI I/O space accesses may only be non-cache-able, and therefore must utilize CCA encoding 2.

A static, or wired, TLB entry may be desirable to reduce the possibility of TLB faults and the
overhead associated with handling a TLB fault. The number of static TLB entries to use is application
specific.

9. PCI Interrupts

TBD

10. Big-Endian Considerations

TBD

11. Satellite Mode

The Au1500 PCI controller is configured for satellite mode when the pin PCI_CFG is zero. The use
of a satellite-mode Au1500 is very much application-specific; however, there are a few guidelines to
follow.

• The PCI configuration registers at 0xB40051xx are not visible to the processor.

When in satellite mode, the registers at KSEG1 address 0xB40051XX are not visible to the Au1 core.
As such, these registers must not be accessed during initialization of the PCI controller.

• The PCI configuration registers must be configured before clearing the pci_config[PD] bit.

The pci_config[PD] prevents the Au1500 PCI controller from responding to accesses. The Au1500
PCI configuration registers must be programmed with the appropriate values, then pci_config[PD] bit
cleared. By default, this bit is set so that the controller does not respond to PCI accesses until the PCI
controller is configured.

• The Au1500 responds to configuration cycles.

When in satellite mode, the Au1500 PCI controller does respond to configuration cycles. As such, it
does appear during a normal PCI bus scan. (In host mode, the Au1500 PCI controller does not
respond to configuration cycles.)

• The Au1500 memory window size (pci_mwmask) is reflected in the MBAR during a configuration
cycle access.

During a PCI bus scan, the auto-configuration software manipulates the MBAR to determine the size
of the memory window. The size programmed via pci_mwmask is reflected in the MBAR during the
PCI bus scan so that the proper size is reported to the auto-configuration software.
Application Note 17

Rev. 1.3 August 2002PCI Bus Software Support for the Au1500
12. References

[1] “The Alchemy™ Au1500™ Processor from AMD Data Book”, AMD, 2002.

[2] “PCI Local Bus Specification”, PCI Special Interest Group, 1998.

[3] “MIPS32TM Architecture for Programmers”, MIPS Technologies, Inc., 2001.

[4] “PCI BIOS Specification”, PCI Special Interest Group, 1994.
18 Application Note

