Features

- Wide Power Supply Range, 3.0 V to 5.5 V
- Fast Read Access Time 150 ns
- Compatible with JEDEC Standard AT27C4096
- Low Power 3.3-Volt CMOS Operation 20 µA max. Standby
 - 36 mW max. Active at 5 MHz for Vcc = 3.6 V 165 mW max. Active at 5 MHz for Vcc = 5.5 V
- Wide Selection of JEDEC Standard Packages
 - 40-Lead 600-mil PDIP and Cerdip
 - 44-Pad PLCC and LCC
 - 40-Lead TSOP
- High Reliability CMOS Technology 2000 V ESD Protection
 - 200 mA Latchup Immunity
- Rapid Programming 50 µs/byte (typical)
- **Two-line Control**
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- **Commercial and Industrial Temperature Ranges**

Description

The AT27LV4096 chip is a low power, low voltage 4,194,304 bit ultraviolet erasable and electrically programmable read only memory (EPROM) organized as 256K x 16 bits. It requires only one supply in the range of 3.0 to 5.5 V in normal read mode operation, making it ideal for portable systems.

With a typical power draw of only 15 mW at 1 MHz and Vcc at 3.3 V, the AT27LV4096 draws less than one-fifth the power of a standard 5-V EPROM. Standby mode supply current is typically less than 1 µA at 3.3 V. (continued)

Pin Configurations

Pin Name	Function
A0-A17	Addresses
O0-O15	Outputs
CE	Chip Enable
ŌĒ	Output Enable
NC	No Connect

Note: Both GND pins must be connected.

LCC, JLCC, PLCC Top View

CDIP, PDIP Top View

VPP C 1	40 b VCC
CE d 2	39 A17
O15 c 3	38 🗅 A16
014 0 4	37 A A15
O13 C 5	36 A14
O12 C 6	35 A13
011 6 7	34 5 A12
O10 d 8	33 A11
O9 d 9	32 A10
O8 d 10	31 A9
GND C 11	30 b GND
O7 🗖 12	29 🗅 AB
O6 d 13	28 5 A7
O5 E 14	27 D A6
04 🗖 15	26 D A5
O3 d 16	25 A4
O2 c 17	24 🗆 A3
VPP G 1 CE G 2 O15 G 3 O14 G 4 O13 G 5 O12 G 6 O11 G 7 O10 G 8 O9 G 9 O8 G 10 O6 G 13 O5 G 14 O4 G 15 O3 G 16 O2 G 17 O1 G 18 O0 G 19 O2 G 17 O1 G 18 O2 G 12 O2 G 10 O3 G 18 O2 G 19 O3 G 19 O4 G 10 O5 G 14 O4 G 15 O5 G 16 O6 G 17 O7 G 12 O6 G 17 O7 G 12 O6 G 17 O7 G 12 O6 G 17 O7 G 12 O6 G 17 O7 G 12 O7 G	40 b VCC 39 p A16 37 p A16 36 p A14 35 p A13 34 p A12 33 p A11 31 p A9 30 p GND 29 p A8 28 p A7 27 p A6 26 p A4 24 p A3 23 p A2 24 p A1
<u>00</u> d 19	22 D A1
OE d 20	21 b A0

TSOP Top View Type 1

	•				
A9 A10 0 A11 A12 U 4 A13 A14 U 6	1 2 3 5	40 38 36 34	39 37 35	A8 A6 A4	GND A7 A5 A3
A17 VCC 110 10 VPP CE 12	11	32 30	33 31 29	A2 A0 00	A1 OE
O15 O14 U 14 O13 O12 U 16 O11 O10 U 18	4-	28 26 24	27 25 23	02 04 06	O1 O3 O5
O9 O8 20	40	22	21		07

4 Megabit $(256K \times 16)$ **Low Voltage** UV **Erasable CMOS**

Preliminary

EPROM

3-65

Description (Continued)

The AT27LV4096 comes in a choice of industry standard JEDEC-approved packages, including: one-time programmable (OTP) plastic PDIP, PLCC, and TSOP, as well as windowed ceramic Cerdip and LCC. All devices feature two-line control ($\overline{\text{CE}}$, $\overline{\text{OE}}$) to give designers the flexibility to prevent bus contention.

The AT27LV4096 operating with V_{CC} at 3.0 V produces TTL level outputs that are compatible with standard TTL logic devices operating at $V_{CC} = 5.0 \text{ V}$.

Atmel's 27LV4096 has additional features to ensure high quality and efficient production use. The Rapid Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 50 µs/word. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages. The AT27LV4096 programs identically as an AT27C4096.

Erasure Characteristics

The entire memory array of the AT27LV4096 is erased (all outputs read as VOH) after exposure to ultraviolet light at a wavelength of 2537 Å. Complete erasure is assured after a minimum of 20 minutes exposure using 12,000 $\mu W cm^2$ intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum integrated erasure dose of 15 W-sec/cm². To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPROM which will be subjected to continuous fluorescent indoor lighting or sunlight.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias40°C to +85°C
Storage Temperature65°C to +125°C
Voltage on Any Pin with Respect to Ground2.0 V to +7.0 V ⁽¹⁾
Voltage on A9 with Respect to Ground2.0 V to +14.0 V ⁽¹⁾
VPP Supply Voltage with Respect to Ground2.0 V to +14.0 V ⁽¹⁾
Integrated UV Erase Dose7258 W•sec/cm ²

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes

 Minimum voltage is -0.6 V dc which may undershoot to -2.0 V for pulses of less than 20 ns. Maximum output pin voltage is V_{CC} + 0.75 V dc which may be exceeded if certain precautions are observed (consult application notes) and which may overshoot to +7.0 V for pulses of less than 20 ns.

Operating Modes

. •						
Mode \ Pin	CE	ŌĒ	Ai	VPP	Vcc	Outputs
Read	VIL	VIL	Ai	X ⁽¹⁾	Vcc	Dout
Output Disable	Х	ViH	X	Х	Vcc	High Z
Standby	ViH	Х	Х	Х	Vcc	High Z
Rapid Program ⁽²⁾	VIL	ViH	Ai	V _{PP}	Vcc (2)	DiN
PGM Verify ⁽²⁾	ViH	VIL	Ai	VPP	Vcc (2)	Dout
PGM Inhibit ⁽²⁾	ViH	ViH	Х	VPP	Vcc (2)	High Z
Product Identification ^(2,4)	VIL	VIL	A9=VH ⁽³⁾ A0=VIH or VIL A1-A17=VIL	Vcc	Vcc (2)	Identification Code

Notes: 1. X can be VIL or VIH.

3-66

- 2. Refer to Programming characteristics. Programming modes require V_{CC} ≥ 4.5 V.
- 3. $V_H = 12.0 \pm 0.5 \text{ V}.$

4. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}) , except A9 which is set to V_H and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.

AT27LV4096

1074177 0008117 OST |

D.C. and A.C. Operating Conditions for Read Operation

			AT27LV4096	
		-15	-20	-25
Operating Temperature	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C
(Case)	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
Vcc Power Supply		3.0 V to 5.5 V	3.0 V to 5.5 V	3.0 V to 5.5 V

= Advance Information

D.C. and Operating Characteristics for Read Operation

(VCC = 3.0 V to 5.5 V unless otherwise specified)

Symbol	Parameter	Condi	tion		Min	Max	Units
ΙLI	Input Load Current	V _{IN} = 0	V to Vcc			±1	μА
llo	Output Leakage Current	Vour :	= 0 V to Vcc			±5	μA
IPP1 (2)	V _{PP} ⁽¹⁾ Read/Standby Current	V _{PP} =	Vcc			10	<u>.</u> μΑ
	IsB Vcc ⁽¹⁾ Standby Current	lon. /C	MOS OF Very ARM	Vcc = 3	.6 V	20	μA
IsB		ISB1 (C	CMOS), $\overline{CE} = V_{CC} \pm 0.3 \text{ V}$	Vcc = 5	.5 V	100	μА
Salaraby Surrent	I_{SB2} (TTL), $\overline{CE} = 2.0$ to $V_{CC} + 0.5$ V		Vcc = 3	.6 V	100	μА	
			Vcc = 5	.5 V	1	mA	
		Icc ₁	$f = 5$ MHz, $lout = 0$ mA, $CE = V_{IL}$, $V_{CC} = 3.6$ V	Com.		10	mA
lcc	Vcc Active Current			Ind.		12	mA
	VOCATORY CARCIN	ICC2	$\frac{f = 5}{CE}$ MHz, $lout = 0$ mA $\frac{f = 5}{CE}$ WIL, $VCC = 5.5$ V	Com.		30	mA
				Ind.		40	mA
VIL	Input Low Voltage				-0.6	0.8	٧
ViH	Input High Voltage				2.0	Vcc+0.5	V
Vol	Output Low Voltage	loL = 2	2.0 mA			.4	٧
VOL	Output Low Voltage	loL = 1	loL = 100 μA			.2	٧
Vou	Output High Voltage	Іон = -	2.0 mA		2.4	- 18	٧
Voh C	Output High Voltage	Іон = -	100 μΑ		Vcc-0.2	2	

- Notes: 1. $V_{\rm CC}$ must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .
- 2. Vpp may be connected directly to V_{CC} , except during programming. The supply current would then be the sum of I_{CC} and I_{PP} .

A.C. Characteristics for Read Operation (VCC = 3.0V to 5.5V)

				AT27LV4096						
					15	-4	20	-2	25	
Symbol	Parameter	Condition		Min	Max	Min	Max	Min	Max	Units
tacc ⁽³⁾	ACC (3) Address to Output Delay	CE = OE = VII	Com.		150		200		250	ns
		OL = OL = VIL	Ind.		150		200		250	ns
tce (2)	CE to Output Delay	OE = V _{1L}			150		200		250	ns
toE (2,3)	OE to Output Delay	CE = VIL			60		70		100	ns
t _{DF} (4,5)	OE or CE High to Output Float				50		50		50	ns
tон	Output Hold from Address, CE or OE, whichever occurred first			0		0		0		ns

Notes: 2, 3, 4, 5. - see AC Waveforms for Read Operation.

AMEL

= Advance Information

3-67

1074177 0008118 T96 !

A.C. Waveforms for Read Operation (1)

Notes:

- Timing measurement references are 0.8 V and 2.0 V. Input AC driving levels are 0.45 V and 2.4 V, unless otherwise specified.
- 2. OE may be delayed up to t_{CE}-t_{OE} after the falling edge of CE without impact on t_{CE}.
- 3. OE may be delayed up to tACC-toE after the address is valid without impact on tACC.

 ACC.
- 4. This parameter is only sampled and is not 100% tested.
- Output float is defined as the point when data is no longer driven.

Input Test Waveforms and Measurement Levels

Output Test Load

Note: C_L = 100 pF including jig capacitance.

Pin Capacitance (f = 1 MHz T = 25°C) (1)

	Тур	Max	Units	Conditions
CIN	4	10	pF	V _{IN} = 0V
Cout	8	12	pF	Vout = 0V

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms (1)

Notes:

- The Input Timing Reference is 0.8 V for V_{IL} and 2.0 V for V_{IH}.
- toe and toep are characteristics of the device but must be accommodated by the programmer.
- When programming the AT27LV4096, a 0.1-μF capacitor is required across V_{PP} and ground to suppress spurious voltage transients.

3-68 AT27LV4096

1074177 0008119 922 🔳

D.C. Programming Characteristics

 $T_A = 25 \pm 5^{\circ}C$, $V_{CC} = 6.5 \pm 0.25 V$, $V_{PP} = 13.0 \pm 0.25 V$

Sym-		Test	Li	imits	
bol	Parameter	Conditions	Min	Max ·	Units
ILI	Input Load Current	VIN=VIL,VIH		10	μА
VIL	Input Low Level	(All Inputs)	-0.6	0.8	٧
VIH	Input High Level		2.0	V _{CC+} 0.7	٧
Vol	Output Low Volt.	I _{OL} =2.1 mA		.45	٧
Vон	Output High Volt.	Іон=-400 μА	2.4		٧
lcc2	Vcc Supply Curre (Program and Ve		50	mA	
I _{PP2}	V _{PP} Supply Current	CE=VIL		30	mA
VID	A9 Product Identification Voltage		11.5	12.5	٧

A.C. Programming Characteristics

 $T_A = 25 \pm 5^{\circ}C$, $V_{CC} = 6.5 \pm 0.25 V$, $V_{PP} = 13.0 \pm 0.25 V$

Sym-		Test		mits	
bol	Parameter	Conditions* (see Note 1)	Min		Units
tas	Address Setup Tir	ne	2		μS
toes	OE Setup Time		2		μS
tos	Data Setup Time		2		μS
tan	Address Hold Tim	e	0		μs
tDH	Data Hold Time		2		μS
tDFP	OE High to Output Float Delay	(Note 2)	0	130	ns
tvps	V _{PP} Setup Time		2		μS
tvcs	V _{CC} Setup Time		2		μS
tpw	CE Program Pulse Width	(Note 3)	47.5	52.5	μs
toE	Data Valid from O	Ē		150	ns

*A.C. Conditions of Test:

Input Rise and Fall Times (10% to 90%)	20 ns
Input Pulse Levels 0.45 V to	2.4 V
Input Timing Reference Level 0.8 V to	2.0 V
Output Timing Reference Level 0.8 V to	2.0 V

Notes:

- V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.
- This parameter is only sampled and is not 100% tested.
 Output Float is defined as the point where data is no longer driven see timing diagram.
- 3. Program Pulse width tolerance is $50 \, \mu sec \pm 5\%$.

Atmel's 27LV4096 Integrated Product Identification Code (1)

***	Pins				Hex						
Codes	AO	015-08	07	O 6	O 5	04	ОЗ	02	01	00	Data
Manufacturer	0	0	0	0	0	1	1	1	1	0	001E
Device Type	1	0	1	1	1	1	0	1	0	0	00F4

Note: 1. The AT27LV4096 has the same Product Indentification Code as the AT27C4096. Both are programming compatible.

Rapid Programming Algorithm

A 50 μs \overline{CE} pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5 V and V_{PP} is raised to 13.0 V. Each address is first programmed with one 50 μs \overline{CE} pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a word fails to pass verification, up to 10 successive 50 μs pulses are applied with a verification after each pulse. If the word fails to verify after 10 pulses have been applied, the part is considered failed. After the word verifies properly, the next address is selected until all have been checked. Vpp is then lowered to 5.0 V and V_{CC} to 5.0 V. All words are read again and compared with the original data to determine if the device passes or fails.

3-69

1074177 0008120 644 1

Ordering Information

= Advance Information

tacc (ns) tacc Vcc = 3.6 V Active Standby		3.6 V	Ordering Code	Operation Range		
150	90	0.02	AT27LV4096-15DC AT27LV4096-15JC AT27LV4096-15LC AT27LV4096-15PC AT27LV4096-15VC	40DW6 44J 44LW - 40P6 40V	Commercial (0°C to 70°C)	
150		0.02	AT27LV4096-15DI AT27LV4096-15JI AT27LV4096-15LI AT27LV4096-15PI AT27LV4096-15VI	40DW6 44J 44LW 40P6 40V	Industrial (-40°C to 85°C)	
200	10	0.02	AT27LV4096-20DC AT27LV4096-20JC AT27LV4096-20LC AT27LV4096-20PC AT27LV4096-20VC	40DW6 44J 44LW 40P6 40V	Commercial (0°C to 70°C)	
200	12	0.02	AT27LV4096-20DI AT27LV4096-20JI AT27LV4096-20LI AT27LV4096-20PI AT27LV4096-20VI	40DW6 44J 44LW 40P6 40V	Industrial (-40°C to 85°C)	
250	10	0.02	AT27LV4096-25DC AT27LV4096-25JC AT27LV4096-25LC AT27LV4096-25PC AT27LV4096-25VC	40DW6 44J 44LW 40P6 40V	Commercial (0°C to 70°C)	
250	12	0.02	AT27LV4096-25DI AT27LV4096-25JI AT27LV4096-25LI AT27LV4096-25PI AT27LV4096-25VI	40DW6 44J 44LW 40P6 40V	Industrial (-40°C to 85°C)	

Package Type		
40DW6	40 Lead, 0.600" Wide, Windowed, Ceramic Dual In-Line Package (Cerdip)	
44J	44 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)	
44LW	44 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)	
40P6	40 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)	
40V	40 Lead, Plastic Thin Small Outline Package OTP (TSOP) 10 x 14 mm	

3-70

AT27LV4096

🖿 1074177 0008121 S80 📟