65536-word × 8-bit Low Voltage Operation CMOS Static RAM

HITACHI

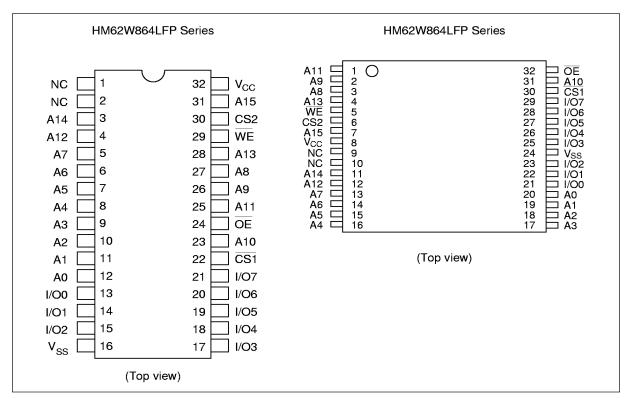
ADE-203-281B (Z) Rev. 2.0 Jul. 25, 1995

Description

The Hitachi HM62W864 is a CMOS static RAM organized 64-kword \times 8-bit. It realizes higher density, higher performance and low power consumption by employing 0.8 μ m Hi-CMOS process technology. It offers low power standby power dissipation; therefore, it is suitable for battery backup systems. The device, packaged in a 525-mil SOP (460-mil body SOP) and a 8 \times 20 mm TSOP with thickness of 1.2 mm, is available for high density mounting. TSOP package is suitable for cards.

Features

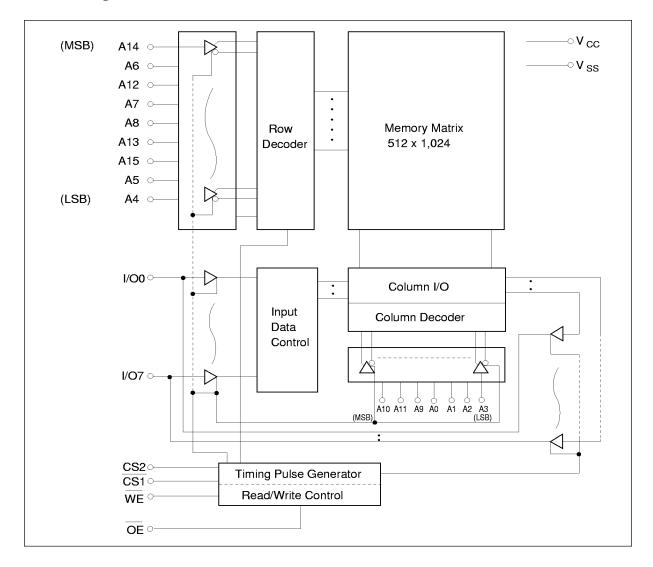
- Low voltage operation SRAM Single 3.0 V to 3.6 V supply
- · High speed
 - Fast access time: 85 ns (max)
- Low power
 - Standby: $0.66 \mu W$ (typ)
- Completely static memory
 No clock or timing strobe required
- Equal access and cycle times
- Common data input and output


Three state output

- Directly LVTTL compatible
 - All inputs and outputs
- Capability of battery backup operation
 - 2 chip selection for battery backup

Ordering Information

Type No.	Access Time	Package
HM62W864LFP-8	85 ns	525-mil 32-pin plastic SOP (FP-32D)
HM62W864LT-8	85 ns	8 mm × 20 mm 32-pin TSOP (normal type) (TFP-32D)


Pin Arrangement

Pin Description

Pin Name	Function			
A0 to A15	Address			
I/O0 to I/O7	Data input/output			
CS1	Chip select 1			
CS2	Chip select 2			
WE	Write enable			
ŌĒ	Output enable			
NC	No connection			
V _{cc}	Power supply			
V _{ss}	Ground			

Block Diagram

Function Table

CS1	CS2	OE	WE	Mode	V _{cc} Current	I/O Pin	Ref. Cycle
Н	X	X	X	Not selected	I_{SB}, I_{SB1}	High-Z	_
X	L	Χ	Χ	Not selected	I _{SB} , I _{SB1}	High-Z	_
L	Н	Н	Н	Output disable	I _{cc}	High-Z	_
L	Н	L	Н	Read	I _{cc}	Dout	Read cycle (1) to (3)
L	Н	Н	L	Write	I _{cc}	Din	Write cycle (1)
L	Н	L	L	Write	I _{cc}	Din	Write cycle (2)

Note: X: High or Low

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power supply voltage ^{*1}	V_{cc}	-0.5 to +4.6	V
Terminal voltage *1	V _T	-0.5 *2 to V _{cc} + 0.5*3	V
Power dissipation	P _T	1.0	W
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	−55 to +125	°C
Storage temperature under bias	Tbias	−10 to +85	°C

Notes: 1. Relative to V_{ss}

2. V_T min: -3.0 V for pulse half-width ≤ 50 ns

3. Maximum voltage is 4.6V

Recommended DC Operating Conditions (Ta = $0 \text{ to } +70^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V_{cc}	3.0	3.3	3.6	V
	V_{ss}	0	0	0	V
Input high (logic 1) voltage	V _{IH}	2.0	_	V _{cc} + 0.3	V
Input low (logic 0) voltage	V _{IL}	-0.3 ^{*1}	_	0.8	V

Note: 1. V_{IL} min: –3.0 V for pulse half-width ≤ 50 ns

DC Characteristics (Ta = 0 to +70°C, $V_{\rm CC}$ = 3.3 V \pm 0.3 V, $V_{\rm SS}$ = 0 V)

Parameter	Symbol	Min	Typ ^{*1}	Max	Unit	Test conditions
Input leakage current	$ I_{Li} $	_	_	1	μΑ	$V_{SS} \le Vin \le V_{CC}$
Output leakage current	I _{LO}	_	_	1	μА	$\overline{CS1} = V_{IH} \text{ or } CS2 = V_{IL} \text{ or } \overline{OE} = V_{IH}$ or $\overline{WE} = V_{IL}, V_{SS} \le V_{I/O} \le V_{CC}$
Operating power supply current	I _{cc}	_	_	15	mA	$\overline{CS1} = V_{IL}, CS2 = V_{IH},$ Others = $V_{IH}/V_{IL}, I_{I/O} = 0 \text{ mA}$
Average operating power supply current	I _{CC1}	_	_	35	mA	$\begin{aligned} & \underline{\text{Min cycle, duty}} = 100\%, \\ & \overline{\text{CS1}} = V_{\text{IL}}, \ \text{CS2} = V_{\text{IH}} \\ & \text{Others} = V_{\text{IH}}/V_{\text{IL}}, \ I_{\text{I/O}} = 0 \ \text{mA} \end{aligned}$
	I _{CC2}	_	10	15	mA	$\begin{split} &\text{Cycle time} = 1~\mu\text{s},~\text{duty} = 100\%,\\ &I_{\text{I/O}} = 0~\text{mA},~\overline{\text{CS1}} \leq \text{V}_{\text{IL}},~\text{CS2} \geq \text{V}_{\text{IH}},\\ &\text{Others} = \text{V}_{\text{IH}}/\text{V}_{\text{IL}},\\ &\text{V}_{\text{IH}} \geq \text{V}_{\text{CC}} - 0.2~\text{V},~0~\text{V} \leq \text{V}_{\text{IL}} \leq 0.2~\text{V} \end{split}$
Standby power supply current	I _{SB}	_	0.1	1	mA	(1) or (2) (1) CS1 = V _{IH} , CS2 = V _{IH} (2) CS2 = V _{IL}
	I _{SB1}	_	0.2	50	μА	$ \begin{array}{l} 0 \ V \leq V \text{in} \leq V_{\text{CC}}, \ (1) \ \text{or} \ (2) \\ (1) \ \overline{CS1} \geq V_{\text{CC}} - 0.2 \ V, \\ CS2 \geq V_{\text{CC}} - 0.2 \ V \\ (2) \ 0 \ V \leq CS2 \leq 0.2 \ V \\ \end{array} $
Output low voltage	V _{oL}	_	_	0.4	٧	I _{oL} = 2.0 mA
				0.2	٧	I _{OL} = 100 μA
Output high voltage	V _{OH}	$V_{\text{CC}} - 0.2$			٧	$I_{OH} = -100 \mu A$
		2.4	_		٧	I _{OH} = -2.0 mA

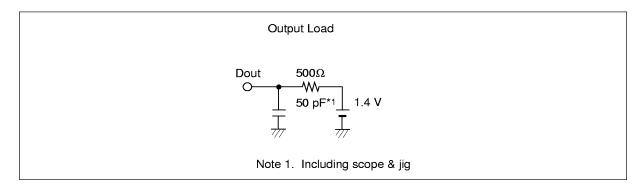
Note: 1. Typical values are at $V_{CC} = 3.3 \text{ V}$, $Ta = +25^{\circ}\text{C}$ and not guaranteed.

Capacitance (Ta = 25°C, f = 1.0 MHz)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input capacitance*1	Cin	_	_	5	pF	Vin = 0 V
I/O Pin capacitance*1	C _{vo}	_	_	8	рF	V _{I/O} = 0 V

Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 3.3 V \pm 0.3 V, unless otherwise noted.)

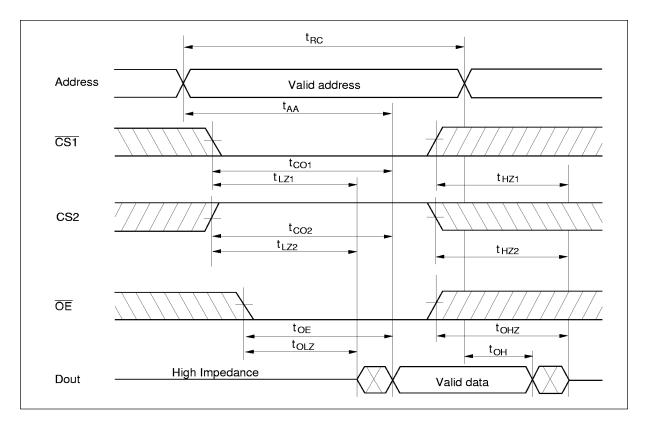

Test Conditions

• Input pulse levels: 0.4 V to 2.4 V

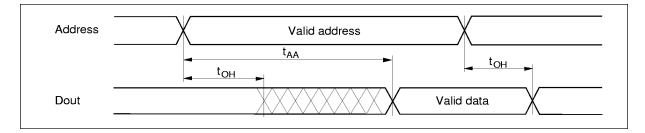
• Input rise and fall time: 5 ns

• Input timing reference level: 1.4 V

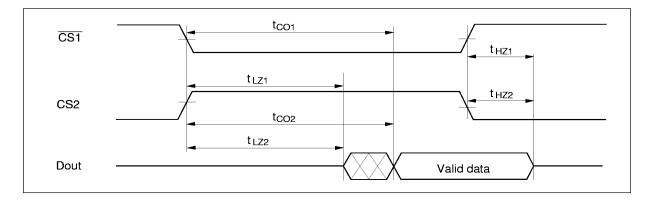
• Output timing reference level: 0.8 V/2.0 V


Read Cycle

			HM62V	V864-8		
Parameter		Symbol	Min	Max	Unit	Notes
Read cycle time		t _{RC}	85	_	ns	
Address access time		t _{AA}	_	85	ns	
Chip select access time	CS1	t _{co1}	_	85	ns	
	CS2	t _{co2}	_	85	ns	
Output enable to output valid		t _{oe}	_	45	ns	
Chip selection to output in low-Z	CS1	t _{LZ1}	10	_	ns	2
	CS2	t _{LZ2}	10	_	ns	2
Output enable to output in low-Z		t _{oLZ}	5	_	ns	2
Chip deselection in output in high-Z	CS1	t _{HZ1}	0	30	ns	1, 2
	CS2	t _{HZ2}	0	30	ns	1, 2
Output disable to output in high-Z		t _{oHZ}	0	30	ns	1, 2
Output hold from address change		t _{oн}	10	_	ns	

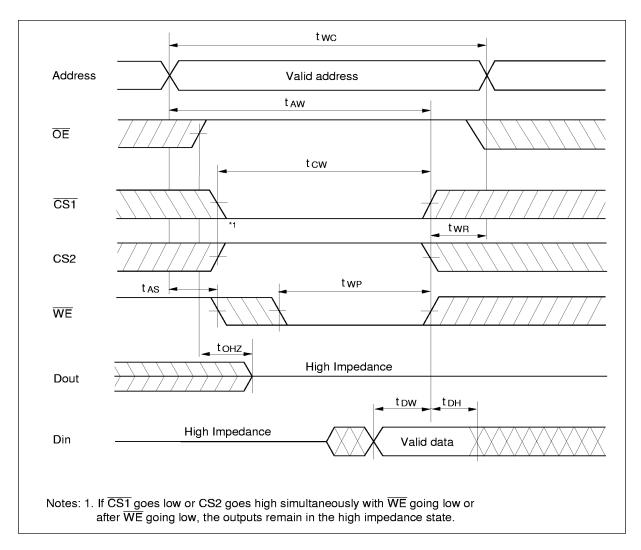

Notes: 1. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

2. This parameter is sampled and not 100% tested.


Read Timing Waveform (1) $(\overline{WE} = V_{IH})$

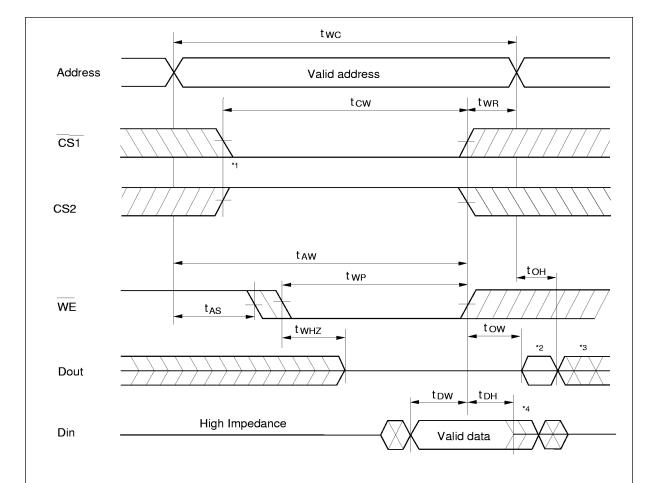
Read Timing Waveform (2) $(\overline{WE} = V_{IH})$

Read Timing Waveform (3) $(\overline{WE} = V_{IH})$


Write Cycle

		HM62V	V 864-8		
Parameter	Symbol	Min	Max	Unit	Notes
Write cycle time	t _{wc}	85	_	ns	
Chip selection to end of write	t _{cw}	75	_	ns	4
Address setup time	t _{AS}	0	_	ns	5
Address valid to end of write	t _{AW}	75	_	ns	
Write pulse width	t _{wP}	55	_	ns	3, 8
Write recovery time	t _{wr}	0	_	ns	6
Write to output in high-Z	t _{wHZ}	0	30	ns	1, 2, 7
Data to write time overlap	t _{DW}	35	_	ns	
Data hold from write time	t _{DH}	0	_	ns	
Output active from end of write	t _{ow}	5	_	ns	2
Output disable to output in high-Z	t _{oHZ}	0	30	ns	1, 2, 7

Notes: 1. t_{wHz} and t_{oHz} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.


- 2. This parameter is sampled and not 100% tested.
- 3. A write occurs during the overlap of a low CS1, a high CS2 and a low WE. A write begins at the latest transition among $\overline{\text{CS1}}$ going low, CS2 going high, and $\overline{\text{WE}}$ going low. A write ends at the earliest transition among CS1 going high, CS2 going low, and WE going high. two is measured from the beginning of write to the end of write.
- 4. t_{cw} is measured from the later of CS1 going low or CS2 going high to the end of write.
- 5. t_{AS} is measured from the address valid to the beginning of write.
- 6. t_{wR} is measured from the earliest of $\overline{CS1}$ or \overline{WE} going high or CS2 going low to the end of write cycle.
- 7. During this period, I/O pin are in the output state; therefore, the input signals of the opposite phase to the outputs must not be applied.
- 8. In the write cycle with \overline{OE} low fixed, t_{WP} must satisfy the following equation to avoid a problem of data bus contention, $t_{WP} \ge t_{WHZ} \max + t_{DW} \min$.

Write Timing Waveform (1) (OE Clock)

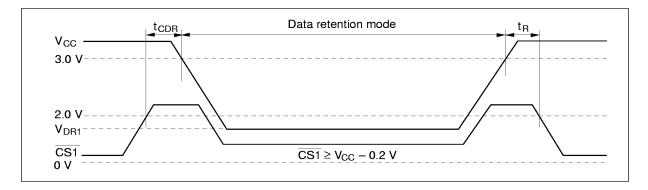
HITACHI 10

Write Timing Waveform (2) (OE Low Fixed)

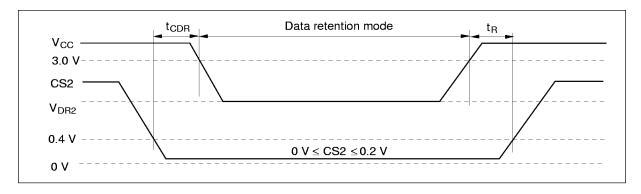
Notes: 1. If $\overline{\text{CS1}}$ goes low or CS2 goes high simultaneously with $\overline{\text{WE}}$ going low or after $\overline{\text{WE}}$ going low, the outputs remain in the high impedance state.

- 2. Dout is the same phase of the latest written data in this write cycle.
- 3. Dout is the read data of next address.
- 4. If $\overline{\text{CS1}}$ is low and CS2 is high during this period, I/O pins are in the output state. Therefore, the input signals of opposite phase to the outputs must not be applied to them.

Low $V_{\rm CC}$ Data Retention Characteristics (Ta = 0 to +70°C)

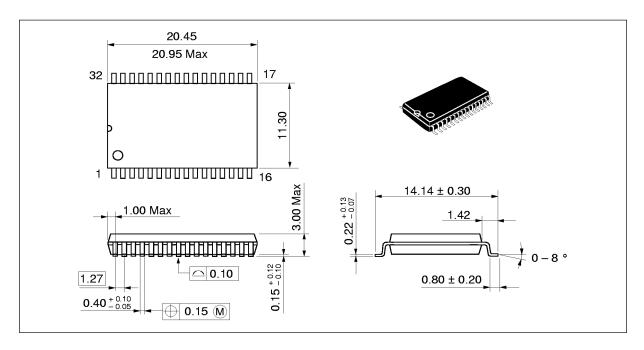

This characteristics is guaranteed only for L-version.

Parameter	Symbol	Min	Typ ^{∵1}	Max	Unit	Test conditions ^{'4}
V _{cc} for data retention	V_{DR}	2.0	_	3.6	V	$\begin{array}{l} 0 \ V \leq Vin \leq V_{\text{CC}}, \ (1) \ or \ (2) \\ (1) \ \overline{CS1} \geq V_{\text{CC}} - 0.2 \ V, \\ CS2 \geq V_{\text{CC}} - 0.2 \ V \\ (2) \ 0 \ V \leq CS2 \leq 0.2 \ V \end{array}$
Data retention current	I _{CCDR}	_	0.1	30 ^{*2}	μΑ	$\begin{split} &V_{\text{CC}} = 3.0 \text{ V}, \\ &0 \text{ V} \leq \text{Vin} \leq \text{V}_{\text{CC}}, \text{ (1) or (2)} \\ &\text{(1) } \overline{\text{CS1}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V}, \\ &\text{CS2} \geq \text{V}_{\text{CC}} - 0.2 \text{ V} \\ &\text{(2) } 0 \text{ V} \leq \text{CS2} \leq 0.2 \text{ V} \end{split}$
Chip deselect to data retention time	t _{CDR}	0	_		ns	See retention waveform
Operation recovery time	t _R	t _{RC} *3	_	_	ns	_

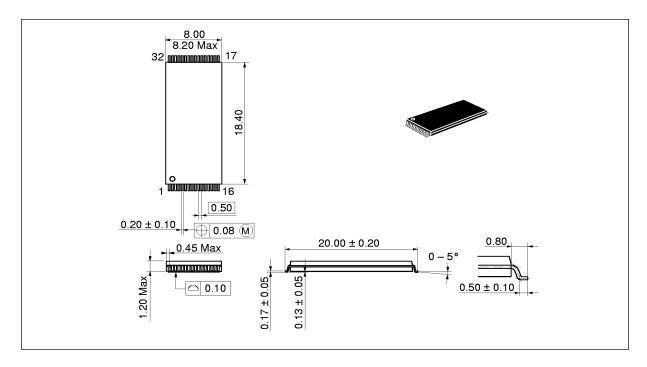

Notes: 1. Typical values are at $V_{cc} = 3.0 \text{ V}$, $Ta = 25^{\circ}\text{C}$ and not guaranteed.

- 2. $20 \mu A \text{ max at Ta} = 0 \text{ to } 40 ^{\circ}\text{C}$.
- 3. t_{RC} = Read cycle time.
- 4. CS2 controls address buffer, WE buffer, CS1 buffer, OE buffer, and Din buffer. If CS2 controls data retention mode, Vin levels (address, WE, OE, CS1, I/O) can be in the high impedance state. If CS1 controls data retention mode, CS2 must be CS2 ≥ V_{cc} − 0.2 V or 0 V ≤ CS2 ≤ 0.2 V. The other input levels (address, WE, OE, I/O) can be in the high impedance state.

$Low~V_{CC}~Data~Retention~Timing~Waveform~(1)~(\overline{CS1}~Controlled)$


Low V_{CC} Data Retention Timing Waveform (2) (CS2 Controlled)

Package Dimensions


HM62W864LFP Series (FP-32D)

Unit: mm

HM62W864LT Series (TFP-32D)

Unit: mm

