
LTR						DESCF	RIPTIO	N					D	ATE (Y	'R-MO-DA	۹)		APPR	OVED	
А		device t rements						late to i	nclude	rad har	b			96-0	3-13	3 Monica L. Poelking		ng		
В		device t ghout		7, 08, ai	nd 09.	Update	e boilerp	olate. E	ditorial	change	S			98-0	8-27		М	lonica L	Poelki	ng
С	timing	g sectio	n; add f	limits; add footnote to I_{DDQ} ; add t_c in power-up master reset ootnote to V_{OS} and V_{DIS} . Correct the JTAG timing waveforms in table III. – TVN							99-0	4-28		М	lonica L	Poelki	ng			
D	Add o	device t	ypes 10) and 1	1. Edit	orial ch	anges t	hrough	out T	VN				00-0	6-27		М	lonica L	Poelki	ng
Е		notes to ghout.		ry write	write and memory read waveforms. Editor				orial cha	anges			01-0	3-13		Г	Thomas	M. Hes	S	
F							figure ∕ 6. – TV		, correc	t footno	ote <u>1</u> / fo	r		01-0	7-27		г	Thomas	M. Hes	S
REV	В	В	В	D																
SHEET	35	36	37	38																
SHEET REV	35 D	36 D	37 B	38 B	B	F	D	D	В	D	В	E	E	C	В	F	B 24	B	B 222	B
SHEET REV SHEET	35 D 15	36	37	38 B 18	19	F 20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
SHEET REV	35 D 15	36 D	37 B	38 B 18 REV	19		21 F	22 D	23 D	24 D	25 F	26 D	27 D	28 D	29 D	30 D	31 D	32 D	33 D	34 D
SHEET REV SHEET REV STATUS	35 D 15	36 D	37 B	38 B 18 REV SHE PREF	19 ET PARED	20	21 F 1	22	23	24	25 F 5	26 D 6 EFEN	27 D 7 SE SI	28 D 8 JPPL	29 D 9 Y CE	30 D 10	31 D 11	32 D 12	33 D 13	34
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA	35 D 15	36 D 16	37 B 17	38 B 18 REV SHE PREF Tho CHE	19 ET PAREE omas M CKED	20 D BY 1. Hess	21 F 1	22 D	23 D	24 D	25 F 5	26 D 6 EFEN	27 D 7 SE SI COL	28 D 8 UPPL UMBL	29 D 9 Y CE	30 D 10	31 D 11 COL 43216	32 D 12	33 D 13	34 D
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO THIS DRAW	35 D 15 NDAF OCIRC	36 D 16 RD CUIT	37 B 17	38 B 18 REV SHE PREF Tho CHE0 Tho APPF	19 ET PAREE omas M CKED omas M ROVEE	20) BY 1. Hess BY 1. Hess	21 F 1	22 D	23 D	24 D 4	25 F 5 DI	26 D 6 EFEN	27 D 7 SE SI COLI http	28 D 8 UPPL UMBL ://ww	29 D 9 Y CE JS, O vw.ds	30 D 10 NTER HIO 4 cc.dla	31 D 11 COL 43216 a.mil	32 D 12 UMB	33 D 13 US	34 D 14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICR (THIS DRAWL FOR U	35 D 15 NDAF DCIRC NG IS A JSE BY / ARTMEN NCIES C	36 D 16 RD CUIT VAILAE ALL TS DF THE	37 B 17	38 B 18 REV SHE PREF Tho CHE0 Tho APPF Mo	19 ET PAREE omas M CKED omas M ROVEE nica L.	20 D BY 1. Hess BY 1. Hess D BY Poelkir APPR(21 F 1	22 D 2	23 D	24 D 4 MIC MIC	25 F 5 DI ROCI	26 D 6	27 D 7 SE SI COL http	28 D 8 UPPL UMBL D://ww GITAL	29 9 Y CE JS, O w.ds	30 D 10 NTER HIO 4 cc.dla OS, S NTEL	31 D 11 COL 43216 a.mil	32 D 12 UMB	33 D 13 US	34 D 14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A MICRO THIS DRAWI FOR U DEPA AND AGE DEPARTME	35 D 15 NDAF DCIRC NG IS A JSE BY / ARTMEN NCIES C	36 D 16 RD CUIT VAILAE ALL TS DF THE DEFENS	37 B 17	38 B 18 REV SHE Tho CHE0 Tho DRA	19 ET PAREE omas M CKED omas M ROVEE nica L. WING	20 D BY 1. Hess D BY Poelkir APPR(95-C	21 F 1 DVAL D 03-31	22 D 2	23 D	24 D 4 MIC MIC ANE SIZE	25 F 5 DI ROCI ROCO TRA	26 D 6 EFEN NSCI	27 D 7 SE SI COL http	28 D 8 UPPL UMBL 0://ww GITAL .TI-M(R, SIL	29 9 Y CE JS, O w.ds	30 D 10 NTER HIO 4 cc.dla OS, S NTEL	31 D 11 COL 43216 a.mil ERIA LIGE	32 D 12 UMB	33 D 13 US	34 D 14

1. SCOPE

1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN.

1.2 <u>PIN</u>. The PIN is as shown in the following example:

1.2.1 <u>RHA designator</u>. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number	Circuit function
01	69151-LX15	Serial microcoded multi-mode intelligent terminal with 15-volt transceiver
02	69151-DX	Serial microcoded multi-mode intelligent terminal with 5-volt transceiver
03	69151-LX12	Serial microcoded multi-mode intelligent terminal with 12-volt transceiver
04	69151-LXE15	Enhanced serial microcoded multi-mode intelligent terminal with 15-volt transceiver radiation hardened
05	69151-DXE	Enhanced serial microcoded multi-mode intelligent terminal with 5-volt transceiver radiation hardened
06	69151-LXE12	Enhanced serial microcoded multi-mode intelligent terminal with 12-volt transceiver
07	69151-LXE15	Enhanced serial microcoded multi-mode intelligent terminal with 15-volt transceiver
08	69151-DXE	Enhanced serial microcoded multi-mode intelligent terminal with 5-volt transceiver
09	69151-LXE12	Enhanced serial microcoded multi-mode intelligent terminal with 12-volt transceiver
10	69151-LXE15	Enhanced serial microcoded multi-mode intelligent terminal with 15-volt transceiver radiation hardened
11	69151-DXE	Enhanced serial microcoded multi-mode intelligent terminal with 5-volt transceiver radiation hardened

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94663
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL D	SHEET 2

1.2.3 Device class designator. The device class designator is a single letter identifying the product assurance level as follows:

follows:			
Device class		Device requireme	ents documentation
М		lass level B microcirco	equirements for MIL-STD-883 compliant, uits in accordance with MIL-PRF-38535,
Q or V	Certificatio	n and qualification to	MIL-PRF-38535
1.2.4 <u>Case outline(s)</u> . Th	he case outline(s) are as desig	nated in MIL-STD-183	35 and as follows:
Outline letter	Descriptive designator	<u>Terminals</u>	Package style
X Y	See figure 1 See figure 1	100 100	Pin grid array <u>1</u> / Leaded chip carrier with nonconductive tier bar
1.2.5 <u>Lead finish</u> . The le appendix A for device class		-PRF-38535 for devic	e classes Q and V or MIL-PRF-38535,
1.3 Absolute maximum r	<u>atings</u> . <u>2</u> /		
Operating case temp Transceiver supply we Device types 01, 0 Transceiver supply we Device types 02, 0 Logic supply voltage Input voltage range (Device types 01, 0 Device types 02, 0 Maximum power diss Logic voltage on any Logic latch-up immur Logic input current (I _o): Device types 01, 0 Device types 02, 0 Maximum junction te Receiver common me Device types 01, 0 Device types 02, 0 Lead temperature (so	¹³ , 0 ⁴ , 0 ⁶ , 0 ⁷ , 09, 10 oltage range (V _{CC}): ¹⁵ , 08, 11 range (V _{DD}) V _{DR}): ¹³ , 04, 06, 07, 09, 10 5, 08, 11 sipation (P _D)		$\begin{array}{c} -55^{\circ}\text{C to } +125^{\circ}\text{C} \\ \hline -22 \text{ V dc} \\ \hline -0.3 \text{ V dc to } +7.0 \text{ V dc} \\ \hline -0.3 \text{ V dc to } +7.0 \text{ V dc} \\ \hline -0.3 \text{ V dc to } +7.0 \text{ V dc} \\ \hline -0.3 \text{ V dc to } +7.0 \text{ V dc} \\ \hline -0.3 \text{ V dc to } \text{V}_{\text{DD}} + 0.3 \text{ V dc} \\ \hline +150 \text{ mA} \\ \hline +150 \text{ mA} \\ \hline +100 \text{ mA} \\ \hline -0.00 \text{ mA} \\ \hline +150^{\circ}\text{C} \\ \hline -11 \text{ V dc to } +11 \text{ V dc} \\ \hline -5 \text{ V dc to } +5 \text{ V dc} \\ \hline +300^{\circ}\text{C} \end{array}$
2/ Stress outside the lister	96 terminals on the bottom and d absolute maximum rating ma eration of the device at these o	y cause permanent d	f the package, see figure 1. amage to the device. This is a stress rating beyond limits indicated in the operational

<u>1</u>/ <u>2</u>/ sections of this specification is not recommended. Exposure to absolute maximum rating conditions for extended periods affect device reliability.

Per MIL-STD-883, Method 1012. <u>3</u>/

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94663
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		D	3

1.4 Recommended operating conditions.

Transceiver supply voltage range (V _{CC}):	
Device types 01, 03, 04, 06, 07, 09, 10	+4.75 V dc to +5.5 V dc
Device type 02	+4.75 V dc to +5.25 V dc
Device types 05, 08, 11	
Logic supply voltage range (V _{DD})	+4.5 V dc to +5.5 V dc
Transceiver supply voltage range (V _{EE}):	
Device types 01, 04, 07, 10	15 V dc
Device types 03, 06, 09	12 V dc
Receiver differential voltage (V _{DR}):	
Device types 01, 03, 04, 06, 07, 09, 10	
Device types 02, 05, 08, 11	
Logic dc input voltage range (V _{IN})	0 V dc to V _{DD}
Receiver common mode input voltage (V _{IC}):	
Device types 01, 03, 04, 06, 07, 09, 10	±10 V dc
Device types 02, 05, 08, 11	±5.0 V dc
Driver peak output current (I _o):	
Device types 01, 03, 04, 06, 07, 09, 10	180 mA
Device types 02, 05, 08, 11	700 mA
Serial data rate range (S_D)	0 to 1 MHz
Clock duty cycle (D _C)	50 ± 5%
Case operating temperature range (T _c)	55°C to +125°C
Operating frequency (F _{IN})	
Radiation features:	
Total dose	
Device type 04, 10	≤ 100k Rads (Si)
Device type 05	
Device type 11	
Single event phenomenon (SEP) effective	(_)
linear energy threshold, no upsets	
Neutron fluence (TM 1017)	
	-
1.5 Digital logic testing for device classes Q and V.	
Fault coverage measurement of manufacturing	
logic tests (MIL-STD-883, test method 5012)	95.12 percent

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation.

1/ Values will be added when they become available. Rad hard devices have not yet been tested for neutron or SEP.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94663
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		D	4

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883 -	Test Methods Standard Microcircuits.
MIL-STD-1835 -	Interface Standard Electronic Component Case Outlines.

HANDBOOKS

DEPARTMENT OF DEFENSE

MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Non-Government publications</u>. The following document(s) form a part of this document to the extent specified herein. Unless otherwise specified, the issues of the documents which are DOD adopted are those listed in the issue of the DODISS cited in the solicitation. Unless otherwise specified, the issues of documents not listed in the DODISS are the issues of the documents cited in the solicitation.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

IEEE Standard 1149.1 - IEEE Standard Test Access Port and Boundary Scan Architecture.

(Applications for copies should be addressed to the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854-4150.)

(Non-Government standards and other publications are normally available from the organizations that prepare or distribute the documents. These documents may also be available in or through libraries or other informational services.)

2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94663
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		F	5

3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.4 and figure 1 herein.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.

3.2.3 <u>Block diagram</u>. The block diagram shall be as specified on figure 3.

3.2.4 Boundary scan instruction codes. The boundary scan instruction codes shall be as specified on figure 4.

3.2.5 Timing waveforms. The timing waveforms shall be as specified on figure 5.

3.2.6 Radiation exposure connections. The radiation exposure connections shall be as specified on figure 6.

3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table IA and shall apply over the full case operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in table IA.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A.

3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.

3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change for device class M</u>. For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-PRF-38535, appendix A.

3.9 <u>Verification and review for device class M</u>. For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number H (see MIL-PRF-38535, appendix A).

3.11 <u>IEEE 1149.1 compliance</u>. These devices shall be compliant to IEEE 1149.1.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94663
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		D	6

		TABLE IA. <u>Elec</u>	trical performance	characteri	stics.			
Test	Symbol	-55°C ≤ T	ditions <u>1</u> / _C ≤ +125°C	Device type	Group A subgroups	Lim	nits	Unit
			$V_{DD} \le 5.5 \text{ V}$ wise specified			Min	Max	
Low level input voltage	V _{IL1}			All	1, 2, 3		0.8	V
Low level input voltage, TCK only	V _{IL2}			01, 02 03, 04 05, 06 10, 11	1, 2, 3		0.8	
				07, 08 09	1, 2, 3		0.7	
High level input voltage	VIH			All	1, 2, 3	2.2		V
Low level input voltage <u>2</u> /	V _{ILC}			All	1, 2, 3		0.3V _{DD}	V
High level input voltage <u>2</u> /	VIHC			All	1, 2, 3	$0.7V_{DD}$		V
Low level output	V _{OL}	Output loads	I _{OL} = 4.0 mA	All	1, 2, 3		0.4	V
voltage			I _{OL} = 1.0 μA <u>3</u> /				0.05	
High level output	V _{OH}	Output loads	I _{OH} = 4.0 mA	All	1, 2, 3	2.4		V
voltage			I _{OH} = 1.0 μA <u>3</u> /			V _{DD} -0.05		
Input leakage current	I _{IN}	TTL driven inputs	V _{IN} = V _{DD} or V _{SS}	All	1, 2, 3	-10	+10	μΑ
		Inputs with	$V_{\text{IN}} = V_{\text{DD}}$			-10	+10	
	p	pull-up resistors	V _{IN} = V _{SS}	01, 02, 03, 04, 05, 06 10, 11	1, 2, 3	-900	-150	
				07, 08, 09	-	-167	-27	
Three-state output leakage current, TTL loaded outputs, single-drive buffer	l _{oz}	$V_{O} = V_{DD} \text{ or } V_{SS}$		All	1, 2, 3	-10	+10	μA
Short-circuit output current, output loads	I _{OS} <u>4/5/</u>	$V_{DD} = 5.5 V, V_{O} = V_{DD} = 5.5 V, V_{O} =$		All	1, 2, 3	-100	+100	mA
Input capacitance	C _{IN}	f = 1 MHz at 0 V		All	4		45	pF
Output capacitance	COUT	See 4.4.1c		All	4		45	1
Bi-directional capacitance <u>6</u> /	C _{IO}			All	4		45	
Standby operating current	I _{DDS}	f = 24 MHz		All	1, 2, 3		40	mA
See footnotes at end of ta	ble.							
		RD DRAWING		ZE A			5962-9	4663
DEFENSE SUP	PLY CENT	ER COLUMBUS			REVISION L	EVEL	SHEET 7	

Test Symbo		$-55^{\circ}C \le T_{C} \le +125^{\circ}C$			Device type	Group A subgroups	Limits		Unit	
			$V \le V_{DD} \le 5.5 \text{ V}$ therwise specifie	ed			Min	Max		
Quiescent current	I _{DDQ}	f = 0 MHz			01 – 10	1, 3		35	μΑ	
<u>7/8/</u>						2		1	mA	
			Pre-irradiatio	n level	11	1, 3		35	μΑ	
			R			2		1	mA	
			Pre-irradiatio	n level	11	1, 3		35	μΑ	
			F			2		5	mA	
V _{CC} supply current	I _{CC}	V _{EE} = -12 V V _{CC} = 5 V	0% duty cycle (non-transm		03, 06 09	1, 2, 3		140	mA	
			50% duty cyc (f = 1 MHz)	le <u>9</u> /				140		
			100% duty cy (f = 1 MHz)					140		
		V _{EE} = -15 V V _{CC} = 5 V	0% duty cycle (non-transm		01, 04 07, 10			140		
			50% duty cyc (f = 1 MHz)	le <u>10</u> /				140	1	
			100% duty cy (f = 1 MHz)	/cle <u>10</u> /				140		
		$V_{CC} = 5 V$	0% duty cycle (non-transm		02, 05 08, 11	1, 2, 3		55		
			25% duty cyc	le <u>10</u> /				250	_	
			50% duty cyc (f = 1 MHz)					410		
					87.5% duty cycle (f = 1 MHz) <u>10</u> /					650
			100% duty cycle (f = 500 kHz)		02			855		
EE SUPPLY CURRENT	I _{EE}	V _{EE} = -12 V V _{CC} = 5 V	0% duty cycle (non-transm		03, 06 09	1, 2, 3		80	mA	
			50% duty cyc (f = 1 MHz)					180		
			100% duty cy (f = 1 MHz)					270		
		V _{EE} = -15 V V _{CC} = 5 V	0% duty cycle (non-transm		01, 04 07, 10			80		
			50% duty cyc (f = 1 MHz)					180		
			100% duty cy (f = 1 MHz)					270		
See footnotes at end c	f table.							•	·	
	STANDA				IZE A			5962-9	4663	
DEFENSE S	UPPLY CEN	DRAWING ITER COLUME 43216-5000	BUS			REVISION LE	VEL	SHEET		

Test	Symbol	Test conditions $\frac{1}{-55^{\circ}C} \le T_{C} \le +125^{\circ}C$	Device type	Group A subgroups	Lin	nits	Unit
		$4.5~V \le V_{\text{DD}} \le 5.5~V$ unless otherwise specified			Min	Max	-
Functional tests		See 4.4.1b	All	7, 8			
	-	Register write tim	ing				•
Address setup time <u>9</u> /	ta	V _{CC} = minimum See figure 5	All	9, 10, 11	0		ns
Data setup time <u>9</u> /	t _b	See ligure 5	All	9, 10, 11	10		_
Data hold time <u>9</u> /	t _c		All	9, 10, 11	8		_
Address hold time <u>9</u> /	t _d		All	9, 10, 11	8		
$\overline{CS} \downarrow$ to $\overline{CS} \uparrow \underline{9}/$	t _e		All	9, 10, 11	105		
Access delay <u>9/ 11/ 12</u> /	t _f		All	9, 10, 11	85		
$\frac{\text{RD}}{\text{WR}}$ assertion to $\overline{\text{CS}}$ assertion $\frac{10}{7}$	tg		All	9, 10, 11	0		
$\overline{\text{CS}}$ negation to RD/WR negation <u>10</u> /	t _h		All	9, 10, 11	0		-
CS assertion to output enable <u>9</u> /	tı		All	9, 10, 11	0	40	
CS negation to output three-state <u>10</u> /	tj		All	9, 10, 11	5	35	
	<u>.</u>	Register read tim	ng				
Address setup time <u>9</u> /	ta	V _{CC} = minimum See figure 5	All	9, 10, 11	0		ns
CS assertion to output enable data valid <u>9</u> /	t _b	See ligure 5	All	9, 10, 11		95	_
CS negation to output disabled <u>10</u> /	t _c		All	9, 10, 11	5	35	
Address hold time <u>9</u> /	t _d		All	9, 10, 11	0		
$\overline{\text{CS}}$ assertion to output enable data invalid $\underline{9}/$	t _e		All	9, 10, 11	0	40	
Access delay <u>9/ 11/ 12</u> /	t _f		All	9, 10, 11	45		
$\overline{\text{CS}}\downarrow$ to $\overline{\text{CS}}\uparrow \underline{9}/$	tg		All	9, 10, 11	105		
		Memory write tim	ng	II_			
Address propagation delay	t _a	V _{CC} = minimum See figure 5	01 – 06 10, 11	9, 10, 11	0	18	ns
			07, 08 09	9, 10, 11	0	21	
Address valid to $\overline{\text{RCS}}$, $\overline{\text{RWR}}$ assertion <u>9</u> /	t _b		All	9, 10, 11	15	35	
See footnotes at end of ta	ble.						_
S MICROCI			SIZE A			5962-9	94663
DEFENSE SUP				REVISION L	EVEI	SHEET	
COLUMBL	JS, OHIO 4	3216-5000		D		g	`

$ \begin{array}{c c} t \mbox{ conditions } \underline{1} / & \mbox{ Device } \\ C \leq T_C \leq +125^\circ C & \mbox{ type } \\ V \leq V_{DD} \leq 5.5 \ V & \mbox{ otherwise specified } \\ emory \ write \ timing - \ Continued \\ mum & \ 5 & \ \hline \ All & \ \hline \ All & \ \hline \ \ All & \ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Group A subgroups 9, 10, 11	Lin Min	nits Max	Unit
otherwise specified emory write timing – Continued mum All	9, 10, 11	Min	Max	
mum All	9, 10, 11			
5	9, 10, 11			
5 All		10		ns
	9, 10, 11	20	50	
All	9, 10, 11	20	60	
All	9, 10, 11	10	30	
All		10		
10, 11		34		-
07, 08 09	9, 10, 11	32		
All	9, 10, 11	15	125	
All	9, 10, 11	10	40	
Memory read timing				T
5 10, 11				ns
09				_
All	9, 10, 11	15	35	
All	9, 10, 11	10		
All	9, 10, 11	20	50	-
01 - 06	9, 10, 11	12		
07, 08 09	9, 10, 11	10		
10, 11	9, 10, 11	14		
01 – 06 10, 11	9, 10, 11	0		
07, 08 09				
All	9, 10, 11	10	30	
	All All 01 - 06 10, 11 07, 08 09 All All Memory read timing 01 - 06 10, 11 07, 08 09 All 07, 08 09 All 01 - 06 10, 11 07, 08 09 All 01 - 06 07, 08 09 01 - 06 07, 08 09 01 - 06 07, 08 09 07, 08 07, 08 09 07, 08 09 07, 08 09 07, 08 09 07, 08 09 07, 08 09 07, 08 07, 08 07, 08 07, 08 09 07, 08 09 07, 08 09 07, 08 09 07, 08 09 07, 08 07, 08 09 07, 08 07, 08 09 07, 08 07,	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

	TAB	LE IA. <u>Electrica</u>	al performance cha	racteristics	- Continued.			
Test	Symbol	-55°C ≤	onditions <u>1</u> / T _C ≤ +125°C	Device type	Group A subgroups	Lir	nits	Unit
			$V_{DD} \le 5.5 \text{ V}$ erwise specified			Min	Max	
	-	Mem	ory read timing - Co	ontinued				_
DTACK hold time	t _h	$V_{CC} = minimu$	m	All	9, 10, 11	10		ns
RRD and RCS pulse width (DTACK tied to	t _i	See figure 5		01 – 06 10, 11	9, 10, 11	34		
ground)				07, 08 09	9, 10, 11	32		
RRD and RCS↑ to DMACK↑ <u>10</u> /	tj			All	9, 10, 11	15	45	
		•	DMA timing					•
TERACT assertion to DMAR assertion <u>10</u> /	t _a	V_{CC} = minimu See figure 5	m	All	9, 10, 11	5		μs
DMAR assertion to DMACK negation <u>10</u> /	t _b		Bus controller	01, 02 03	9, 10, 11		7	
5 <u> </u>				04 - 11	9, 10, 11		16	_
			Remote terminal	All	9, 10, 11		7	
			Remote terminal with monitor	All	9, 10, 11		7	
			Monitor	All	9, 10, 11		7	
DMAG assertion to	t _c			01 - 06 10, 11	9, 10, 11	0	30	ns
<u>10</u> /				07, 08 09	9, 10, 11	5	30	
DMAG assertion to DMAR negation <u>10</u> /	t _d			All	9, 10, 11	0	35	
DMACK assertion to address bus active	t _e			01 – 06 10, 11	9, 10, 11	0	5	_
				07, 08 09	9, 10, 11	-5	5	
DMACK assertion to DMAG negation <u>9</u> /	t _f			All	9, 10, 11	10		
DMACK negation to DMAR assertion <u>10</u> /	t _g			All	9, 10, 11	500		
See footnotes at end of ta	ble.							
MICROCI		RAWING		SIZE A			5962-9	4663
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000			5		REVISION L D	EVEL	SHEET 11	

	TABL	E IA. Electrical performance	ce chara	acteristics	- Continued.			
Test	Symbol	Test conditions $1/$ -55°C \leq T _C \leq +125°C	2	Device type	Group A subgroups	Li	mits	Unit
		$4.5 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ unless otherwise specif	fied			Min	Max	
		DMA timing -	Continu	ied			-	
DMACK assertion to RAM control active	t _h	V _{CC} = minimum See figure 5		01 – 06 10, 11	9, 10, 11	0	5	ns
(negated)				07, 08 09		-5	5	
DMACK negation to address three-state <u>10</u> /	t _i			All	9, 10, 11		5	
DMACK negation to RAM control disabled <u>10</u> /	tj			All	9, 10, 11		5	
		Power-up maste	r reset t	timing			.	
MRST pulse width 10/	t _a	$V_{CC} = minimum$		All	9, 10, 11	500		ns
MRST negation to ROMEN assertion <u>10</u> /	t _b	See figure 5		All	9, 10, 11		5	μs
MRST negation to READY assertion <u>10</u> /	t _c			All	9, 10, 11		10	μs
DMACK negation 10/ ROMEN negation 10/	t _d			All	9, 10, 11		500	ns
		JTAG tir	ming					
TCK frequency		See figure 5		All	9, 10, 11		1	MHz
TCK period	t _a			All	9, 10, 11	1000		ns
TCK high time	t _b			All	9, 10, 11	1/2t _a		
TCK low time	t _c			All	9, 10, 11	1/2t _a		
TCK rise time	t _d			All	9, 10, 11		5	
TCK fall time	t _e			All	9, 10, 11		5	
TDI, TMS setup time	t _f			All	9, 10, 11	250		
TDI, TMS hold time	tg			All	9, 10, 11	250		
TDO valid delay	t _h			All	9, 10, 11	250		
		Receiver electrical	charac	teristics				
Differential (receiver) input impedance <u>10/</u>	R _{IZ}	V _{CC} = minimum, see figure Input f = 1 MHz (no transf in circuit)		01, 03 04, 06 07, 09 10	1, 2, 3	15		kΩ
Common mode input voltage <u>10</u> /	V _{IC}	V_{CC} = minimum, see figure Direct-coupled stub, input 1.2 V_{PP} , 200 ns rise/fall time ±25 ns, f = 1 MHz		01, 03 04, 06 07, 09 10	1, 2, 3	-10	+10	V
				02, 05 08, 11	1, 2, 3	-5	+5	
See footnotes at end of tabl	e.							
ST. MICROCIR			S	SIZE A			5962-9	94663
DEFENSE SUPPL COLUMBUS	Y CENTE	R COLUMBUS			REVISION L	EVEL	SHEET 12	2

	ТА	BLE IA. Electrical performance	ce characteristics	- Continued.			
Test	Symbol	Test conditions $\frac{1}{-55^{\circ}C} \le T_{C} \le +125^{\circ}C$	Device type	Group A subgroups	Limi		Unit
		$4.5 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ unless otherwise specified	ed		Min	Max	
		Receiver electrical chara	acteristics - Contin	nued			
Common mode rejection ratio <u>10/</u>	CMRR	V_{CC} = minimum, see figure 5	All	1, 2, 3	Pass/Fail <u>14</u> /		N/A
Input threshold voltage (no response)	V _{TH1}	$\begin{array}{l} V_{CC} = \mbox{minimum, see figure 5} \\ Transformer-coupled stub, in at f = 1 MHz, rise/fall time 200 ns (receiver output 0 \rightarrow transition) 10/$	put	1, 2, 3		0.20	V _{PP,L-L}
		V_{CC} = minimum, see figure 5 Direct-coupled stub, input at f = 1 MHz, rise/fall time 200 (receiver output 0 \rightarrow 1 trans	ns	1, 2, 3		0.28	
Input threshold voltage (response)	V _{TH2}	$\begin{array}{l} V_{CC} = \mbox{minimum, see figure 5} \\ Transformer-coupled stub, in \\ at f = 1 \mbox{ MHz, rise/fall time} \\ 200 \mbox{ ns (receiver output 0} \rightarrow \\ transition) \mbox{ 10} \end{array}$	put	1, 2, 3	0.86	14.0	V _{PP,L-L}
		V_{CC} = minimum, see figure 5 Direct-coupled stub, input at f = 1 MHz, rise/fall time 200 (receiver output 0 \rightarrow 1trans	ns	1, 2, 3	1.20	20.0 <u>10</u> /	
Differential input voltage level	V _{IDR}	V_{CC} = minimum, see figure 5	02	1, 2, 3		8.0	V _{P-P}
		Transmitter electric	al characteristics				
Output voltage swing	Vo	$\label{eq:V_CC} \begin{array}{l} V_{CC} = minimum, see figure 5 \\ Transformer-coupled stub, \\ point A, input f = 1 MHz, \\ R_L = 70\Omega \underline{10/} \end{array}$	All	1, 2, 3	18	27	V _{PP,L} -L
		V_{CC} = minimum, see figure 5 Direct-coupled stub, point A, input f = 1 MHz, R _L = 35 Ω	All	1, 2, 3	6.0	9	
			All	1, 2, 3	6.0	20	
Output noise voltage differential <u>10</u> /	V _{NS}	V_{CC} = minimum, see figure 5 Transformer-coupled stub, point A, input f = DC to 10 M R_L = 70 Ω		1, 2, 3		14	mV- RMS _{L-L}
		V_{CC} = minimum, see figure 5 Direct-coupled stub, point A, input f = DC to 10 M R_L = 35 Ω		1, 2, 3		5	
See footnotes at end of	table.						
		RD DRAWING	SIZE A			5962-	94663
DEFENSE SU	PPLY CEN	ITER COLUMBUS 43216-5000		REVISION I		SHEET	3

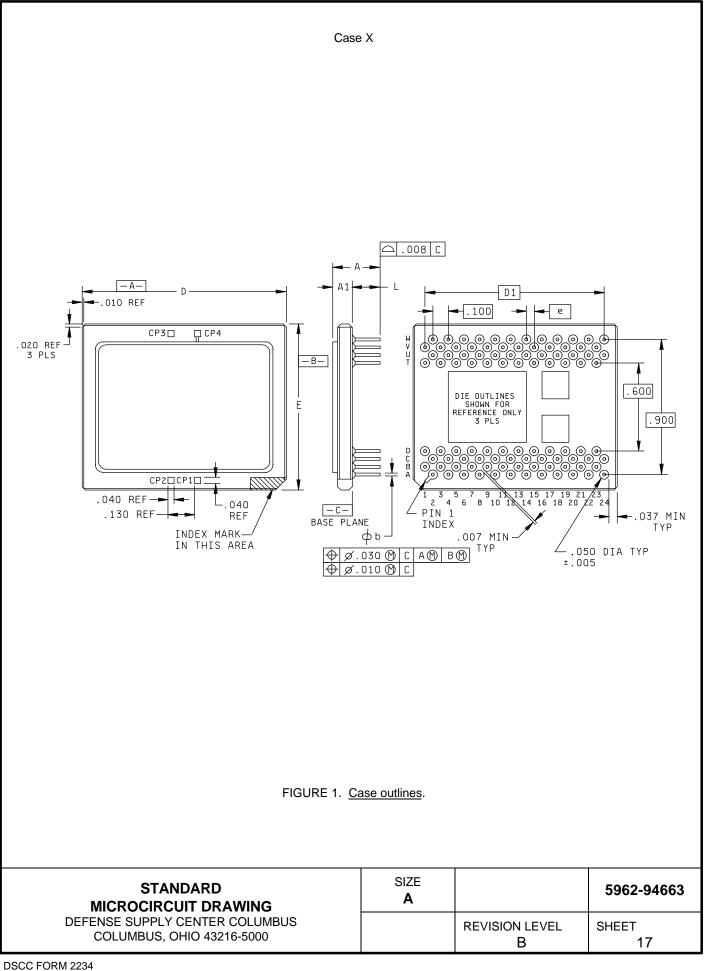
Test	Symbol	Test conditions $\frac{1}{2}$	Device	Group A subgroups	Lin	nits	Unit	
		$\begin{array}{l} -55^\circ C \leq T_C \leq +125^\circ C \\ 4.5 \ V \leq V_{DD} \leq 5.5 \ V \\ \text{unless otherwise specified} \end{array}$	type	subgroups	Min Max			
		Transmitter electrical characte	ristics - Con	tinued				
Output symmetry <u>15</u> /	Vos	V_{CC} = minimum Transformer-coupled stub, point A, R _L = 70 Ω , measurement taken 2.5 µs after end of transmission <u>10</u> /	All	1, 2, 3	-250	+250	mV _{PP,L-L}	
		$\begin{array}{l} V_{CC} = minimum \\ Direct-coupled stub, point A, \\ R_L = 35\Omega, measurement \\ taken 2.5 \ \mu s \ after \ end \ of \\ transmission \ \underline{16}/ \end{array}$	All	1, 2, 3	-90	+90		
Output voltage V _{DIS} distortion (overshoot or ring)	V _{DIS}	V_{CC} = minimum, see figure 5 Transformer-coupled stub,	01 03 – 11	1, 2, 3	-900	+900	mV _{peak,L-L}	
or mig)		point A, $R_L = 70\Omega \underline{10}/$	02	1, 2, 3	-2.0	+2.0	V _{peak,L-L}	
		V_{CC} = minimum, see figure 5 Direct-coupled stub, point A, R_L = 35 Ω <u>16</u> /	01 03 – 11	1, 2, 3	-300	+300	mV _{peak,L-L}	
		_	02	1, 2, 3	-1.0	+1.0	V _{peak,L-L}	
Terminal input T _{IZ} impedance <u>10</u> /	Ι _{ΙΖ}	V _{CC} = minimum, see figure 5 Transformer-coupled stub, point A, input f = 75 kHz to 1 MH (power on or power off, non- transmitting, R _L removed from circuit)		1, 2, 3	1		kΩ	
		V _{CC} = minimum, see figure 5 Direct-coupled stub, point A, input f = 75 kHz to 1 MH (power on or power off, non- transmitting, R _L removed from circuit)	All z,	1, 2, 3	2			
		AC electrical charac	teristics			1		
Transmitter output rise/fall time	t _R , t _F	$\label{eq:Vcc} \begin{array}{l} V_{CC} = \text{minimum, see figure 5} \\ \text{Input f} = 1 \ \text{MHz 50\% duty cycle:} \\ \text{direct-coupled, } R_L = 35\Omega, \\ \text{output at 10\% through 90\%} \\ \text{points TXOUT, } \overline{\text{TXOUT}} \end{array}$	All	9, 10, 11	100	300	ns	
Zero crossing distortion	t _{RZCD}	V_{CC} = minimum, see figure 5 Direct-coupled stuff, Input f = 1 MHz, 3 V _{PP} (skew input ±150 ns), rise/fall time 200 ns	All	9, 10, 11	-150	+150		
See footnotes at end of t	table.							
		RD DRAWING	SIZE A			59	62-94663	
DEFENSE SU	PPLY CEN	ITER COLUMBUS 43216-5000		REVISION		SHE	ET 14	

	TAB	LE IA. Electrical performance	ce characteristics	- Continued.			
Test	Symbol	Test conditions $1/$ -55°C ≤ T _C ≤ +125°C		Group A subgroups	Lin	nits	Unit
		$4.5 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$ unless otherwise specif			Min	Max	
		AC electrical characte	ristics - Continue	d			
Zero crossing stability	lity t _{TZCS} V _{CC} = minimum, see figure 5 Input TXIN and TXIN should create transmitter output zero crossings at 500 ns, 1000 ns, 1500 ns, and 2000 ns. These zero crossings should not deviate more than ±25 ns						
drawing will meet all 'H' level, respectively R. Device type 11 su Pre and post irradiat electrical measureme unless otherwise spe V _{CC} = 5.0 V ±5% for V _{EE} = -12.0 V or -15. 2/ 24 MHz input only. 3/ The worst case test of 4/ Supplied as a design 5/ Not more than one of 6/ For all pins except C 7/ All inputs tied to V _{DD} . 8/ Post irradiation limit irradiation. 9/ For device types 07, 10/ Guaranteed by charat 11/ Read cycle followed Write cycle followed Write cycle followed Write cycle followed 12/ Minimum pulse width 13/ Pulse width duration 14/ Pass/fail criteria per common mode rejec	levels M, D . Device typ pplied to thi ion values a ents for any ecified. GNI device type 0 V ±5% for condition is limit but no utput may b HA, CHA, o as 1.0 mA. 08, and 09, acterization by a read c by a write c by a write c by a write c the test met tion. <i>v</i> ith the met	Device type 11 post irradiation this parameter is guarantee but not tested. ycle - minimum 45 ns. ycle - minimum 45 ns. ycle - minimum 85 ns. ycle - minimum 85 ns. rising edge of RD/WR or C d with respect to the device of hod described in MIL-STD-11	diation. However, g will meet level F and F of irradiation e specified in table testing to be performore than ±50 m evice types 05, 08 , 07, 09, and 10. A mum duration of or on limit is 1.0 mA ed, but not tested.	these devices of irradiation on and will onl e IA. When p ormed using w /. Unless othe , and 11; V _{CC} : one second. level R of irra	and will on y be tested erforming p yorst case t erwise spec = 5.0 V +10 diation and	ested at the ily be tested at level sup post irradiat est conditio cified, 0%, -5% an I 5.0 mA lev	'R' and d at level pplied. ion ns d
		D RAWING	SIZE A			5962-9	4663
DEFENSE SUF		ER COLUMBUS		REVISION L	EVEL	SHEET 15	5

Devic	- //	V _{DD} =	$V_{DD} = 4.5 V$		
type	e Temperature ±10°C <u>4</u> /	Effective LET no upsets [MeV/(mg/cm ²)]	Maximum device cross section LET = 120 (μm ²)	latch-up test V _{DD} = 5.5 V no latch-up LET = <u>4</u> /	
04, 0 10, 1		<u>5</u> /	<u>5</u> /	<u>5</u> /	

TABLE IB.SEP test limits.1/2/3/

<u>1</u>/ Devices that contain cross-coupled resistance must be tested at the maximum rated T_A .

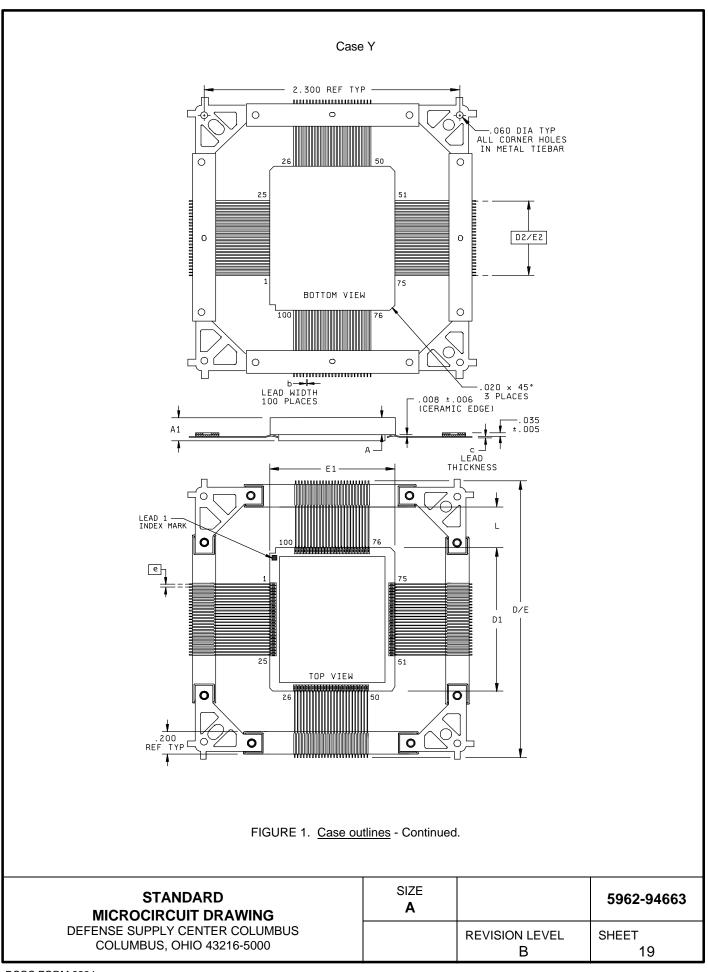

<u>2</u>/ For SEP test conditions, see 4.4.4.5 herein.

3/ Technology characterization and model verification supplemented by in-line data may be used in lieu of end-of-line testing. Test plan must be approved by TRB and qualifying activity.

<u>4</u>/ Worst case temperature $T_A = +125^{\circ}C$.

5/ Values will be added when they become available. These devices have not yet been tested for SEP.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94663
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		D	16



	Case X						
Symbol	Millin	neters	Inches				
	Min	Max	Min	Max			
А	6.85	8.00	.270	.315			
A1	2.54	3.17	.100	.125			
b	0.40	0.50	.016	.020			
D	32.89	33.66	1.295	1.325			
D1	29.2	1 BSC	1.150	BSC			
E	26.54	27.30	1.045	1.075			
е	1.27	BSC	.050	BSC			
L	4.37	4.77	.172	.188			

NOTE: The US Government preferred system of measurement is the metric SI system. However, this item was originally designed using inch-pound units of measurements. In the event of conflict between the metric and inch-pound units, the inch-pound units shall take precedence.

FIGURE 1. Case outlines - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94663
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	18

	Case Y						
Symbol	Millin	neters	Inches				
	Min	Max	Min	Max			
А		2.66		.105			
A1	2.28	3.30	.090	.130			
b	0.152	0.254	.006	.010			
С	0.1270	0.1905	.0050	.0075			
D/E		65.532		2.580			
D1	33.91	34.67	1.335	1.365			
D2/E2	15.24	4 BSC	.600	BSC			
E1	24.64	25.40	.970	1.000			
е	0.635	5 BSC	.025	BSC			
L	8.89		.350				

NOTE: The US Government preferred system of measurement is the metric SI system. However, this item was originally designed using inch-pound units of measurements. In the event of conflict between the metric and inch-pound units, the inch-pound units shall take precedence.

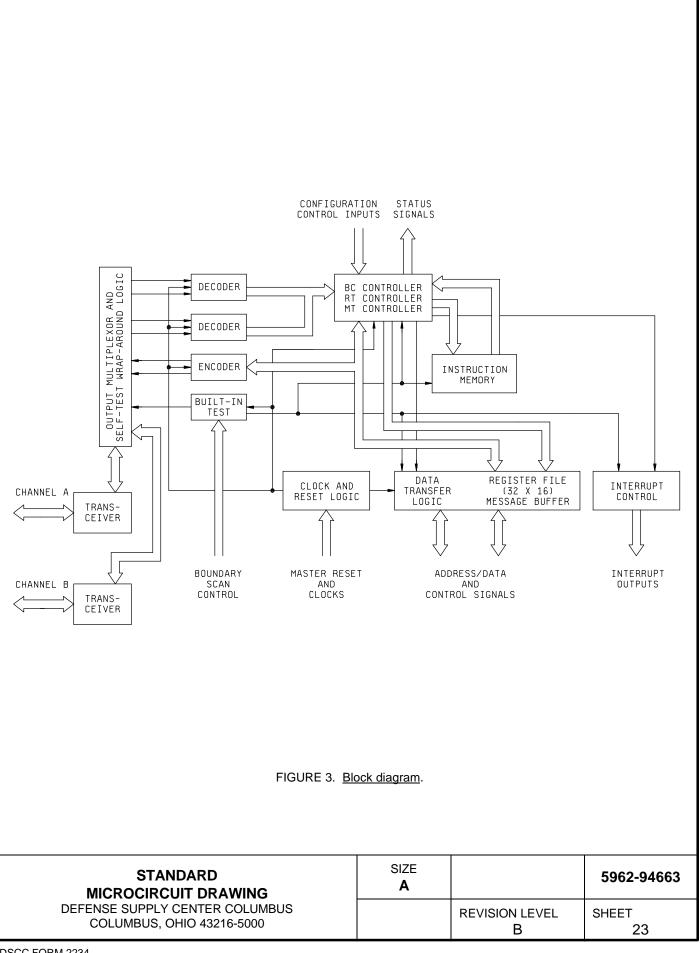
FIGURE 1. Case outlines - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94663
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		F	20

Case outline Terminal			All							
Terminal	Х									
number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol			
A2	A15	C2	A12	T1	A3	V1	V _{SS}			
A4	A14	C4	V _{DD}	Т3	A4	V3	RRD			
A6	A13	C6	A8	T5	V _{DD}	V5	D14			
A8	ROMEN	C8	V _{SS}	T7	A6	V7	DTACK			
A10	CS	C10	DMAG	Т9	24 MHz	V9	D13			
A12	MSEL0	C12	YF_INT	T11	V _{SS}	V11	D15			
A14	ТСК	C14	TMS	T13	LOCK	V13	D9			
A16	TDI	C16	A/B STD	T15	READY	V15	D10			
A18	TDO	C18	СНВ	T17	GND	V17	D8			
A20	RTA2	C20	GND	T19	V _{CC}	V19	D1			
A22	RTA0	C22	СНВ	T21	V _{EE} <u>1</u> /	V21	D2			
A24	GND	C24	Vcc	T23	V _{EE} <u>1</u> /	V23	D0			
B1	V _{DD}	D1	A9	U2	A1	W2	A5			
B3	A11	D3	A7	U4	V _{DD}	W4	RWR			
B5	A10	D5	V _{SS}	U6	A2	W6	A0			
B7	DMACK	D7	V _{DD}	U8	V _{SS}	W8	TCLK			
B9	AUTOEN	D9	MSG_INT	U10	D12	W10	V _{DD}			
B11	RD/WR	D11	V _{SS}	U12	D11	W12	RCS			
B13	MSEL1	D13	DMAR	U14	SSYSF	W14	D5			
B15	TRST	D15	MRST	U16	TERACT	W16	D6			
B17	RTA4	D17	GND	U18	CHA	W18	D7			
B19	RTA3	D19	V _{CC}	U20	GND	W20	D4			
B21	RTA1	D21	V _{EE} <u>1</u> /	U22	CHA	W22	D3			
B23	RTPTY	D23	V _{EE} <u>1</u> /	U24	Vcc	W24	GND			
		Te	erminal located	on top of pac	kage					

1/ Device types 01, 03, 04, 06, 07, 09, and 10 only. For device types 02, 05, 08, and 11, this is a N/C (no connection).

FIGURE 2. Terminal connections.

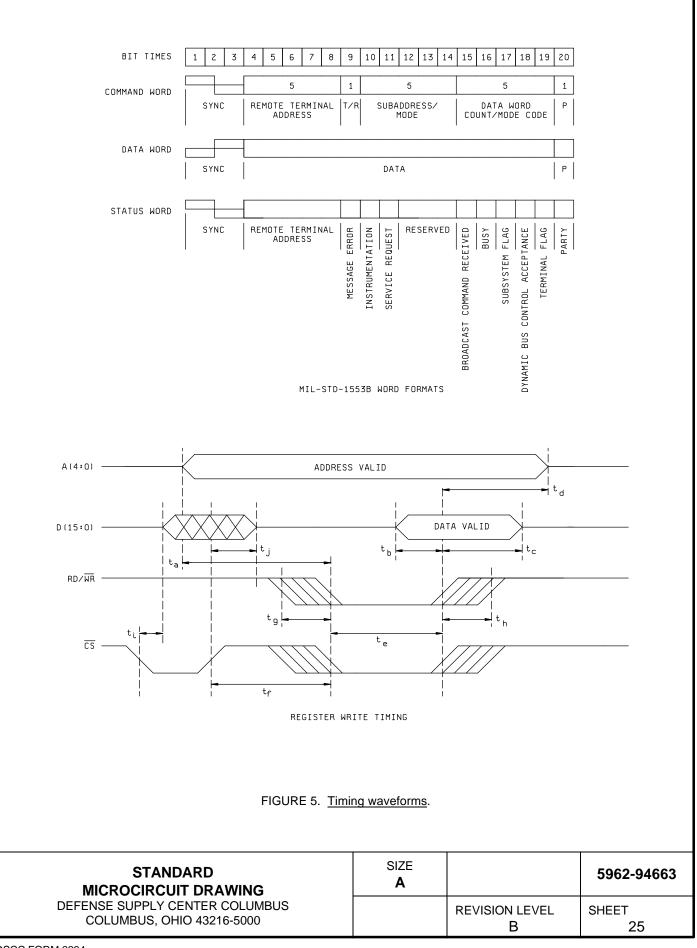

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94663
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		D	21

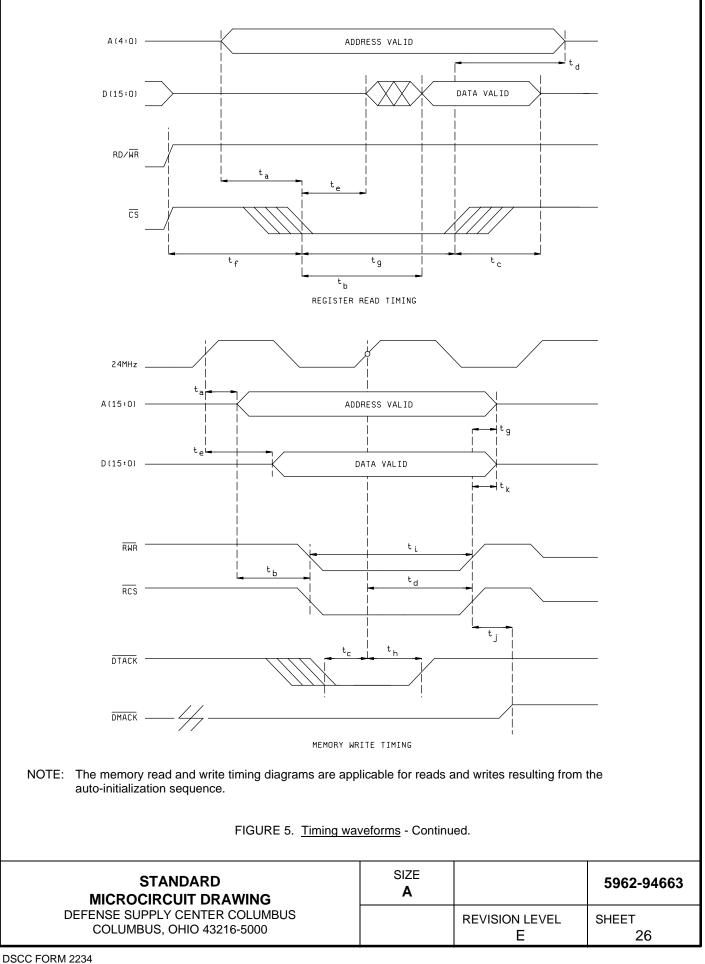
Device type	All							
Case outline	Y							
Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol	
1	DMACK	26	A15	51	TDI	76	V_{DD}	
2	DMAG	27	V _{EE} <u>1</u> /	52	TDO	77	Vss	
3	DMAR	28	V _{EE} <u>1</u> /	53	TRST	78	ROMEN	
4	DTACK	29	GND	54	RTPTY	79	AUTOEN	
5	V _{SS}	30	V _{cc}	55	RTA0	80	CS	
6	RRD	31	GND	56	RTA1	81	RD/WR	
7	RWR	32	СНА	57	RTA2	82	D0	
8	RCS	33	CHA	58	RTA3	83	D1	
9	V _{DD}	34	GND	59	RTA4	84	D2	
10	V _{SS}	35	Vcc	60	V _{DD}	85	D3	
11	A0	36	Vcc	61	Vss	86	D4	
12	A1	37	GND	62	V _{DD}	87	D5	
13	A2	38	GND	63	TERACT	88	D6	
14	A3	39	V _{CC}	64	READY	89	D7	
15	A4	40	V _{CC}	65	MSG_INT	90	D8	
16	A5	41	GND	66	YF_INT	91	D9	
17	A6	42	СНВ	67	V _{SS}	92	D10	
18	A7	43	СНВ	68	TCLK	93	D11	
19	A8	44	GND	69	LOCK	94	D12	
20	A9	45	V _{cc}	70	A/B STD	95	D13	
21	A10	46	GND	71	MSEL0	96	D14	
22	A11	47	V _{EE} <u>1</u> /	72	MSEL1	97	D15	
23	A12	48	V _{EE} <u>1</u> /	73	MRST	98	V _{SS}	
24	A13	49	тск	74	24 MHz	99	V _{DD}	
25	A14	50	TMS	75	SSYSF	100	V _{DD}	

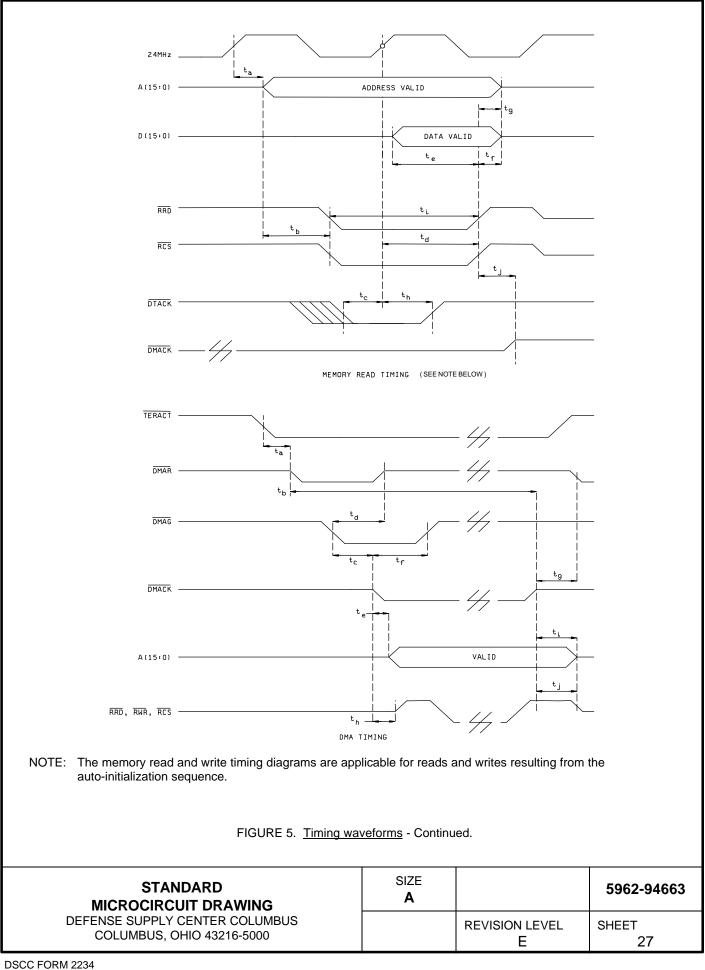
 $\underline{1}$ Device types 01, 03, 04, 06, 07, 09, and 10 only. For device types 02, 05, 08, and 11, this is a N/C (no connection).

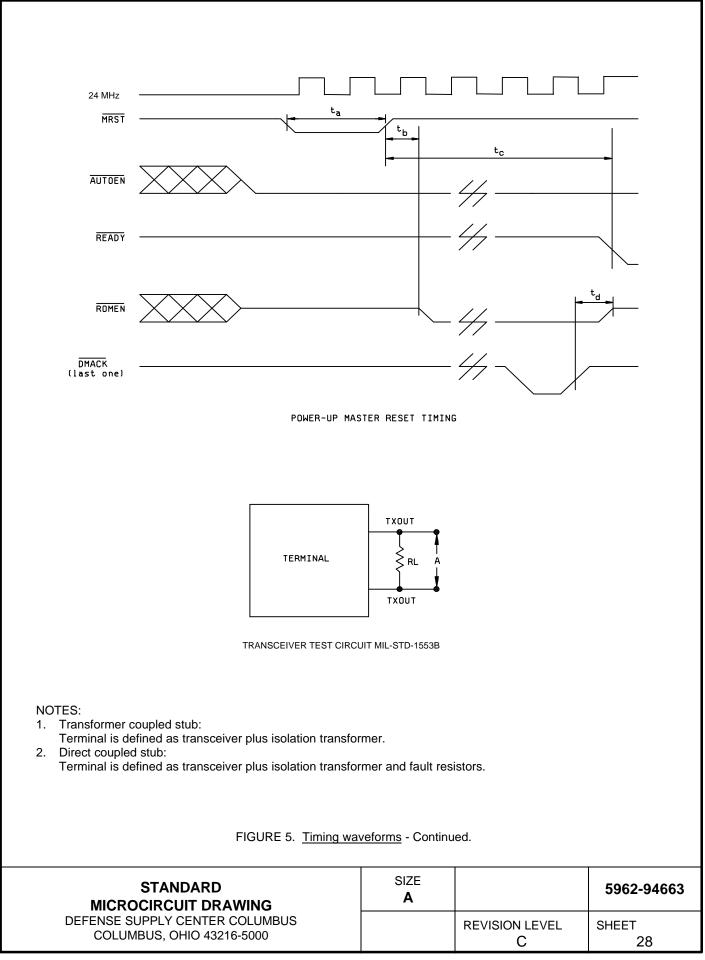
FIGURE 2. Terminal connections - Continued.

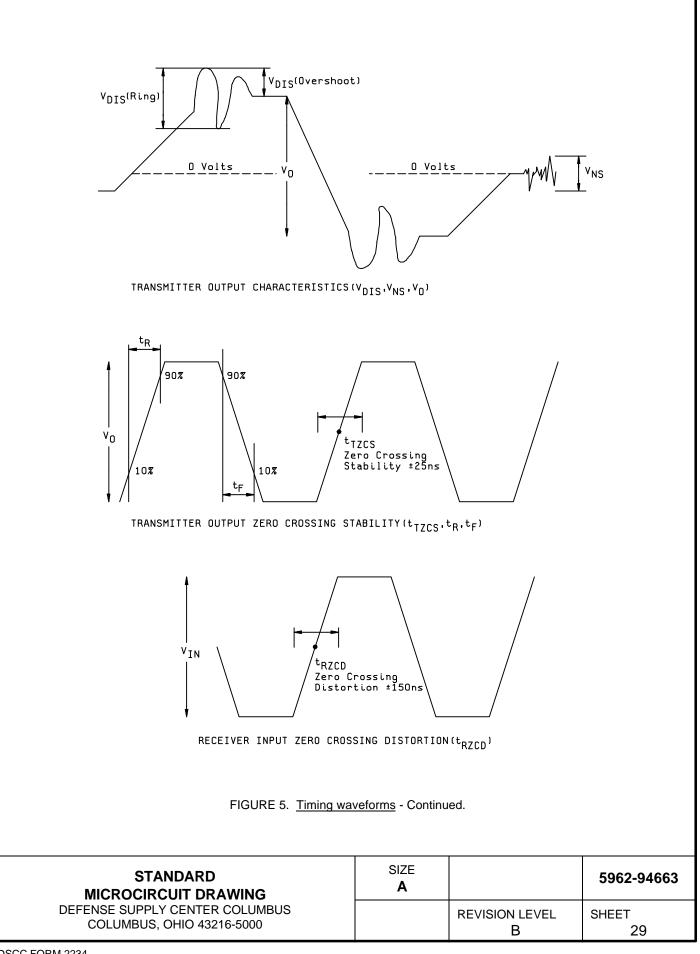
STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94663
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		D	22

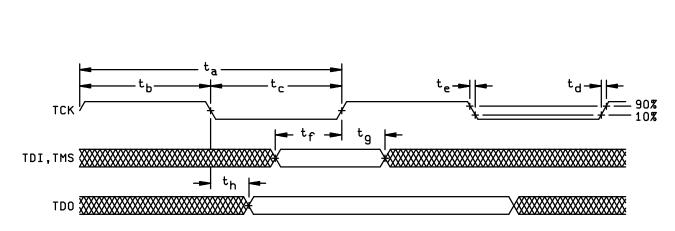



Device types 01, 02, 03, 04, 05, 06, 10, 11				
Instruction name	Instruction code			
BYPASS	1111			
SAMPLE/PRELOAD	0010			
EXTEST	0000			
INTEST	0001			
RUNBIST	0111			
IDCODE	0100			
GL-TRISTATE	0011			
INTERNAL-SCAN	0101			
PRIVATE	0110			
USER-SELECTABLE	1000 ightarrow 1110			


Device types 07, 08, 09				
Instruction name	Instruction code			
BYPASS	1111			
SAMPLE/PRELOAD	0010			
EXTEST	0000			


FIGURE 4. Boundary scan instruction codes.


STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94663
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		D	24



JTAG TIMING

FIGURE 5. Timing waveforms - Continued.

Case outline	Open	V _{CC} = 5.5 V	V _{DD} = 5.5 V	V _{EE} = -15 V <u>1</u> /	Ground
x	A2, A4, A6, A8, A18, B3, B5, B7, C2, C6, C12, C18, C22, D1, D3, D9, D13, T7, T15, U16, U18, U22, V3, W2, W4, W12	C24, D19, T19, U24	A10, A12, A14, A16, A20, A22, B1, B9, B11, B13, B15, B17, B19, B21, B23, C4, C10, C14, C16, D7, D15, T1, T3, T5, T9, T13, U2, U4, U6, U10, U12, U14, V5, V7, V9, V11, V13, V15, V17, V19, V21, V23, W6, W8, W10, W14, W16, W18, W20, W22	D21, D23, T21, T23	A24, C8, C20, D5, D11, D17, T11, T17, U8, U20, V1, W24
Y	1, 3, 6, 7, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 32, 33, 42, 43, 52, 63, 64, 65, 66, 78	30, 35, 36, 39, 40, 45	2, 4, 9, 11, 12, 13, 14, 15, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 62, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100	27, 28, 47, 48	5, 10, 29, 31, 34, 37, 38, 41, 44, 46, 61, 67, 77, 98

1/ For device types 01, 03, 04, 06, 07, 09, and 10 only. For device types 02, 05, 08, and 11, these pins are open.

FIGURE 6. Radiation exposure connections.					
STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94663		
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL F	SHEET 30		

4. QUALITY ASSURANCE PROVISIONS

4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.

- 4.2.1 Additional criteria for device class M.
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table IIA herein.
- 4.2.2 Additional criteria for device classes Q and V.
 - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table IIA herein.
 - c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

- 4.4.1 Group A inspection.
 - a. Tests shall be as specified in table IIA herein.
 - b. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the functionality of the device. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device; these tests shall have been fault graded in accordance with MIL-STD-883, test method 5012 (see 1.5 herein).
 - c. Subgroup 4 (C_{IN}, C_{OUT}, and C_{IO}) shall be measured only for the initial test and after process or design changes which may affect input capacitance. A minimum sample of 5 devices with zero failures shall be required.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94663
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	31

TABLE IIA. <u>Electrical test requirements</u> .						
Test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)	Subgroups (in accordance with MIL-PRF-38535, table III)				
	Device class M	Device class Q	Device class V			
Interim electrical parameters (see 4.2)						
Final electrical parameters (see 4.2)	1, 2, 3, 7, 8, 9, 10, 11 <u>1</u> /	1, 2, 3, 7, 8, 9, 10, 11 <u>1</u> /	1, 2, 3, 7, 8, 9, 10, 11 <u>2</u> / <u>3</u> /			
Group A test requirements (see 4.4)	1, 2, 3, 4, 7, 8, 9, 10, 11	1, 2, 3, 4, 7, 8, 9, 10, 11	1, 2, 3, 4, 7, 8, 9, 10, 11			
Group C end-point electrical parameters (see 4.4)	1, 7, 9	1, 7, 9	1, 7, 9			
Group D end-point electrical parameters (see 4.4)	1, 7, 9	1, 7, 9	1, 7, 9			
Group E end-point electrical parameters (see 4.4)	1, 7, 9	1, 7, 9	1, 7, 9			

TABLE IIA Electrical test requirements

<u>1</u>/ PDA applies to subgroup 1.

2/ PDA applies to subgroups 1 and 7.

3/ Delta limits, as specified in table IIB herein, shall be required when specified and the delta values shall be completed with reference to the zero hour electrical parameters.

TABLE IIB. E	Burn-in and operating	g life test, delta	parameters	(+25°C).
--------------	-----------------------	--------------------	------------	----------

Parameter	Symbol	Delta limits
Quiescent current	IDDQ	$\pm 10\%$ of measured values or 35 μA whichever is greater

NOTE: If the device is tested at or below 35 μ A, no deltas are required.

4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table IIA herein.

4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:

- a. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- b. $T_A = +125^{\circ}C$, minimum.
- c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94663
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	32

4.4.2.2 <u>Additional criteria for device classes Q and V</u>. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.

4.4.3 <u>Group D inspection</u>. The group D inspection end-point electrical parameters shall be as specified in table IIA herein.

4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). RHA levels for device classes M, Q and V shall be as specified in MIL-PRF-38535. End-point electrical parameters shall be as specified in table IIA herein.

4.4.4.1 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019 and as specified herein.

4.4.4.1.1 <u>Accelerated aging test</u>. Accelerated aging tests shall be performed on all devices requiring a RHA level greater than 5k rads(Si). The post-anneal end-point electrical parameter limits shall be as specified in table IA herein and shall be the pre-irradiation end-point electrical parameter limit at 25° C $\pm 5^{\circ}$ C. Testing shall be performed at initial qualification and after any design or process changes which may affect the RHA response of the device.

4.4.4.2 <u>Neutron testing</u>. Neutron testing shall be performed in accordance with test method 1017 of MIL-STD-883 and herein (see 1.4). All device classes must meet the post irradiation end-point electrical parameter limits as defined in table IA, for the subgroups specified in table IIA herein at $T_A = +25^{\circ}C \pm 5^{\circ}C$ after an exposure of 2 x 10¹² neutron/cm² (minimum).

4.4.4.3 <u>Dose rate induced latchup testing</u>. Dose rate induced latchup testing shall be performed in accordance with test method 1020 of MIL-STD-883 and as specified herein (see 1.4). Tests shall be performed on devices, SEC, or approved test structures at technology qualification and after any design or process changes which may effect the RHA capability of the process.

4.4.4.4 <u>Dose rate upset testing</u>. Dose rate upset testing shall be performed in accordance with test method 1021 of MIL-STD-883 and herein (see 1.4).

- a. Transient dose rate upset testing shall be performed at initial qualification and after any design or process changes which may effect the RHA performance of the devices. Test 10 devices with 0 defects unless otherwise specified.
- b. Transient dose rate upset testing for class Q and V devices shall be performed as specified by a TRB approved radiation hardness assurance plan and MIL-PRF-38535.

4.4.4.5 <u>Single event phenomena (SEP)</u>. SEP testing shall be required on class V devices (see 1.4). SEP testing shall be performed on the Standard Evaluation Circuit (SEC) or alternate SEP test vehicle as approved by the qualifying activity at initial qualification and after any design or process changes which may affect the upset or latchup characteristics. The recommended test conditions for SEP are as follows:

- a. The ion beam angle of incidence shall be between normal to the die surface and 60° to the normal, inclusive (i.e. $0^{\circ} \le$ angle $\le 60^{\circ}$). No shadowing of the ion beam due to fixturing or package related effects is allowed.
- b. The fluence shall be ≥ 100 errors or $\geq 10^6$ ions/cm².
- c. The flux shall be between 10² and 10⁵ ions/cm²/s. The cross-section shall be verified to be flux independent by measuring the cross-section at two flux rates which differ by at least an order of magnitude.
- d. The particle range shall be ≥ 20 microns in silicon.
- e. The test temperature shall be $+25^{\circ}$ C and the maximum rated operating temperature $\pm 10^{\circ}$ C.
- f. Bias conditions shall be defined by the manufacturer for latchup measurements.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94663
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	33

g. Test four devices with zero failures.

h. For SEP test limits, see table IB herein.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.1.2 Substitutability. Device class Q devices will replace device class M devices.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.

6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA , Columbus, Ohio 43216-5000, or telephone (614) 692-0547.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and table III herein.

6.6 Sources of supply.

6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing.

6.6.2 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

6.7 <u>Additional information</u>. A copy of the following additional data shall be maintained and available from the device manufacturer:

- a. RHA upset levels.
- b. Test conditions (SEP).
- c. Number of upsets (SEP).
- d. Number of transients (SEP).
- e. Occurrence of latchup (SEP).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94663
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	34

MICROCIRCUIT DRAWING A				TABLE III. <u>Pin</u>	descriptions.			
D0 TTB Bit 0 (LSB) of the bi-directional Data bus. D1 TTB Bit 2 of the bi-directional Data bus. D2 TTB Bit 3 of the bi-directional Data bus. D3 TTB Bit 3 of the bi-directional Data bus. D4 TTB Bit 5 of the bi-directional Data bus. D5 TTB Bit 6 of the bi-directional Data bus. D6 TTB Bit 6 of the bi-directional Data bus. D7 TTB Bit 6 of the bi-directional Data bus. D9 TTB Bit 1 of the bi-directional Data bus. D10 TTB Bit 1 of the bi-directional Data bus. D11 TTB Bit 1 of the bi-directional Data bus. D12 TTB Bit 1 of the bi-directional Data bus. D13 TTB Bit 1 of the bi-directional Data bus. D14 TTB Bit 1 of the bi-directional Address bus. A0 TTB Bit 0 (LSB) of the bi-directional Address bus. A1 TTB Bit 0 (LSB) of the di-directiona	Name	Type <u>1</u> /	De <u>1</u> / Active <u>2</u> / Description					
D1 TTB Bit 1 of the bi-directional Data bus. D2 TTB Bit 2 of the bi-directional Data bus. D3 TTB Bit 3 of the bi-directional Data bus. D4 TTB Bit 4 of the bi-directional Data bus. D5 TTB Bit 5 of the bi-directional Data bus. D6 TTB Bit 6 of the bi-directional Data bus. D7 TTB Bit 7 of the bi-directional Data bus. D8 TTB Bit 9 of the bi-directional Data bus. D9 TTB Bit 1 of the bi-directional Data bus. D10 TTB Bit 1 of the bi-directional Data bus. D11 TTB Bit 1 of the bi-directional Data bus. D12 TTB Bit 1 of the bi-directional Data bus. D14 TTB Bit 1 of the bi-directional Data bus. D15 TTB Bit 1 0 (the bi-directional Address bus. A0 TTB Bit 1 0 (the bi-directional Address bus. A1 TTB Bit 2 of the bi-directional Address bus. <td></td> <td></td> <td></td> <td>Data</td> <td>bus</td> <td></td> <td></td>				Data	bus			
D2 TTB Bit 2 of the bi-directional Data bus. D3 TTB Bit 3 of the bi-directional Data bus. D4 TTB Bit 4 of the bi-directional Data bus. D5 TTB Bit 6 of the bi-directional Data bus. D6 TTB Bit 6 of the bi-directional Data bus. D7 TTB Bit 8 of the bi-directional Data bus. D8 TTB Bit 9 of the bi-directional Data bus. D9 TTB Bit 10 of the bi-directional Data bus. D10 TTB Bit 10 of the bi-directional Data bus. D11 TTB Bit 11 of the bi-directional Data bus. D12 TTB Bit 12 of the bi-directional Data bus. D14 TTB Bit 13 of the bi-directional Data bus. D14 TTB Bit 10 (LSB) of the bi-directional Address bus. A0 TTB Bit 10 of the bi-directional Address bus. A1 TTB Bit 2 of the bi-directional Address bus.	D0	TTB		Bit 0 (LSB) of the bi-dire	ctional Data bus.			
D3 TTB Bit 3 of the bi-directional Data bus. D4 TTB Bit 5 of the bi-directional Data bus. D5 TTB Bit 5 of the bi-directional Data bus. D6 TTB Bit 6 of the bi-directional Data bus. D7 TTB Bit 6 of the bi-directional Data bus. D9 TTB Bit 1 of the bi-directional Data bus. D10 TTB Bit 1 of the bi-directional Data bus. D11 TTB Bit 1 of the bi-directional Data bus. D12 TTB Bit 1 of the bi-directional Data bus. D13 TTB Bit 1 of the bi-directional Data bus. D14 TTB Bit 1 of the bi-directional Data bus. D15 TTB Bit 1 of the bi-directional Data bus. D14 TTB Bit 1 of the bi-directional Data bus. D15 TTB Bit 1 of the bi-directional Address bus. A0 TTB Bit 1 of the bi-directional Address bus. A1 TTB Bit 2 of the bi-direction	D1	TTB		Bit 1 of the bi-directional	Data bus.			
D4 TTB Bit 4 of the bi-directional Data bus. D5 TTB Bit 5 of the bi-directional Data bus. D6 TTB Bit 6 of the bi-directional Data bus. D7 TTB Bit 8 of the bi-directional Data bus. D8 TTB Bit 9 of the bi-directional Data bus. D9 TTB Bit 9 of the bi-directional Data bus. D10 TTB Bit 10 of the bi-directional Data bus. D11 TTB Bit 10 of the bi-directional Data bus. D12 TTB Bit 12 of the bi-directional Data bus. D13 TTB Bit 13 of the bi-directional Data bus. D14 TTB Bit 10 of the bi-directional Data bus. D15 TTB Bit 10 of the bi-directional Data bus. D14 TTB Bit 10 (LSB) of the bi-directional Address bus. A0 TTB Bit 10 (LSB) of the bi-directional Address bus. A1 TTB Bit 2 of the bi-directional Address bus. A3 TTB Bit 3 of the Address bus. A4 TTB Bit 6 of the Address bus. A5 TTO Bit 3 of the	D2	TTB		Bit 2 of the bi-directional	Data bus.			
DS TTB Bit 5 of the bi-directional Data bus. D6 TTB Bit 6 of the bi-directional Data bus. D7 TTB Bit 7 of the bi-directional Data bus. D8 TTB Bit 9 of the bi-directional Data bus. D9 TTB Bit 9 of the bi-directional Data bus. D10 TTB Bit 10 of the bi-directional Data bus. D11 TTB Bit 11 of the bi-directional Data bus. D12 TTB Bit 12 of the bi-directional Data bus. D13 TTB Bit 12 of the bi-directional Data bus. D14 TTB Bit 13 of the bi-directional Data bus. D15 TTB Bit 12 of the bi-directional Data bus. D14 TTB Bit 10 (LSB) of the bi-directional Address bus. A0 TTB Bit 14 of the bi-directional Address bus. A1 TTB Bit 2 of the bi-directional Address bus. A2 TTB Bit 3 of the bi-directional Address bus. A4 TTB Bit 4 of the Address b	D3	TTB		Bit 3 of the bi-directional	Data bus.			
D6 TTB Bit 6 of the bi-directional Data bus. D7 TTB Bit 7 of the bi-directional Data bus. D9 TTB Bit 8 of the bi-directional Data bus. D9 TTB Bit 10 of the bi-directional Data bus. D10 TTB Bit 10 of the bi-directional Data bus. D11 TTB Bit 11 of the bi-directional Data bus. D12 TTB Bit 12 of the bi-directional Data bus. D13 TTB Bit 13 of the bi-directional Data bus. D14 TTB Bit 14 of the bi-directional Data bus. D15 TTB Bit 10 (LSB) of the bi-directional Data bus. D15 TTB Bit 10 (LSB) of the bi-directional Address bus. A0 TTB Bit 2 of the bi-directional Address bus. A2 TTB Bit 2 of the bi-directional Address bus. A3 TTB Bit 3 of the Address bus. A4 TTB Bit 6 of the Address bus. A4 TTO Bit 8 of the Address bus. A7 TTO Bit 10 of the Address bus. A8 TTO Bit 10 of the Address bus. </td <td>D4</td> <td>TTB</td> <td></td> <td>Bit 4 of the bi-directional</td> <td>Data bus.</td> <td></td> <td></td>	D4	TTB		Bit 4 of the bi-directional	Data bus.			
D7 TTB Bit 7 of the bi-directional Data bus. D8 TTB Bit 8 of the bi-directional Data bus. D9 TTB Bit 10 of the bi-directional Data bus. D10 TTB Bit 10 of the bi-directional Data bus. D11 TTB Bit 11 of the bi-directional Data bus. D12 TTB Bit 13 of the bi-directional Data bus. D13 TTB Bit 13 of the bi-directional Data bus. D14 TTB Bit 15 (MSB) of the bi-directional Data bus. D14 TTB Bit 10 (LSB) of the bi-directional Address bus. A0 TTB Bit 2 of the bi-directional Address bus. A1 TTB Bit 2 of the bi-directional Address bus. A2 TTB Bit 3 of the bi-directional Address bus. A3 TTB Bit 4 of the Address bus. A4 TTB Bit 5 of the Address bus. A5 TTO Bit 6 of the Address bus. A6 TO Bit 6 of the Address bus.	D5	TTB		Bit 5 of the bi-directional	Data bus.			
D8 TTB Bit 8 of the bi-directional Data bus. D9 TTB Bit 9 of the bi-directional Data bus. D10 TTB Bit 10 of the bi-directional Data bus. D11 TTB Bit 11 of the bi-directional Data bus. D12 TTB Bit 13 of the bi-directional Data bus. D13 TTB Bit 13 of the bi-directional Data bus. D14 TTB Bit 13 of the bi-directional Data bus. D15 TTB Bit 16 (MSB) of the bi-directional Data bus. D15 TTB Bit 10 of the bi-directional Data bus. D14 TTB Bit 10 (LSB) of the bi-directional Data bus. D15 TTB Bit 10 (LSB) of the bi-directional Address bus. A0 TTB Bit 2 of the bi-directional Address bus. A1 TTB Bit 3 of the bi-directional Address bus. A3 TTB Bit 6 of the Address bus. A4 TTB Bit 6 of the Address bus. A6 TTO Bit 6 of the Address bus.	D6	TTB		Bit 6 of the bi-directional	Data bus.			
D9 TTB Bit 9 of the bi-directional Data bus. D10 TTB Bit 10 of the bi-directional Data bus. D11 TTB Bit 12 of the bi-directional Data bus. D12 TTB Bit 12 of the bi-directional Data bus. D13 TTB Bit 13 of the bi-directional Data bus. D14 TTB Bit 14 of the bi-directional Data bus. D15 TTB Bit 15 (MSB) of the bi-directional Data bus. D15 TTB Bit 10 (LSB) of the bi-directional Address bus. A0 TTB Bit 2 of the bi-directional Address bus. A1 TTB Bit 3 of the bi-directional Address bus. A3 TTB Bit 3 of the Address bus. A4 TTB Bit 6 of the Address bus. A6 TTO Bit 7 of the Address bus. A6 TTO Bit 7 of the Address bus. A6 TTO Bit 8 of the Address bus. A6 TTO Bit 8 of the Address bus. A6 TTO Bit 10 of the Address bus. A7 TTO Bit 10 of the Address bus. A11 T	D7	TTB		Bit 7 of the bi-directional	Data bus.			
D10 TTB Bit 10 of the bi-directional Data bus. D11 TTB Bit 11 of the bi-directional Data bus. D12 TTB Bit 13 of the bi-directional Data bus. D13 TTB Bit 13 of the bi-directional Data bus. D14 TTB Bit 14 of the bi-directional Data bus. D15 TTB Bit 10 (LSB) of the bi-directional Data bus. A0 TTB Bit 10 (LSB) of the bi-directional Address bus. A1 TTB Bit 2 of the bi-directional Address bus. A2 TTB Bit 3 of the bi-directional Address bus. A4 TTB Bit 4 of the bi-directional Address bus. A4 TTB Bit 5 of the Address bus. A6 TTO Bit 6 of the Address bus. A6 TTO Bit 7 of the Address bus. A8 TTO Bit 10 of the Address bus. A11 TTO Bit 10 of the Address bus. A12 TTO Bit 12 of the Address bus. A13	D8	TTB		Bit 8 of the bi-directional	Data bus.			
D11 TTB Bit 11 of the bi-directional Data bus. D12 TTB Bit 12 of the bi-directional Data bus. D13 TTB Bit 13 of the bi-directional Data bus. D14 TTB Bit 15 (MSB) of the bi-directional Data bus. D15 TTB Bit 16 (MSB) of the bi-directional Data bus. A0 TTB Bit 10 (LSB) of the bi-directional Address bus. A1 TTB Bit 2 of the bi-directional Address bus. A2 TTB Bit 3 of the bi-directional Address bus. A3 TTB Bit 3 of the bi-directional Address bus. A4 TTB Bit 5 of the Address bus. A5 TTO Bit 6 of the Address bus. A6 TTO Bit 7 of the Address bus. A8 TTO Bit 10 of the Address bus. A11 TTO Bit 10 of the Address bus. A12 TTO Bit 10 of the Address bus. A14 TTO Bit 11 of the Address bus. A11	D9	TTB		Bit 9 of the bi-directional	Data bus.			
D12 TTB Bit 12 of the bi-directional Data bus. D13 TTB Bit 13 of the bi-directional Data bus. D14 TTB Bit 14 of the bi-directional Data bus. D15 TTB Bit 16 (MSB) of the bi-directional Data bus. A0 TTB Bit 0 (LSB) of the bi-directional Data bus. A0 TTB Bit 0 (LSB) of the bi-directional Address bus. A1 TTB Bit 2 of the bi-directional Address bus. A2 TTB Bit 3 of the bi-directional Address bus. A3 TTB Bit 3 of the bi-directional Address bus. A4 TTB Bit 3 of the Address bus. A4 TTB Bit 6 of the Address bus. A5 TTO Bit 6 of the Address bus. A6 TTO Bit 9 of the Address bus. A8 TTO Bit 1 of the Address bus. A11 TTO Bit 10 of the Address bus. A12 TTO Bit 13 of the Address bus. A12 TTO <td>D10</td> <td>TTB</td> <td></td> <td>Bit 10 of the bi-direction</td> <td>al Data bus.</td> <td></td> <td></td>	D10	TTB		Bit 10 of the bi-direction	al Data bus.			
D13 TTB Bit 13 of the bi-directional Data bus. D14 TTB Bit 14 of the bi-directional Data bus. D15 TTB Bit 15 (MSB) of the bi-directional Data bus. Address bus A0 TTB Bit 10 (LSB) of the bi-directional Address bus. A1 TTB Bit 2 of the bi-directional Address bus. A2 TTB Bit 2 of the bi-directional Address bus. A3 TTB Bit 2 of the bi-directional Address bus. A4 TTB Bit 2 of the bi-directional Address bus. A4 TTB Bit 4 of the bi-directional Address bus. A6 TTO Bit 5 of the Address bus. A6 TTO Bit 6 of the Address bus. A8 TTO Bit 9 of the Address bus. A10 TTO Bit 10 of the Address bus. A11 TTO Bit 10 of the Address bus. A12 TTO Bit 10 of the Address bus. A13 TTO Bit 13 of the Address bus	D11	TTB		Bit 11 of the bi-direction	al Data bus.			
D14 TTB Bit 14 of the bi-directional Data bus. D15 TTB Bit 15 (MSB) of the bi-directional Data bus. Address bus Address bus A0 TTB Bit 10 (LSB) of the bi-directional Address bus. A1 TTB Bit 2 of the bi-directional Address bus. A2 TTB Bit 2 of the bi-directional Address bus. A3 TTB Bit 4 of the bi-directional Address bus. A4 TTB Bit 4 of the bi-directional Address bus. A6 TTO Bit 6 of the Address bus. A6 TTO Bit 6 of the Address bus. A8 TTO Bit 9 of the Address bus. A9 TTO Bit 10 of the Address bus. A11 TTO Bit 10 of the Address bus. A12 TTO Bit 10 of the Address bus. A10 TTO Bit 12 of the Address bus. A11 TTO Bit 12 of the Address bus. A13 TTO Bit 12 of the Address bus.	D12	TTB		Bit 12 of the bi-direction	al Data bus.			
D15 TTB Bit 15 (MSB) of the bi-directional Data bus. Address bus Address bus A0 TTB Bit 0 (LSB) of the bi-directional Address bus. A1 TTB Bit 1 of the bi-directional Address bus. A2 TTB Bit 2 of the bi-directional Address bus. A3 TTB Bit 3 of the bi-directional Address bus. A4 TTB Bit 4 of the bi-directional Address bus. A4 TTB Bit 5 of the Address bus. A5 TTO Bit 6 of the Address bus. A6 TTO Bit 7 of the Address bus. A8 TTO Bit 8 of the Address bus. A10 TTO Bit 10 of the Address bus. A11 TTO Bit 12 of the Address bus. A12 TTO Bit 12 of the Address bus. A11 TTO Bit 12 of the Address bus. A11 TTO Bit 13 of the Address bus. A13 TTO Bit 13 of the Address bus.	D13	TTB		Bit 13 of the bi-direction	al Data bus.			
Address bus A0 TTB Bit 0 (LSB) of the bi-directional Address bus. A1 TTB Bit 1 of the bi-directional Address bus. A2 TTB Bit 2 of the bi-directional Address bus. A3 TTB Bit 3 of the bi-directional Address bus. A4 TTB Bit 5 of the Address bus. A4 TTO Bit 5 of the Address bus. A5 TTO Bit 6 of the Address bus. A6 TTO Bit 9 of the Address bus. A8 TTO Bit 9 of the Address bus. A8 TTO Bit 9 of the Address bus. A10 TTO Bit 10 of the Address bus. A11 TTO Bit 12 of the Address bus. A12 TTO Bit 10 of the Address bus. A11 TTO Bit 10 of the Address bus. A12 TTO Bit 13 of the Address bus. A13 TTO Bit 16 (MSB) of the Address bus. A14 TTO	D14	D14 TTB Bit 14 of the bi-directional Data bus.						
A0 TTB Bit 0 (LSB) of the bi-directional Address bus. A1 TTB Bit 1 of the bi-directional Address bus. A2 TTB Bit 2 of the bi-directional Address bus. A3 TTB Bit 3 of the bi-directional Address bus. A4 TTB Bit 4 of the bi-directional Address bus. A4 TTB Bit 5 of the Address bus. A5 TTO Bit 6 of the Address bus. A6 TTO Bit 7 of the Address bus. A8 TTO Bit 9 of the Address bus. A8 TTO Bit 9 of the Address bus. A9 TTO Bit 10 of the Address bus. A11 TTO Bit 12 of the Address bus. A12 TTO Bit 12 of the Address bus. A13 TTO Bit 13 of the Address bus. A14 TTO Bit 14 of the Address bus. A15 TTO Bit 15 (MSB) of the Address bus. See footnotes at end of table. SiZE A	D15	D15 TTB Bit 15 (MSB) of the bi-directional Data bus.						
A1 TTB Bit 1 of the bi-directional Address bus. A2 TTB Bit 2 of the bi-directional Address bus. A3 TTB Bit 3 of the bi-directional Address bus. A4 TTB Bit 4 of the bi-directional Address bus. A4 TTB Bit 5 of the Address bus. A5 TTO Bit 6 of the Address bus. A6 TTO Bit 7 of the Address bus. A8 TTO Bit 9 of the Address bus. A8 TTO Bit 9 of the Address bus. A10 TTO Bit 10 of the Address bus. A11 TTO Bit 12 of the Address bus. A11 TTO Bit 12 of the Address bus. A11 TTO Bit 12 of the Address bus. A13 TTO Bit 13 of the Address bus. A14 TTO Bit 14 of the Address bus. A15 TTO Bit 15 (MSB) of the Address bus. See footnotes at end of table. SiZE A Si62-9460 <td></td> <td></td> <td></td> <td>Address</td> <td>s bus</td> <td></td> <td></td>				Address	s bus			
A2 TTB Bit 2 of the bi-directional Address bus. A3 TTB Bit 3 of the bi-directional Address bus. A4 TTB Bit 4 of the bi-directional Address bus. A5 TTO Bit 5 of the Address bus. A6 TTO Bit 6 of the Address bus. A7 TTO Bit 7 of the Address bus. A8 TTO Bit 8 of the Address bus. A9 TTO Bit 9 of the Address bus. A10 TTO Bit 10 of the Address bus. A11 TTO Bit 12 of the Address bus. A12 TTO Bit 12 of the Address bus. A13 TTO Bit 13 of the Address bus. A14 TTO Bit 15 (MSB) of the Address bus. See footnotes at end of table. SiZE SiZE	A0	TTB		Bit 0 (LSB) of the bi-dire	ctional Address b	us.		
A3 TTB Bit 3 of the bi-directional Address bus. A4 TTB Bit 4 of the bi-directional Address bus. A5 TTO Bit 5 of the Address bus. A6 TTO Bit 6 of the Address bus. A7 TTO Bit 7 of the Address bus. A8 TTO Bit 9 of the Address bus. A9 TTO Bit 10 of the Address bus. A10 TTO Bit 10 of the Address bus. A11 TTO Bit 11 of the Address bus. A12 TTO Bit 12 of the Address bus. A13 TTO Bit 13 of the Address bus. A14 TTO Bit 14 of the Address bus. A15 TTO Bit 15 (MSB) of the Address bus. See footnotes at end of table. SiZE SiZE Sige2-946d	A1	TTB		Bit 1 of the bi-directional Address bus.				
A4 TTB Bit 4 of the bi-directional Address bus. A5 TTO Bit 5 of the Address bus. A6 TTO Bit 6 of the Address bus. A7 TTO Bit 7 of the Address bus. A8 TTO Bit 8 of the Address bus. A8 TTO Bit 9 of the Address bus. A9 TTO Bit 10 of the Address bus. A10 TTO Bit 10 of the Address bus. A11 TTO Bit 12 of the Address bus. A12 TTO Bit 12 of the Address bus. A13 TTO Bit 13 of the Address bus. A14 TTO Bit 16 (MSB) of the Address bus. A15 TTO Bit 15 (MSB) of the Address bus. See footnotes at end of table. SiZE Sp62-946(A2	TTB		Bit 2 of the bi-directional	Address bus.			
A5 TTO Bit 5 of the Address bus. A6 TTO Bit 6 of the Address bus. A7 TTO Bit 7 of the Address bus. A8 TTO Bit 9 of the Address bus. A9 TTO Bit 9 of the Address bus. A10 TTO Bit 10 of the Address bus. A11 TTO Bit 11 of the Address bus. A12 TTO Bit 12 of the Address bus. A13 TTO Bit 13 of the Address bus. A14 TTO Bit 14 of the Address bus. A14 TTO Bit 15 (MSB) of the Address bus. A15 TTO Bit 15 (MSB) of the Address bus. See footnotes at end of table. SiZE SiZE Sige2-946	A3	TTB		Bit 3 of the bi-directional Address bus.				
A6 TTO Bit 6 of the Address bus. A7 TTO Bit 7 of the Address bus. A8 TTO Bit 9 of the Address bus. A9 TTO Bit 10 of the Address bus. A10 TTO Bit 10 of the Address bus. A11 TTO Bit 10 of the Address bus. A12 TTO Bit 12 of the Address bus. A13 TTO Bit 13 of the Address bus. A14 TTO Bit 14 of the Address bus. A14 TTO Bit 15 (MSB) of the Address bus. A15 TTO Bit 15 (MSB) of the Address bus. See footnotes at end of table. SiZE 5962-9460	A4	TTB		Bit 4 of the bi-directional	Address bus.			
A7 TTO Bit 7 of the Address bus. A8 TTO Bit 8 of the Address bus. A9 TTO Bit 10 of the Address bus. A10 TTO Bit 10 of the Address bus. A11 TTO Bit 11 of the Address bus. A12 TTO Bit 12 of the Address bus. A13 TTO Bit 13 of the Address bus. A14 TTO Bit 14 of the Address bus. A14 TTO Bit 14 of the Address bus. A15 TTO Bit 15 (MSB) of the Address bus. See footnotes at end of table. SIZE 5962-9460	A5	TTO		Bit 5 of the Address bus				
A8 TTO Bit 8 of the Address bus. A9 TTO Bit 9 of the Address bus. A10 TTO Bit 10 of the Address bus. A11 TTO Bit 11 of the Address bus. A12 TTO Bit 12 of the Address bus. A13 TTO Bit 13 of the Address bus. A14 TTO Bit 14 of the Address bus. A15 TTO Bit 15 (MSB) of the Address bus. See footnotes at end of table. SiZE 5962-9460	A6	TTO		Bit 6 of the Address bus.				
A9 TTO Bit 9 of the Address bus. A10 TTO Bit 10 of the Address bus. A11 TTO Bit 11 of the Address bus. A12 TTO Bit 12 of the Address bus. A13 TTO Bit 12 of the Address bus. A14 TTO Bit 14 of the Address bus. A15 TTO Bit 15 (MSB) of the Address bus. See footnotes at end of table. Size 5962-9460	A7	TTO		Bit 7 of the Address bus.				
A10 TTO Bit 10 of the Address bus. A11 TTO Bit 11 of the Address bus. A12 TTO Bit 12 of the Address bus. A13 TTO Bit 13 of the Address bus. A14 TTO Bit 13 of the Address bus. A14 TTO Bit 14 of the Address bus. A15 TTO Bit 15 (MSB) of the Address bus. See footnotes at end of table. SIZE 5962-9460 MICROCIRCUIT DRAWING SIZE 5962-9460	A8	TTO		- Bit 8 of the Address bus.				
A11 TTO Bit 11 of the Address bus. A12 TTO Bit 12 of the Address bus. A13 TTO Bit 13 of the Address bus. A14 TTO Bit 14 of the Address bus. A15 TTO Bit 15 (MSB) of the Address bus. See footnotes at end of table. Size 5962-9460 MICROCIRCUIT DRAWING Size 5962-9460	A9	A9 TTO Bit 9 of the Address bus.						
A12 TTO Bit 12 of the Address bus. A13 TTO Bit 13 of the Address bus. A14 TTO Bit 14 of the Address bus. A15 TTO Bit 15 (MSB) of the Address bus. See footnotes at end of table. Size 5962-9460 MICROCIRCUIT DRAWING Size 5962-9460	A10	TTO		Bit 10 of the Address bu	S.			
A13 TTO Bit 13 of the Address bus. A14 TTO Bit 14 of the Address bus. A15 TTO Bit 15 (MSB) of the Address bus. See footnotes at end of table. See footnotes at end of table. SIZE Standard SiZE Size 5962-9466	A11	TTO		Bit 11 of the Address bu	S.			
A14 TTO Bit 14 of the Address bus. A15 TTO Bit 15 (MSB) of the Address bus. See footnotes at end of table. See footnotes at end of table.	A12	TTO		Bit 12 of the Address bu	S.			
A15 TTO Bit 15 (MSB) of the Address bus. See footnotes at end of table. See footnotes at end of table. Size STANDARD Size Size Size MICROCIRCUIT DRAWING Size Size Size	A13	TTO		Bit 13 of the Address bu	S.			
See footnotes at end of table. Standard MICROCIRCUIT DRAWING SIZE A SIZ	A14	TTO		Bit 14 of the Address bu	S.			
STANDARD MICROCIRCUIT DRAWING	A15	TTO		Bit 15 (MSB) of the Add	ress bus.			
MICROCIRCUIT DRAWING A 5962-9460	See footr	notes at end	of table.					
		MICRO		RAWING			5962-94663	

REVISION LEVEL

В

SHEET

35

DEFENSE SUPPLY CENTER COLUMBUS

COLUMBUS, OHIO 43216-5000

Name	Type <u>1</u> /	Active 2/	Description
			Remote terminal address inputs
RTA0	TUI		Remote Terminal Address bit 0. This is bit 0 of the RT address. This is the least significant bit for the RT address.
RTA1	TUI		Remote Terminal Address bit 1. This is bit 1 of the RT address.
RTA2	TUI		Remote Terminal Address bit 2. This is bit 2 of the RT address.
RTA3	TUI		Remote Terminal Address bit 3. This is bit 3 of the RT address.
RTA4	TUI		Remote Terminal Address bit 4. This is the most significant bit of the RT address.
RTPTY	TUI		Remote Terminal Parity. This is an odd parity input for the RT address.
			JTAG testability pins
TDO	тто		TDO. This output performs the operation of Test Data Output as defined in the IEEE Standard 1149.1. This cell provides the output signal for the Test Access Port (TAP). This non-inverting output buffer is optimized for driving TTL loads.
ТСК	TI		TCK. This input performs the operation of Test Clock input as defined in the IEEE Standard 1149.1. This cell provides the input clock for non-inverting input buffer that is optimized for driving TTL input levels.
TMS	TUI		TMS. This input performs the operation of Test Mode Select as defined in the IEEE Standard 1149.1. This cell provides the input signal for the Test Access Port (TAP). This non-inverting input buffer is optimized for driving TTL input levels.
TDI	TUI		TDI. This input performs the operation of Test Data In as defined in the IEEE Standard 1149.1. This cell provides the input signal for the Test Access Port (TAP). This non-inverting input buffer is optimized for driving TTL input levels.
TRST	TUI	AL	TRST. This input provides the RESET to the TAP controller as defined in the IEEE Standard 1149.1. This non-inverting input buffer is optimized for driving TTL input
			levels. When not exercising JTAG, tie TRST to a logical 0.
			Biphase inputs/outputs
CHA	DIO		Channel A (true). This is the Manchester-encoded true signal for channel A.
CHA	DIO		Channel A (complement). This is the Manchester-encoded complement signal for channel A.
СНВ	DIO		Channel B (true). This is the Manchester-encoded true signal for channel B.
CHB	DIO		Channel B (complement). This is the Manchester-encoded complement signal for channel B.
			DMA signals
DMAR	TTO <u>3</u> /	AL	DMA Request. This signal is asserted when access to RAM is required. It goes inactiv upon request of the $\overline{\text{DMAG}}$ signal.
DMAG	TI	AL	DMA Grant. Once this input is received, the device is allowed to access RAM.
DMACK	TTO <u>3</u> /	AL	DMA Acknowledge. This signal is asserted by the device to indicate the receipt of DMAG. The signal remains active until all RAM bus activity is completed.
DTACK	TI	AL	Data Transfer Acknowledge. This pin indicates that a data transfer is to occur and that the device may complete the memory cycle.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94663
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	36

Name	Type <u>1</u> /	Active 2/	Description
	1		Control signals
RD/WR	ТІ		Read/Write. This indicates the direction of data flow with respect to the host. A logic high signal means the host is trying to read data from the device, and a logic low signal means the host is trying to write data to the device.
CS	TI	AL	Chip Select. This pin selects the device when accessing the internal registers.
RRD	TTO	AL	RAM Read. This signal is generated by the device to read data from RAM.
RWR	TTO	AL	RAM Write. This signal is generated by the device to write data to RAM.
RCS	TTO	AL	RAM Chip Select. This signal is used in conjunction with the $\overline{RRD}/\overline{RWR}$ signal to access RAM.
AUTOEN	TI	AL	Auto Enable. This pin, when active, enables automatic initialization.
ROMEN	TTO <u>3</u> /	AL	ROM Enable. This pin, when active enables the ROM for automatic initialization applications.
SSYSF	ТІ	AL	Subsystem Fail. Upon receipt, this signal propagates directly to the RT 1553 status word.
24 MHz	CI		24 MHz Clock. This 24 MHz input clock requires a 50% $\pm 10\%$ duty cycle with an accuracy of $\pm 0.01\%.$
MRST	TUI	AL	Master Reset. This input pin resets the internal encoders, decoders, all register, and associated logic.
MSEL1	TI		Mode Select 1. This pin is the most significant bit for the mode select. For proper mode selection, see below: MSEL1 MSEL0 Mode of Operation 0 0 Bus Controller = SBC 0 1 Remote Terminal = SRT 1 0 Monitor Terminal = SMT 1 1 SMT/SRT
MSEL0	TI		Mode Select 0. This pin is the least significant bit for the mode select. (See MSEL1 for proper logic states.)
TCLK	ТІ		Timer Clock. This internal timer is a 16-bit counter with a 64 μ s resolution when using the 24 MHz input clock. For different applications, the user may input a clock (0-60 MHz) to establish the timer resolution. (Duty Cycle = 50% ±10%).
A/B STD	TI		Military Standard A or B. This pin defines whether the device will be used a MIL-STD-1553A or 1553B mode of operation.
LOCK	TI	AL	Lock. This pin, when set active, prevents software changes to both the RT address, A/\overline{B} STD, and mode select.
See footnote	s at end of ta	able.	

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94663
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	37

Name	Type <u>1</u> /	Active 2/	Description
		<u>ı </u>	Status signals
TERACT	то	AL	Terminal Active. This output pin indicates that the terminal is actively processing a 1553 command.
MSG_INT	TTO <u>3</u> /	AL	Message Interrupt. This pin is active for three clock cycles (i. e., 125 ns pulse) upon the occurrence of interrupt events which are enabled.
YF_INT	TTO <u>3</u> /	AL	You Failed Interrupt. This pin is active for three clock cycles (i. e., 125 ns pulse) upon the occurrence of interrupt events which are enabled.
READY	то	AL	Ready. This signal indicates the device has completed initialization or BIT, and regular execution may begin.
			Power/Ground
V _{DD}			+5 volt logic power (± 10%)
Vcc			Device types 01, 03, 04, 06, 07, 09, and 10: +5 volt transceiver power (+10%, -5%). Recommended de-coupling capacitors: 4.7 μ F and 0.1 μ F. Device type 02: +5 volt transceiver power (±5%). Device types 05, 08, and 11: +5 volt transceiver power (±10%). Recommended de-coupling capacitors: 4.7 μ F and 0.1 μ F.
VEE			Device types 01, 03, 04, 06, 07, 09, and 10 only: -12 or -15 volt transceiver power (\pm 5%). Recommended de-coupling capacitors: 4.7 μ F and 0.1 μ F.
V _{SS}			Digital ground.
GND			Transceiver ground.

CI = CMOS input TUI = TTL input (internally pulled high) TI = TTL input

TTO = Three-state TTL output DIO = Differential input/output All pins specified as TTL are actually CMOS transistor pairs designed for TTL compatibility.

- $\underline{2}$ / AH = Active high AL = Active low
- $\underline{3}$ / High impedance and active low.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94663
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		D	38

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 01-07-27

Approved sources of supply for SMD 5962-94663 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962-9466301QXA	<u>3</u> /	UT69151LX15/GA
5962-9466301QYA	<u>3</u> /	UT69151LX15/WA
5962-9466301QXC	<u>3</u> /	UT69151LX15/GC
5962-9466301QYC	<u>3</u> /	UT69151LX15/WC
5962-9466302QXA	<u>3</u> /	UT69151DX/GA
5962-9466302QYA	<u>3</u> /	UT69151DX/WA
5962-9466302QXC	<u>3</u> /	UT69151DX/GC
5962-9466302QYC	<u>3</u> /	UT69151DX/WC
5962-9466303QXA	<u>3</u> /	UT69151LX12/GA
5962-9466303QYA	<u>3</u> /	UT69151LX12/WA
5962-9466303QXC	<u>3</u> /	UT69151LX12/GC
5962-9466303QYC	<u>3</u> /	UT69151LX12/WC
5962-9466304QXA	<u>3</u> /	UT69151LXE15/GQA
5962-9466304QYA	<u>3</u> /	UT69151LXE15/WQA
5962-9466304QXC	<u>3</u> /	UT69151LXE15/GQC
5962-9466304QYC	<u>3</u> /	UT69151LXE15/WQC
5962R9466304QXA	<u>3</u> /	UT69151LXE15/GQAR
5962R9466304QYA	<u>3</u> /	UT69151LXE15/WQAR
5962R9466304QXC	<u>3</u> /	UT69151LXE15/GQCR
5962R9466304QYC	<u>3</u> /	UT69151LXE15/WQCR
5962R9466304VXA	<u>3</u> /	UT69151LXE15/GVAR
5962R9466304VYA	<u>3</u> /	UT69151LXE15/WVAR
5962R9466304VXC	<u>3</u> /	UT69151LXE15/GVCR
5962R9466304VYC	<u>3</u> /	UT69151LXE15/WVCR
5962-9466305QXA	<u>3</u> /	UT69151DXE/GQA
5962-9466305QYA	<u>3</u> /	UT69151DXE/WQA
5962-9466305QXC	<u>3</u> /	UT69151DXE/GQC
5962-9466305QYC	<u>3</u> /	UT69151DXE/WQC

See footnotes at end of table.

Standard PIN 1/ Vendor CAGE number Vendor PIN 2/ 5962H9466305QXA 3/ UT69151DXE/GQAH 5962H9466305QXA 3/ UT69151DXE/GQAH 5962H9466305QXC 3/ UT69151DXE/WQAH 5962H9466305QXC 3/ UT69151DXE/WQAH 5962H9466305VXA 3/ UT69151DXE/WQCH 5962H9466305VXA 3/ UT69151DXE/WQCH 5962H9466305VXC 3/ UT69151DXE/WVAH 5962H9466305VYC 3/ UT69151DXE/WVAH 5962H9466305VYC 3/ UT69151DXE/WVCH 5962+9466306QXA 3/ UT69151LXE12/QQA 5962-9466306QXC 3/ UT69151LXE12/QQC 5962-9466306QXC 3/ UT69151LXE12/QQC 5962-9466307QXA 65342 UT69151LXE15/GQA 5962-9466307QXA 65342 UT69151LXE15/WQA 5962-9466307QXA 65342 UT69151LXE15/WQA 5962-9466307QYA 65342 UT69151LXE15/WQA 5962-9466307QYA 65342 UT69151LXE15/WQA 5962-9466307QYA 65342 UT69151LXE15/WQA			
PIN 1/ number PIN 2/ 5962H9466305QXA 3/ UT69151DXE/GQAH 5962H9466305QYA 3/ UT69151DXE/WQAH 5962H9466305QYC 3/ UT69151DXE/GQCH 5962H9466305QYC 3/ UT69151DXE/WQCH 5962H9466305VXA 3/ UT69151DXE/WQCH 5962H9466305VXA 3/ UT69151DXE/WVAH 5962H9466305VYC 3/ UT69151DXE/WVAH 5962H9466305VYC 3/ UT69151DXE/WVAH 5962+9466306QXA 3/ UT69151DXE/WVCH 5962-9466306QXA 3/ UT69151LXE12/QQA 5962-9466306QYC 3/ UT69151LXE12/WQA 5962-9466306QYC 3/ UT69151LXE12/WQC 5962-9466307QXA 65342 UT69151LXE15/WQA 5962-9466307QYC 65342 UT69151LXE15/WQC 5962-9466307QYC 65342 UT69151LXE15/WQC 5962-9466307QYC 65342 UT69151DXE/WQC 5962-9466308QXA 65342 UT69151DXE/WQA 5962-9466308QYC 65342 UT69151DXE/WQA 5962-9466308QXC			
5962H9466305QYA 3/ UT69151DXE/WQAH 5962H9466305QXC 3/ UT69151DXE/GQCH 5962H9466305QYC 3/ UT69151DXE/GQCH 5962H9466305VXA 3/ UT69151DXE/GVAH 5962H9466305VXA 3/ UT69151DXE/GVAH 5962H9466305VXC 3/ UT69151DXE/WVAH 5962H9466305VYC 3/ UT69151DXE/WVCH 5962-9466306QXA 3/ UT69151LXE12/GQA 5962-9466306QXC 3/ UT69151LXE12/WQA 5962-9466306QXC 3/ UT69151LXE12/WQC 5962-9466306QYC 3/ UT69151LXE12/WQC 5962-9466307QXA 65342 UT69151LXE15/WQA 5962-9466307QXA 65342 UT69151LXE15/WQA 5962-9466307QYA 65342 UT69151LXE15/WQA 5962-9466307QYA 65342 UT69151DXE/WQA 5962-9466307QYC 65342 UT69151DXE/WQA 5962-9466308QXA 65342 UT69151DXE/WQA 5962-9466308QYA 65342 UT69151DXE/WQA 5962-9466308QYA 65342 UT69151DXE/WQA 59	5		
- - 5962H9466305QXC 3/ UT69151DXE/GQCH 5962H9466305QYC 3/ UT69151DXE/WQCH 5962H9466305VXA 3/ UT69151DXE/GVAH 5962H9466305VYA 3/ UT69151DXE/WVAH 5962H9466305VYC 3/ UT69151DXE/WVAH 5962H9466305VYC 3/ UT69151DXE/WVCH 5962-9466306QXA 3/ UT69151LXE12/WQA 5962-9466306QYC 3/ UT69151LXE12/WQA 5962-9466306QYC 3/ UT69151LXE12/WQC 5962-9466306QYC 3/ UT69151LXE12/WQC 5962-9466307QXA 65342 UT69151LXE15/WQC 5962-9466307QYA 65342 UT69151LXE15/WQA 5962-9466307QYC 65342 UT69151DXE/WQA 5962-9466307QYC 65342 UT69151DXE/WQA 5962-9466308QXA 65342 UT69151DXE/WQA 5962-9466308QXA 65342 UT69151DXE/WQA 5962-9466308QXA 65342 UT69151DXE/WQA 5962-9466308QYA 65342 UT69151DXE/WQA 5962-9466308QYC 65342	5962H9466305QXA	<u>3</u> /	UT69151DXE/GQAH
5962H9466305QYC 3/ UT69151DXE/WQCH 5962H9466305VXA 3/ UT69151DXE/GVAH 5962H9466305VXA 3/ UT69151DXE/GVAH 5962H9466305VXC 3/ UT69151DXE/GVCH 5962H9466306QXA 3/ UT69151DXE/WVCH 5962-9466306QXA 3/ UT69151LXE12/GQA 5962-9466306QXA 3/ UT69151LXE12/WQA 5962-9466306QXC 3/ UT69151LXE12/WQA 5962-9466306QXC 3/ UT69151LXE12/WQA 5962-9466306QYC 3/ UT69151LXE12/WQC 5962-9466307QXA 65342 UT69151LXE15/GQA 5962-9466307QXA 65342 UT69151LXE15/WQA 5962-9466307QXC 65342 UT69151LXE15/WQA 5962-9466307QXC 65342 UT69151DXE/GQA 5962-9466307QXC 65342 UT69151DXE/QQC 5962-9466307QXA 65342 UT69151DXE/QQC 5962-9466307QXC 65342 UT69151DXE/QQC 5962-9466308QXA 65342 UT69151DXE/QQC 5962-9466308QXA 65342 UT69151DXE/QQC <td< td=""><td>5962H9466305QYA</td><td><u>3</u>/</td><td>UT69151DXE/WQAH</td></td<>	5962H9466305QYA	<u>3</u> /	UT69151DXE/WQAH
5962H9466305VXA 3/ UT69151DXE/GVAH 5962H9466305VYA 3/ UT69151DXE/GVAH 5962H9466305VYC 3/ UT69151DXE/GVCH 5962H9466306QXA 3/ UT69151DXE/QQA 5962-9466306QXA 3/ UT69151LXE12/GQA 5962-9466306QYA 3/ UT69151LXE12/WQA 5962-9466306QYC 3/ UT69151LXE12/WQC 5962-9466306QYC 3/ UT69151LXE12/WQC 5962-9466307QXA 65342 UT69151LXE15/GQA 5962-9466307QXA 65342 UT69151LXE15/GQC 5962-9466307QXA 65342 UT69151LXE15/WQA 5962-9466307QYC 65342 UT69151LXE15/WQC 5962-9466308QXA 65342 UT69151DXE/WQA 5962-9466308QXA 65342 UT69151DXE/WQA 5962-9466308QYA 65342 UT69151DXE/WQA 5962-9466308QYA 65342 UT69151DXE/WQA 5962-9466308QYA 65342 UT69151LXE12/WQA 5962-9466308QYA 65342 UT69151LXE12/WQA 5962-9466309QYA 65342 UT69151LXE12/WQA	5962H9466305QXC	<u>3</u> /	UT69151DXE/GQCH
- - 5962H9466305VYA 3/ UT69151DXE/WVAH 5962H9466305VXC 3/ UT69151DXE/GVCH 5962+9466306QXA 3/ UT69151DXE/WVCH 5962-9466306QXA 3/ UT69151LXE12/GQA 5962-9466306QXA 3/ UT69151LXE12/WQA 5962-9466306QXC 3/ UT69151LXE12/WQA 5962-9466306QYC 3/ UT69151LXE12/WQC 5962-9466307QXA 65342 UT69151LXE15/GQA 5962-9466307QXA 65342 UT69151LXE15/WQA 5962-9466307QXA 65342 UT69151LXE15/WQA 5962-9466307QYC 65342 UT69151DXE/GQA 5962-9466307QYC 65342 UT69151DXE/GQA 5962-9466308QXA 65342 UT69151DXE/WQA 5962-9466308QYA 65342 UT69151DXE/WQA 5962-9466308QYA 65342 UT69151DXE/WQC 5962-9466308QXA 65342 UT69151DXE/WQC 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QXC 65342 </td <td>5962H9466305QYC</td> <td><u>3</u>/</td> <td>UT69151DXE/WQCH</td>	5962H9466305QYC	<u>3</u> /	UT69151DXE/WQCH
5962H9466305VXC 3/ UT69151DXE/GVCH 5962H9466305VYC 3/ UT69151DXE/WVCH 5962-9466306QXA 3/ UT69151LXE12/GQA 5962-9466306QYA 3/ UT69151LXE12/WQA 5962-9466306QYC 3/ UT69151LXE12/WQA 5962-9466306QYC 3/ UT69151LXE12/WQC 5962-9466307QXA 65342 UT69151LXE15/WQA 5962-9466307QXA 65342 UT69151LXE15/WQA 5962-9466307QYA 65342 UT69151LXE15/WQA 5962-9466307QYC 65342 UT69151LXE15/WQA 5962-9466307QYC 65342 UT69151LXE15/WQC 5962-9466307QYC 65342 UT69151DXE/GQA 5962-9466308QXA 65342 UT69151DXE/WQC 5962-9466308QXA 65342 UT69151DXE/WQA 5962-9466308QYC 65342 UT69151DXE/WQA 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QXC 65342 UT69151LXE12/WQA	5962H9466305VXA	<u>3</u> /	UT69151DXE/GVAH
5962H9466305VYC 3/ UT69151DXE/WVCH 5962-9466306QXA 3/ UT69151LXE12/GQA 5962-9466306QXC 3/ UT69151LXE12/WQA 5962-9466306QYC 3/ UT69151LXE12/WQA 5962-9466306QYC 3/ UT69151LXE12/WQC 5962-9466307QXA 65342 UT69151LXE15/GQA 5962-9466307QXA 65342 UT69151LXE15/WQA 5962-9466307QXC 65342 UT69151LXE15/WQA 5962-9466307QYC 65342 UT69151LXE15/WQC 5962-9466307QYC 65342 UT69151LXE15/WQC 5962-9466307QYC 65342 UT69151DXE/GQC 5962-9466308QXA 65342 UT69151DXE/QQC 5962-9466308QXA 65342 UT69151DXE/WQA 5962-9466308QXC 65342 UT69151DXE/WQA 5962-9466308QXA 65342 UT69151LXE12/WQA 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QYA 65342 UT69151LXE12/WQA 5962-9466309QYC 65342 UT69151LXE12/WQC <td>5962H9466305VYA</td> <td><u>3</u>/</td> <td>UT69151DXE/WVAH</td>	5962H9466305VYA	<u>3</u> /	UT69151DXE/WVAH
5962-9466306QXA 3/ UT69151LXE12/GQA 5962-9466306QYA 3/ UT69151LXE12/WQA 5962-9466306QXC 3/ UT69151LXE12/WQA 5962-9466306QYC 3/ UT69151LXE12/WQC 5962-9466307QXA 65342 UT69151LXE15/WQA 5962-9466307QXA 65342 UT69151LXE15/WQA 5962-9466307QYA 65342 UT69151LXE15/WQA 5962-9466307QYC 65342 UT69151LXE15/WQC 5962-9466307QYC 65342 UT69151LXE15/WQC 5962-9466308QXA 65342 UT69151DXE/WQC 5962-9466308QXA 65342 UT69151DXE/WQA 5962-9466308QXA 65342 UT69151DXE/WQA 5962-9466308QXC 65342 UT69151DXE/WQC 5962-9466308QXC 65342 UT69151LXE12/WQA 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QXC 65342 UT69151LXE12/WQA 5962-9466309QYC 65342 UT69151LXE12/WQA 5962R9466310QYA 65342 UT69151LXE15/WQAR	5962H9466305VXC	<u>3</u> /	UT69151DXE/GVCH
5962-9466306QYA 3/ UT69151LXE12/WQA 5962-9466306QXC 3/ UT69151LXE12/WQC 5962-9466306QYC 3/ UT69151LXE12/WQC 5962-9466307QXA 65342 UT69151LXE15/GQA 5962-9466307QXA 65342 UT69151LXE15/WQA 5962-9466307QYA 65342 UT69151LXE15/WQA 5962-9466307QYC 65342 UT69151LXE15/WQC 5962-9466307QYC 65342 UT69151LXE15/WQC 5962-9466308QXA 65342 UT69151DXE/GQA 5962-9466308QXA 65342 UT69151DXE/WQA 5962-9466308QXA 65342 UT69151DXE/WQA 5962-9466308QXC 65342 UT69151DXE/WQC 5962-9466308QXA 65342 UT69151LXE12/GQC 5962-9466309QXA 65342 UT69151LXE12/WQC 5962-9466309QXC 65342 UT69151LXE12/WQA 5962-9466309QXC 65342 UT69151LXE12/WQC 5962-9466309QXC 65342 UT69151LXE12/WQC 5962R9466310QYA 65342 UT69151LXE15/WQAR 5962R9466310QYA 65342 UT69151LXE15/WQAR <td>5962H9466305VYC</td> <td><u>3</u>/</td> <td>UT69151DXE/WVCH</td>	5962H9466305VYC	<u>3</u> /	UT69151DXE/WVCH
5062 000000000000000000000000000000000000	5962-9466306QXA	<u>3</u> /	UT69151LXE12/GQA
5962-9466306QYC 3/ UT69151LXE12/WQC 5962-9466307QXA 65342 UT69151LXE15/GQA 5962-9466307QYA 65342 UT69151LXE15/WQA 5962-9466307QYC 65342 UT69151LXE15/WQA 5962-9466307QYC 65342 UT69151LXE15/WQC 5962-9466308QXA 65342 UT69151DXE/GQA 5962-9466308QXA 65342 UT69151DXE/GQA 5962-9466308QXA 65342 UT69151DXE/GQC 5962-9466308QXC 65342 UT69151DXE/QC 5962-9466308QXC 65342 UT69151DXE/QC 5962-9466308QXC 65342 UT69151DXE/WQC 5962-9466309QXA 65342 UT69151LXE12/GQA 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QXC 65342 UT69151LXE12/WQA 5962-9466309QYC 65342 UT69151LXE12/WQC 5962-9466309QYC 65342 UT69151LXE12/WQC 5962R9466310QYA 65342 UT69151LXE15/WQCR 5962R9466310QYC 65342 UT69151LXE15/WQCR 5962R9466310VYA 65342 UT69151LXE15/WQCR <td>5962-9466306QYA</td> <td><u>3</u>/</td> <td>UT69151LXE12/WQA</td>	5962-9466306QYA	<u>3</u> /	UT69151LXE12/WQA
5962-9466307QXA 65342 UT69151LXE15/GQA 5962-9466307QYA 65342 UT69151LXE15/WQA 5962-9466307QYC 65342 UT69151LXE15/WQC 5962-9466307QYC 65342 UT69151LXE15/WQC 5962-9466308QXA 65342 UT69151DXE/GQA 5962-9466308QXA 65342 UT69151DXE/GQA 5962-9466308QXA 65342 UT69151DXE/GQA 5962-9466308QXC 65342 UT69151DXE/GQC 5962-9466308QXC 65342 UT69151DXE/QQC 5962-9466308QXC 65342 UT69151DXE/WQC 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QXC 65342 UT69151LXE12/WQA 5962-9466309QXC 65342 UT69151LXE12/WQC 5962-9466309QXC 65342 UT69151LXE12/WQC 5962-9466309QYC 65342 UT69151LXE15/WQAR 5962R9466310QYA 65342 UT69151LXE15/WQAR 5962R9466310QYA 65342 UT69151LXE15/WVAR 5962R9466310VYA 65342 UT69151DXE/WQA	5962-9466306QXC	<u>3</u> /	UT69151LXE12/GQC
5962-9466307QYA 65342 UT69151LXE15/WQA 5962-9466307QXC 65342 UT69151LXE15/WQC 5962-9466307QYC 65342 UT69151LXE15/WQC 5962-9466308QXA 65342 UT69151DXE/GQA 5962-9466308QXA 65342 UT69151DXE/GQA 5962-9466308QXA 65342 UT69151DXE/WQA 5962-9466308QXC 65342 UT69151DXE/WQA 5962-9466308QXC 65342 UT69151DXE/WQC 5962-9466308QXC 65342 UT69151DXE/WQC 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QYC 65342 UT69151LXE12/WQC 5962R9466310QYA 65342 UT69151LXE15/WQCR 5962R9466310QYA 65342 UT69151LXE15/WQAR 5962R9466310QYA 65342 UT69151LXE15/WQCR 5962R9466310VYA 65342 UT69151LXE15/WVCR 5962R9466310VYC 65342 UT69151DXE/WQCR 5962R94663110VYA 65342 UT69151DXE/WQ	5962-9466306QYC	<u>3</u> /	UT69151LXE12/WQC
5062-0466307QXC 65342 UT69151LXE15/WQC 5962-9466307QYC 65342 UT69151LXE15/WQC 5962-9466308QXA 65342 UT69151DXE/GQA 5962-9466308QXA 65342 UT69151DXE/GQA 5962-9466308QXA 65342 UT69151DXE/WQA 5962-9466308QXC 65342 UT69151DXE/WQA 5962-9466308QYC 65342 UT69151DXE/WQC 5962-9466309QXA 65342 UT69151DXE/WQC 5962-9466309QXA 65342 UT69151LXE12/QQA 5962-9466309QXA 65342 UT69151LXE12/WQC 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QXC 65342 UT69151LXE12/WQA 5962-9466309QXC 65342 UT69151LXE12/WQC 5962R9466310QYA 65342 UT69151LXE15/WQCR 5962R9466310QYC 65342 UT69151LXE15/WQCR 5962R9466310VYA 65342 UT69151LXE15/WVCR 5962R9466310VYA 65342 UT69151LXE15/WVCR 5962R9466310VYA 65342 UT69151DXE/WQAR 5962R9466310VYA 65342 UT69151DXE/WQA	5962-9466307QXA	65342	UT69151LXE15/GQA
5001 010001 010 5001 0 0100101010000 5962-9466307QYC 65342 UT69151LXE15/WQC 5962-9466308QXA 65342 UT69151DXE/GQA 5962-9466308QXC 65342 UT69151DXE/WQA 5962-9466308QXC 65342 UT69151DXE/WQA 5962-9466308QYC 65342 UT69151DXE/WQC 5962-9466309QXA 65342 UT69151LXE12/WQC 5962-9466309QXA 65342 UT69151LXE12/QQA 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QXC 65342 UT69151LXE12/WQA 5962-9466309QXC 65342 UT69151LXE12/WQA 5962-9466309QYC 65342 UT69151LXE12/WQC 5962R9466310QYA 65342 UT69151LXE15/WQAR 5962R9466310QYC 65342 UT69151LXE15/WVAR 5962R9466310VYC 65342 UT69151LXE15/WVAR 5962R9466310VYC 65342 UT69151LXE15/WVAR 5962R9466310VYC 65342 UT69151LXE15/WVAR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/	5962-9466307QYA	65342	UT69151LXE15/WQA
5962-9466308QXA 65342 UT69151DXE/GQA 5962-9466308QYA 65342 UT69151DXE/WQA 5962-9466308QXC 65342 UT69151DXE/WQA 5962-9466308QYC 65342 UT69151DXE/WQC 5962-9466309QXA 65342 UT69151DXE/WQC 5962-9466309QXA 65342 UT69151LXE12/GQA 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QXC 65342 UT69151LXE12/WQA 5962-9466309QXC 65342 UT69151LXE12/WQC 5962-9466309QXC 65342 UT69151LXE12/WQC 5962R9466310QYA 65342 UT69151LXE15/WQCR 5962R9466310QYC 65342 UT69151LXE15/WQCR 5962R9466310VYA 65342 UT69151LXE15/WVCR 5962R9466310VYC 65342 UT69151LXE15/WVCR 5962R9466310VYC 65342 UT69151DXE/WQCR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/WQA	5962-9466307QXC	65342	UT69151LXE15/GQC
5962-9466308QYA 65342 UT69151DXE/WQA 5962-9466308QXC 65342 UT69151DXE/GQC 5962-9466308QYC 65342 UT69151DXE/WQC 5962-9466309QXA 65342 UT69151DXE/WQC 5962-9466309QXA 65342 UT69151LXE12/GQA 5962-9466309QYA 65342 UT69151LXE12/WQA 5962-9466309QYC 65342 UT69151LXE12/WQA 5962-9466309QYC 65342 UT69151LXE12/WQC 5962-9466309QYC 65342 UT69151LXE12/WQC 5962-9466309QYC 65342 UT69151LXE12/WQC 5962R9466310QYA 65342 UT69151LXE15/WQAR 5962R9466310QYC 65342 UT69151LXE15/WQAR 5962R9466310VYA 65342 UT69151LXE15/WVCR 5962R9466310VYC 65342 UT69151LXE15/WVCR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/WQ	5962-9466307QYC	65342	UT69151LXE15/WQC
5962-9466308QXC 65342 UT69151DXE/GQC 5962-9466308QYC 65342 UT69151DXE/WQC 5962-9466309QXA 65342 UT69151DXE/WQC 5962-9466309QXA 65342 UT69151LXE12/GQA 5962-9466309QXA 65342 UT69151LXE12/WQA 5962-9466309QXC 65342 UT69151LXE12/WQA 5962-9466309QYC 65342 UT69151LXE12/WQC 5962-9466309QYC 65342 UT69151LXE12/WQC 5962-9466309QYC 65342 UT69151LXE12/WQC 5962R9466310QYA 65342 UT69151LXE15/WQAR 5962R9466310QYC 65342 UT69151LXE15/WQCR 5962R9466310VYA 65342 UT69151LXE15/WVCR 5962R9466310VYC 65342 UT69151LXE15/WVCR 5962R9466310VYC 65342 UT69151DXE/WQCR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYC 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/WQAR	5962-9466308QXA	65342	UT69151DXE/GQA
5962-9466308QYC 65342 UT69151DXE/WQC 5962-9466309QXA 65342 UT69151LXE12/GQA 5962-9466309QYA 65342 UT69151LXE12/WQA 5962-9466309QYC 65342 UT69151LXE12/WQA 5962-9466309QYC 65342 UT69151LXE12/WQA 5962-9466309QYC 65342 UT69151LXE12/WQC 5962-9466310QYA 65342 UT69151LXE15/WQCR 5962R9466310QYC 65342 UT69151LXE15/WQCR 5962R9466310QYC 65342 UT69151LXE15/WQCR 5962R9466310VYA 65342 UT69151LXE15/WQCR 5962R9466310VYC 65342 UT69151LXE15/WVCR 5962R9466310VYC 65342 UT69151LXE15/WVCR 5962R9466310VYC 65342 UT69151DXE/WQCR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/WQAR	5962-9466308QYA	65342	UT69151DXE/WQA
5962-9466309QXA 65342 UT69151LXE12/GQA 5962-9466309QYA 65342 UT69151LXE12/WQA 5962-9466309QXC 65342 UT69151LXE12/WQA 5962-9466309QYC 65342 UT69151LXE12/WQC 5962-9466309QYC 65342 UT69151LXE12/WQC 5962-9466310QYA 65342 UT69151LXE15/WQAR 5962R9466310QYC 65342 UT69151LXE15/WQAR 5962R9466310QYC 65342 UT69151LXE15/WQCR 5962R9466310VYA 65342 UT69151LXE15/WVAR 5962R9466310VYC 65342 UT69151LXE15/WVAR 5962R9466310VYC 65342 UT69151LXE15/WVCR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/WQAR	5962-9466308QXC	65342	UT69151DXE/GQC
5962-9466309QYA 65342 UT69151LXE12/WQA 5962-9466309QXC 65342 UT69151LXE12/GQC 5962-9466309QYC 65342 UT69151LXE12/WQC 5962-9466309QYC 65342 UT69151LXE12/WQC 5962R9466310QYA 65342 UT69151LXE15/WQAR 5962R9466310QYC 65342 UT69151LXE15/WQCR 5962R9466310VYA 65342 UT69151LXE15/WVAR 5962R9466310VYC 65342 UT69151LXE15/WVCR 5962R9466310VYC 65342 UT69151LXE15/WVCR 5962R9466311QYA 65342 UT69151LXE15/WVCR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/WQAR	5962-9466308QYC	65342	UT69151DXE/WQC
5962-9466309QXC 65342 UT69151LXE12/GQC 5962-9466309QYC 65342 UT69151LXE12/WQC 5962R9466310QYA 65342 UT69151LXE15/WQAR 5962R9466310QYC 65342 UT69151LXE15/WQAR 5962R9466310QYC 65342 UT69151LXE15/WQAR 5962R9466310VYA 65342 UT69151LXE15/WVAR 5962R9466310VYC 65342 UT69151LXE15/WVCR 5962R9466310VYC 65342 UT69151LXE15/WVCR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYC 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYC 65342 UT69151DXE/WQAR	5962-9466309QXA	65342	UT69151LXE12/GQA
5962-9466309QYC 65342 UT69151LXE12/WQC 5962R9466310QYA 65342 UT69151LXE15/WQAR 5962R9466310QYC 65342 UT69151LXE15/WQAR 5962R9466310QYC 65342 UT69151LXE15/WQAR 5962R9466310VYA 65342 UT69151LXE15/WVAR 5962R9466310VYC 65342 UT69151LXE15/WVCR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYC 65342 UT69151DXE/WQAR 5962R9466311QYA 65342 UT69151DXE/WQAR	5962-9466309QYA	65342	UT69151LXE12/WQA
5962R9466310QYA 65342 UT69151LXE15/WQAR 5962R9466310QYC 65342 UT69151LXE15/WQCR 5962R9466310VYA 65342 UT69151LXE15/WVAR 5962R9466310VYC 65342 UT69151LXE15/WVAR 5962R9466310VYC 65342 UT69151LXE15/WVCR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYC 65342 UT69151DXE/WQAR 5962R9466311QYC 65342 UT69151DXE/WQAR 5962R9466311QYC 65342 UT69151DXE/WQAR	5962-9466309QXC	65342	UT69151LXE12/GQC
5962R9466310QYC 65342 UT69151LXE15/WQCR 5962R9466310VYA 65342 UT69151LXE15/WVAR 5962R9466310VYC 65342 UT69151LXE15/WVCR 5962R9466311QYA 65342 UT69151LXE15/WVCR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYC 65342 UT69151DXE/WQAR 5962R9466311QYC 65342 UT69151DXE/WQAR 5962R9466311QYC 65342 UT69151DXE/WQCR	5962-9466309QYC	65342	UT69151LXE12/WQC
5962R9466310VYA 65342 UT69151LXE15/WVAR 5962R9466310VYC 65342 UT69151LXE15/WVCR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYC 65342 UT69151DXE/WQAR 5962R9466311QYC 65342 UT69151DXE/WQAR 5962R9466311QYC 65342 UT69151DXE/WQCR 5962R9466311VYA 65342 UT69151DXE/WQCR	5962R9466310QYA	65342	UT69151LXE15/WQAR
5962R9466310VYC 65342 UT69151LXE15/WVCR 5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYC 65342 UT69151DXE/WQCR 5962R9466311VYA 65342 UT69151DXE/WQCR	5962R9466310QYC	65342	UT69151LXE15/WQCR
5962R9466311QYA 65342 UT69151DXE/WQAR 5962R9466311QYC 65342 UT69151DXE/WQCR 5962R9466311VYA 65342 UT69151DXE/WQCR	5962R9466310VYA	65342	UT69151LXE15/WVAR
5962R9466311QYC 65342 UT69151DXE/WQCR 5962R9466311VYA 65342 UT69151DXE/WVAR	5962R9466310VYC	65342	UT69151LXE15/WVCR
5962R9466311VYA 65342 UT69151DXE/WVAR	5962R9466311QYA	65342	UT69151DXE/WQAR
	5962R9466311QYC	65342	UT69151DXE/WQCR
5962R9466311VYC 65342 UT69151DXE/WVCR	5962R9466311VYA	65342	UT69151DXE/WVAR
	5962R9466311VYC	65342	UT69151DXE/WVCR

STANDARD MICROCIRCUIT DRAWING BULLETIN - Continued.

See footnotes at end of table.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962F9466311QYA	65342	UT69151DXE/WQAF
5962F9466311QYC	65342	UT69151DXE/WQCF
5962F9466311VYA	65342	UT69151DXE/WVAF
5962F9466311VYC	65342	UT69151DXE/WVCF

STANDARD MICROCIRCUIT DRAWING BULLETIN - Continued.

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed, contact the vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
- $\underline{3}$ / No longer available from an approved source of supply.

Vendor CAGE number Vendor name and address

65342

Aeroflex UTMC Microelectronics System Inc. 4350 Centennial Boulevard Colorado Springs, Colorado 80907-3486

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.