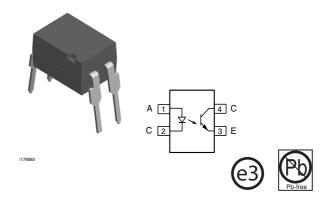


Vishay Semiconductors

Optocoupler, Phototransistor Output, 300 V BV_{CEO}

Features


- High Isolation Test Voltage, 5300 V_{RMS}
- High Collector-Emitter Voltage, V_{CFO} = 300 V
- Standard Plastic DIP-4 Package
- · Lead-free component
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

Agency Approvals

- UL1577, File No. E52744 System Code H or J, **Double Protection**
- CSA 93751

The SFH614A features a high collector-emitter voltage and high isolation voltage. These couplers have a GaAs infrared emitting diode emitter, which is optically coupled to a silicon planar phototransistor detector, and is incorporated in a plastic DIP-4 package.

The coupling devices are designed for signal transmission between two electrically separated circuits.

Order Information

Part	Remarks			
SFH614A	CTR > 50 %, DIP-4			
SFH614A-X009	CTR > 50 %, SMD-4 (option 9)			

For additional information on the available options refer to Option Information.

Absolute Maximum Ratings

T_{amb} = 25 °C, unless otherwise specified

Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability.

Input

Parameter	Test condition	Symbol	Value	Unit
Reverse voltage		V _R	6.0	V
DC Forward current		I _F	60	mA
Surge forward current	t ≤ 10 μs	I _{FSM}	2.5	A
Derate linearly from 25 °C			1.33	mW/°C
Total power dissipation		P _{diss}	100	mW

www.vishay.com

Rev. 1.4, 26-Oct-04

SFH614A

Vishay Semiconductors

Output

Parameter	Test condition	Symbol	Value	Unit
Collector-emitter voltage		V _{CEO}	300	V
Emitter-collector voltage		V _{ECO}	7.0	V
Collector current		I _C	50	mA
	t ≤ 1.0 ms	I _C	100	mA
Derate linearly from 25 °C			2.00	mW/°C
Total power dissipation		P _{diss}	150	mW

Coupler

Parameter	Test condition	Symbol	Value	Unit
Derate linearly from 25 °C			3.33	mW/°C
Total power dissipation		P _{tot}	250	mW
Isolation test voltage between input and output, climate acc. to IEC 60068-1: 1988 (T = 1.0 s)		V _{ISO}	5300	V _{RMS}
Creepage distance			≥ 7.0	mm
Clearance			≥ 7.0	mm
Insulation thickness between emitter and detector			≥ 0.4	mm
Comparative tracking index acc. to DIN IEC 112/VDE 0303, part 1:06-84			≥ 175	
Isolation resistance	V _{IO} = 500 V, T _{amb} = 25 °C	R _{IO}	≥ 10 ¹²	Ω
	V _{IO} = 500 V, T _{amb} = 100 °C	R _{IO}	≥ 10 ¹¹	Ω
Storage temperature range		T _{stg}	- 55 to +150	°C
Ambient temperature range		T _{amb}	- 55 to +100	°C
Junction temperature		T _j	100	°C
Soldering temperature	max. 10 s, dip soldering: distance to seating plane ≥ 1.5 mm	T _{sld}	260	°C

Electrical Characteristics

 $T_{amb} = 25$ °C, unless otherwise specified Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

Input

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Forward voltage	I _F = 10 mA	V _F		1.15	1.5	V
Reverse current	V _R = 6.0 V	I _R		0.02	10	μΑ
Capacitance	V _R = 0 V, f = 1.0 MHz	Co		14		pF

Vishay Semiconductors

Output

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Collector-emitter breakdown voltage	I _{CE} = 100 μA	BV _{CEO}	300			V
Emitter-collector breakdown voltage	I _{EC} = 10 μA	BV _{ECO}	7.0			V
Collector-emitter dark current	V _{CE} = 10 V	I _{CEO}		15	1.0	μА
Collector-emitter capacitance	V _{CE} = 10 V, f = 1.0 MHz	C _{CE}		8.0		pF

Coupler

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Collector-emitter saturation voltage	$I_F = 20 \text{ mA}, I_C = 1.0 \text{ mA}$	V _{CEsat}			0.3	V
Coupling capacitance	$V_{I-O} = 0 \text{ V, } f = 1.0 \text{ MHz}$	C _C			0.5	V

Current Transfer Ratio

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Current Transfer Ratio	$I_F = 10 \text{ mA}, V_{CE} = 10 \text{ V}$	CTR	50			%

Switching Characteristics

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Turn on time	V_{CE} = 2.0 V, I_{C} = 2.0 mA, R_{L} = 100 Ω	t _{on}		6.0		μS
Turn off time	V_{CE} = 2.0 V, I_{C} = 2.0 mA, R_{L} = 100 Ω	t _{off}		6		μS
Rise time	V_{CE} = 2.0 V, I_{C} = 2.0 mA, R_{L} = 100 Ω	t _r		3.0	10	μs
Fall time	V_{CE} = 2.0 V, I_{C} = 2.0 mA, R_{L} = 100 Ω	t _f		5.0	12	μs

Typical Characteristics (Tamb = 25 °C unless otherwise specified)

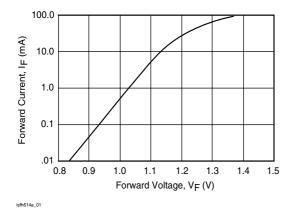


Figure 1. Forward Current vs. Forward Voltage

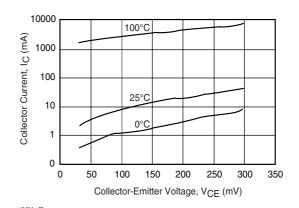


Figure 2. Collector-Emitter Dark Current vs. Collector-Emitter Voltage

Vishay Semiconductors

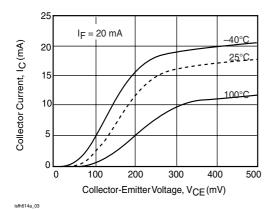


Figure 3. Collector Current vs. Collector Emitter Voltage

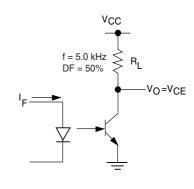


Figure 6. Switching Schematic

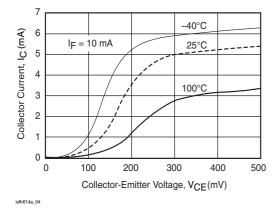
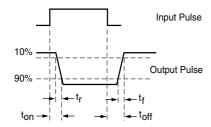
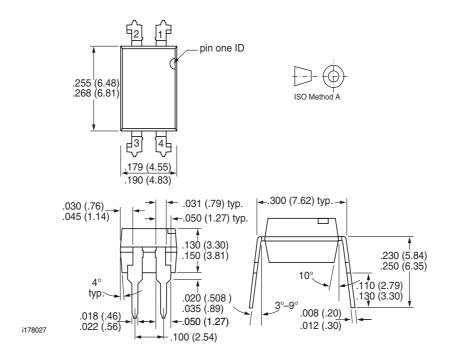
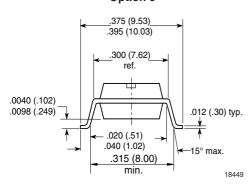



Figure 4. Collector Current vs. Collector Emitter Voltage

isfh614a_06


Figure 5. Switching Waveform

5



Vishay Semiconductors

Package Dimensions in Inches (mm)

Option 9

SFH614A

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

> We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

> Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

www.vishay.com Document Number 83670 Rev. 1.4, 26-Oct-04