BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC1225H$

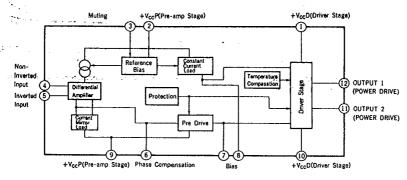
30-50 W POWER AMPLIFIER DRIVER

DESCRIPTION

 μ PC1225H is designed for use with a HI-Fi power amplifier driver. It is composed of a differential amplifier, a pre driver, a driver and protection circuit.

It is in a 12 pin small power SIP. (Single In Line)

FEATURES


Excellent Low Distortion

0.002 % TYP. (V_{CC} = \pm 36 V, f = 1 kHz, A_V = 30 dB, P_o = 30 W, R_L = 8 Ohms) 0.006 % TYP. (V_{CC} = \pm 36 V, f = 20 kHz, A_V = 30 dB, P_o = 30 W, R_L = 8 Ohms)

- Wide Frequency Band 900 kHz TYP. (-3 dB)
- Wide Power Band Width
 90 kHz TYP, (Po = 25 W, T.H.D. = 0.1 %)
- Excellent Low POP ON/OFF Noise

•

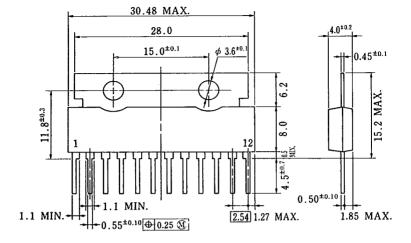
BLOCK DIAGRAM

www.DataSheet4U.com

T-74-05-01

NOTE: The protection circuit is for this IC and cannot protect external Power Transistors. Thus, design a Po Tr protection circuit besides.

ABSOLUTE MAXMUM RATINGS (Ta = 25 °C)

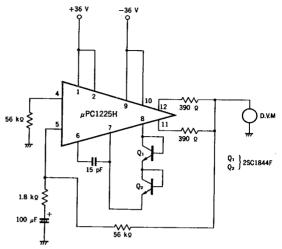

Supply Voltage (Quiscent)	V _{CC1}	±50	v
Supply Voltage (Operational)	V _{CC2}	±45	v
Quiscent Circuit Current	lcc	200	mΑ
Allowable Package Dissipation	CC(PEAK)	4.1	w
Operational Temparature	Topt	-20 to +75	°c
Storage Temperature	Tstg	-40 to +150	°c

RECOMMENDED OPERATING CONDITION

Supply Voltage (Operational)	$V_{CC} = \pm 18$ to ± 36 V at Max Power Output
Input Bias Resistance	R _{IN} = 1 to 50 to 100 kohms
Power Transistor hee	h _{FE} = 50 at Max Power Output
Closed Loop Voltage Gain	A _V = 26 to 30 dB

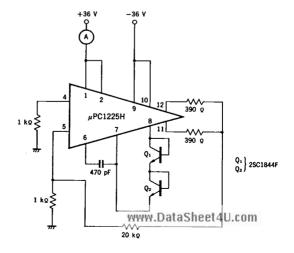
ELECTRICAL CHARACTERISTICS (VCC = ± 36 V, Ay = 30 dB, Use Standard Test Circuit, Ta = 25 °C)

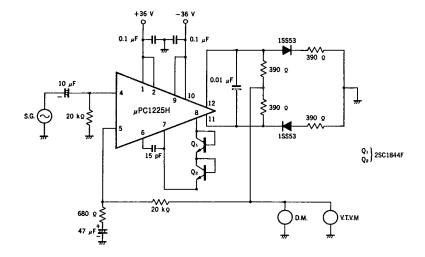
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Output Offset Voltage	VOFF		±5	±100	mν	SEE TEST CIRCUIT 1
Quiscent Circuit Current	lcc		20	40	mA	VIN=0
Maximum Output Voltage	VOM	20	23		v	T.H.D. = 0.05 % f = 20 to 20 kHz
Open Loop Voltage Gain	Avo	80	95		dB	V ₀ = 1.5 V, f = 1 kHz
Output Noise Voltage	VNO		0.07	0.14	mV	RG = 10 kohms
Power Band Width	P.B.W.		900	LO.	wk ^H 2D:	at¥sShéét40%com
Supply Voltage Rejection Ratio	S.V.R.	55	70	1	dB	RG = 2 kohms, f = 100 Hz

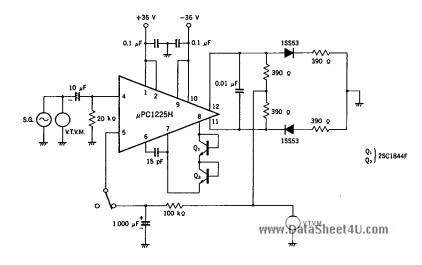

P12HP-254B1

PIN CONNECTION DIAGRAM

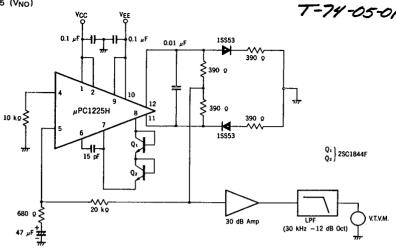
vww.DataSheet4LL.cc

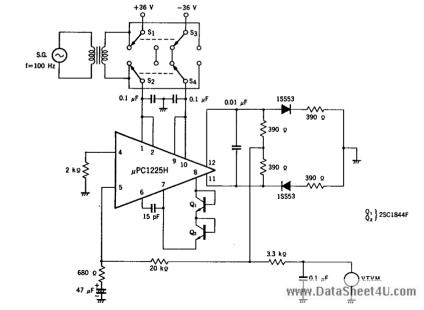

Pin No.	Pin connection	
1	+V _{CCD} (for Driver)	
2	+V _{CCP} (for Preamp)	
3	MUTING	
4	INPUT	
5	NFB	
6	PHASE COMP	
7	BIAS	
8	BIAS	
9	-V _{CCP} (for Preamp)	
10	-V _{CCD} (for Driver)	
11	LOWER OUTPUT	
12	UPPER OUTPUT	

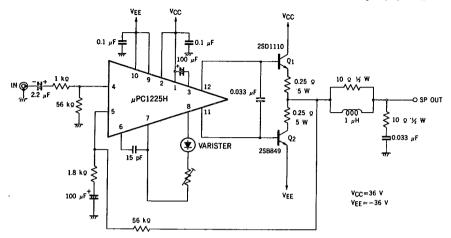

www.DataSheet4U.com


www.DataSheet4U.com

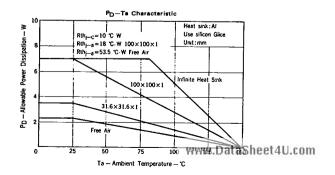
TEST CIRCUIT 2 (ICC)

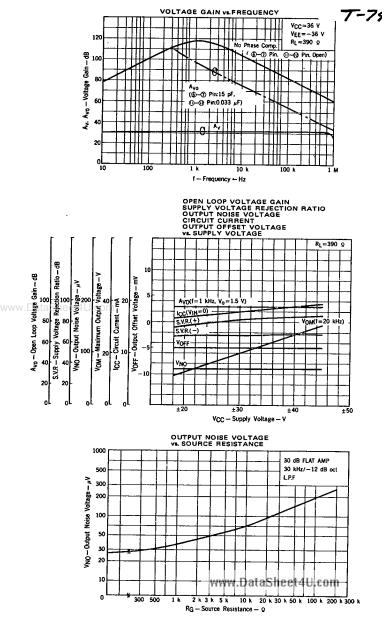


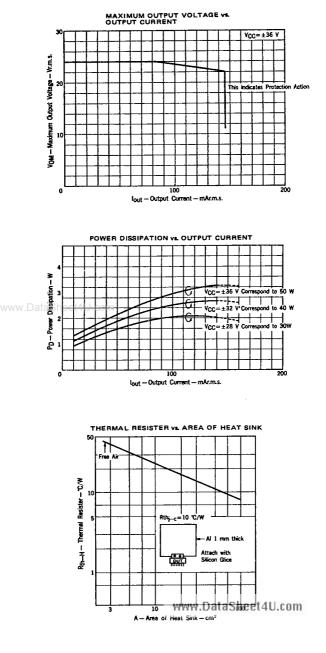

TEST CIRCUIT 4 (Avo)

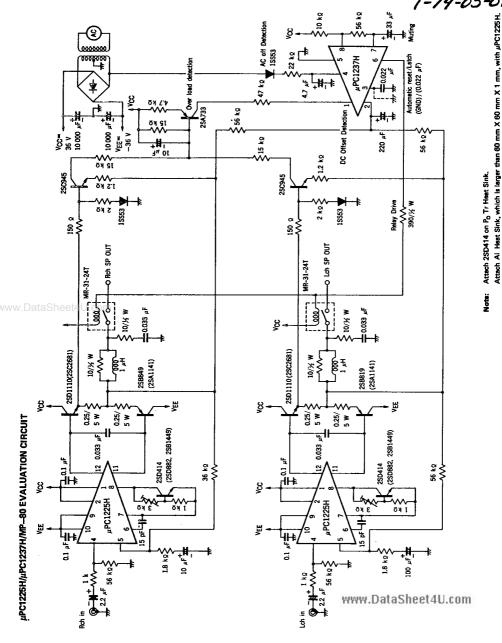


TEST CIRCUIT 5 (VNO)

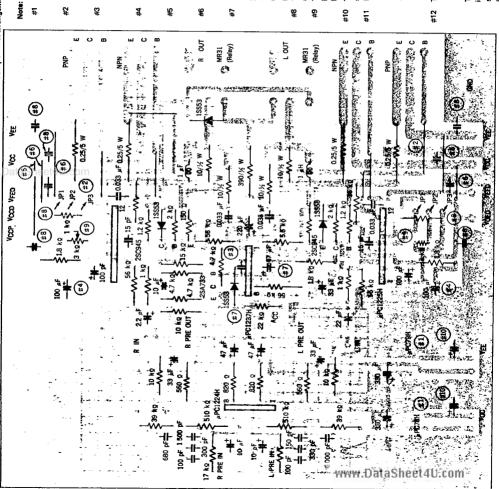



WWVTEST CIRCUIT 6 (S.V.R.)



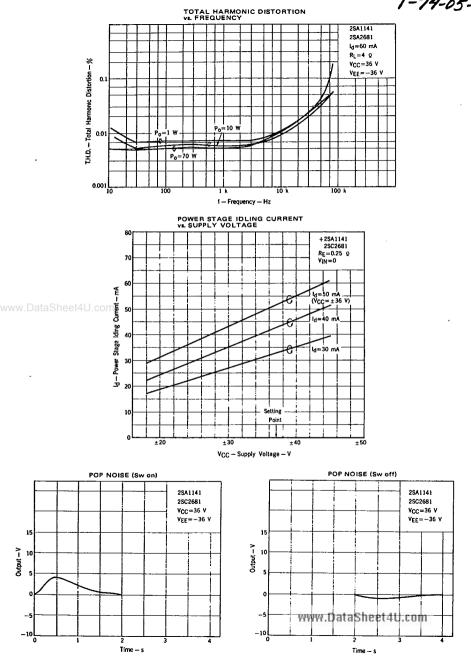


www.DataSheet4U.com



 \boldsymbol{v}

µPC1225H/µPC1237H/µPC1224H/MP-80 (2SC849, 2SD1110 or 2SA2681, 2SC1141) Evaluation Circuit Board Component Arrangement



- These terminals are for 3-terminals regulators (μPC7818H, μPC7918H) as a μPC1224H power supply.
- #2 These terminals are for JP- lines to a temperature Compensation transistor (2SD414 or others).
- #3 Use 0.02 µF capacitance in case of using µPC1237H at latching function, while connect each other at automatic resetting.
- 44 This capacitance is for preventing POP ON/OFF noise. Thus, neglect it in case of using a relay.
- 5 These terminals are for JP-lines in case of using the same power supply
 - (μPC1237H and Power Amplifier) 65 These terminals are for JP- lines in case of using the same power supply (μPC1225H and Power Tr)
- #7 This terminal is for AC-OFF Datection. Thus, use 8.2 k ohms instead of 22 k ohms, neglect 1SS3 and connect these 1SS53's terminals and neglect 4.7 μ F in case of using DC power supply.
- 8 These capacitances are for preventing a parastic oscillation. Use a 0.1 μ F
- #9 These trimmers are for adjusting an idling current. Recommand Neo-Pot PS61 Series.
- #10 These capacitance are for the 3-terminals requiator input.
 - 11 Design of 1 µH (example)
- #12 This indicates a copper board pattern

22 Turn

This is the evaluation circuit. Thus, it is not for a mass production considered about component deviation and the temperature characteristic.

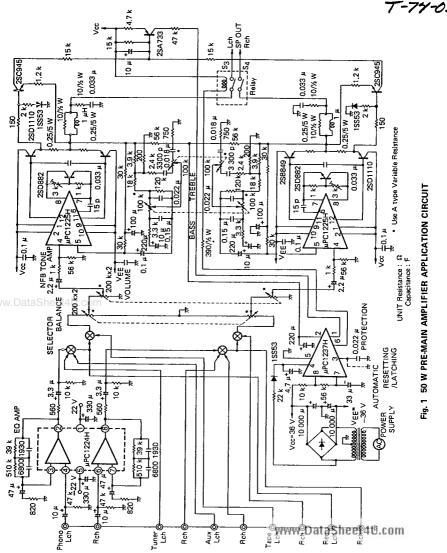
APPLICATION CIRCUIT

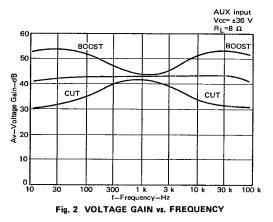
(1) Design Specification

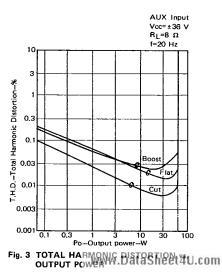
a. Pre amplifier stage (equalizer amplifier)

Supply Voltage Vcc=±22 V Input equivalent Noise Voltage V_{N1}=0.815 µVr.m.s. TYP. Phono Allowable Input Level 222 mVr.m.s. TYP. (T.H.D.=0.1 %, f=1 kHz)

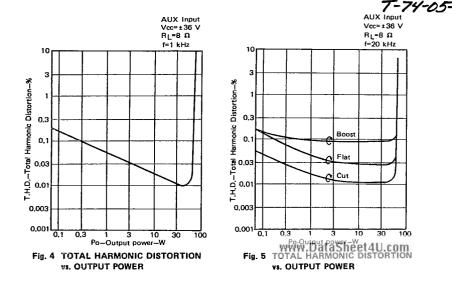
b. Power amplifier stage


Supply Voltage Vcc= ± 36 V Load impedance R $_= 8 \Omega$ Continuous Output Power Po=50 W (T.H.D.=0.1 %) Voltage Gain (at flat state) Av=43 dB Input Sensitivity Vin=142 Vr.m.s. Range of Varying Voltage gain 100 Hz ± 10 dB 10 kHz ± 10 dB


(2) Description


 μ PC1224H is chosen as EQ amplifier. The internal circuit of this IC is composed of two differential amplifiers as voltage amplifier stage and SEPP output circuit. Thus, this IC is available for flat amplifier and tone control amplifier.

Power amplifier stage is composed of NFB tone control amplifier using///POL2201aSheet44Uccomic is also available for flat amplifier. And µPC1237H is chosen as a protector.


T= 74-05-01

www.DataSheet4U.com

