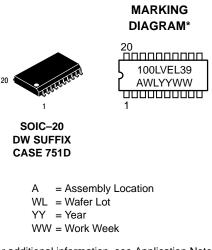
3.3V ECL ÷2/4, ÷4/6 Clock Generation Chip

The MC100LVEL39 is a low skew $\div 2/4$, $\div 4/6$ clock generation chip designed explicitly for low skew clock generation applications. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned. The device can be driven by either a differential or single-ended input signal. In addition, by using the V_{BB} output, a sinusoidal source can be AC coupled into the device.

The common enable (\overline{EN}) is synchronous so that the internal dividers will only be enabled/disabled when the internal clock is already in the LOW state. This avoids any chance of generating a runt clock pulse on the internal clock when the device is enabled/disabled as can happen with an asynchronous control. An internal runt pulse could lead to losing synchronization between the internal divider stages. The internal enable flip-flop is clocked on the falling edge of the input clock, therefore, all associated specification limits are referenced to the negative edge of the clock input.

Upon startup, the internal flip-flops will attain a random state; therefore, for systems which utilize multiple LVEL39s, the master reset (MR) input must be asserted to ensure synchronization. For systems which only use one LVEL39, the MR pin need not be exercised as the internal divider design ensures synchronization between the $\pm 2/4$ and the $\pm 4/6$ outputs of a single device.


The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

- 50 ps Maximum Output-to-Output Skew
- Synchronous Enable/Disable
- Master Reset for Synchronization
- ESD Protection: >2 KV HBM
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range: V_{CC}= 3.0 V to 3.8 V with V_{EE}= 0 V
- NECL Mode Operating Range: V_{CC}= 0 V with V_{EE}= -3.0 V to -3.8 V
- Internal Input Pulldown Resistors
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL-94 code V-0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 419 devices

ON Semiconductor™

http://onsemi.com

*For additional information, see Application Note AND8002/D

ORDERING INFORMATION

Device	Package	Shipping
MC100LVEL39DW	SOIC-20	38 Units/Rail
MC100LVEL39DWR2	SOIC-20	1000 Units/Reel

Pinout: 20-Lead SOIC (Top View)

	V _{CC} 20	Q0 19	Q0 18	Q1 17	Q1 16	Q2 15	Q2	Q3 13	Q3 12	V _{EE}
L	1	2	3	4	5	6	7	8	9	10
	V _{CC}	EN I	DIVSELI	b CLK	CLK	V_{BB}	MR	V _{CC}	NC I	DIVSELa

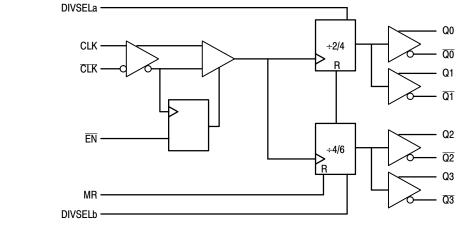
Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

PIN DESCRIPTION

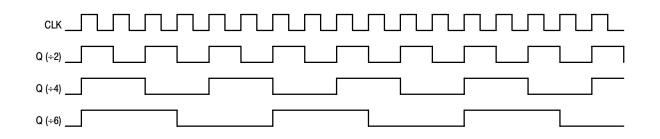
PIN	FUNCTION
$\begin{array}{c} CLK, \overline{CLK} \\ Q_0, Q_1; \overline{Q_0}, \overline{Q_1} \end{array}$	ECL Diff Clock Inputs ECL Diff +2/4 Outputs
$Q_2, Q_{3;} \overline{Q_2}, \overline{Q_3}$	ECL Diff ÷4/6 Outputs
DIVSELa, DIVSELb	ECL Frequency Select Inputs
EN	ECL Sync Enable ECL Master Reset
V _{BB}	Reference Voltage Output
V _{CC}	Positive Supply
V _{EE}	Negative Supply
NC	No Connect

FUNCTION TABLE

CLK	EN	MR	FUNCTION
Z	L	L	Divide
ZZ	H	L	Hold Q _{0–3}
X	X	H	Reset Q _{0–3}


Z = Low-to-High Transition

ZZ = High-to-Low Transition


X = Don't Care

DIVSELa	$Q_0, Q_1 OUTPUTS$
LH	Divide by 2 Divide by 4
DIVSELb	Q_2, Q_3 OUTPUTS

LOGIC DIAGRAM

V_{BB} —

MAXIMUM RATINGS (Note 1.)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Mode Power Supply	$V_{EE} = 0 V$		8 to 0	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		8 to 0	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage			6 to 0 6 to 0	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
ТА	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	20 SOIC 20 SOIC	90 60	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction to Case)	std bd	20 SOIC	30 to 35	°C/W
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

1. Maximum Ratings are those values beyond which device damage may occur.

Unit mA mV mV mV mV

> ν ν μΑ μΑ

	JC CHARACTERISTICS V_{CC} = 3.3 V; V_{I}	EE- 0.0)	1			1			T
			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	l
I _{EE}	Power Supply Current		50	59		50	59		54	61	Ī
V _{OH}	Output HIGH Voltage (Note 2.)	2215	2295	2420	2275	2345	2420	2275	2345	2420	Ī
V _{OL}	Output LOW Voltage (Note 2.)	1470	1605	1745	1490	1595	1680	1490	1595	1680	Î
V _{IH}	Input HIGH Voltage (Single Ended)	2135		2420	2135		2420	2135		2420	Ī
V _{IL}	Input LOW Voltage (Single Ended)	1490		1825	1490		1825	1490		1825	Ī
V_{BB}	Output Voltage Reference	1.92		2.04	1.92		2.04	1.92		2.04	Ī
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 3.) Vpp < 500 mV Vpp ≧ 500 mV	1.3 1.5		2.9 2.9	1.2 1.4		2.9 2.9	1.2 1.4		2.9 2.9	
I _{IH}	Input HIGH Current			150			150			150	Í
IIL	Input LOW Current	0.5			0.5			0.5			Í

LVPECL DC CHARACTERISTICS V_{CC}= 3.3 V; V_{EE}= 0.0 V (Note 1)

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary ± 0.3 V.

2. Outputs are terminated through a 50 ohm resistor to $V_{\mbox{CC}}\mbox{--}2$ volts.

3. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

			–40°C		25°C				85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
I _{EE}	Power Supply Current		50	59		50	59		54	61	mA	
V _{OH}	Output HIGH Voltage (Note 2.)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV	
V _{OL}	Output LOW Voltage (Note 2.)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV	
V _{IH}	Input HIGH Voltage (Single Ended)	-1165		-880	-1165		-880	-1165		-880	mV	
V _{IL}	Input LOW Voltage (Single Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV	
V_{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V	
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 3.) Vpp < 500 mV Vpp ≧ 500 mV	-2.0 -1.8		-0.4 -0.4	-2.1 -1.9		-0.4 -0.4	-2.1 -1.9		0.4 0.4	V V	
I _{IH}	Input HIGH Current			150			150			150	μA	
Ι _{ΙL}	Input LOW Current	0.5			0.5			0.5			μA	

LVNECL DC CHARACTERISTICS V_{CC}= 0.0 V; V_{EE}= -3.3 V (Note 1.)

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Input and output parameters vary 1:1 with V_CC. V_EE can vary ± 0.3 V.

2. Outputs are terminated through a 50 ohm resistor to V_{CC} -2 volts.

3. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

				–40°C		25°C 85°C						
Symbol	Characte	ristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Free	luency	1000			1000			1000			MHz
t _{PLH} t _{PHL}	Propagation Delay to Output	CLK to Q (Diff) CLK to Q (S.E.) MR to Q	760 710 600		960 1010 900	800 750 610		1000 1050 910	850 800 630		1050 1100 930	ps
t _{SKEW}	Within-Device Skew (I	Note 2.) $Q_0 - Q_3$			50			50			50	ps
	Part-to-Part	$Q_0 - Q_3$ (Diff)			200			200			200	1
t _{JITTER}	Cycle-to-Cycle Jitter			TBD			TBD			TBD		ps
t _S	Setup Time	EN to CLK DIVSEL to CLK	250 400			250 400			250 400			ps
t _H	Hold Time	CLK to EN CLK to Div_Sel	100 150			100 150			100 150			ps
V _{PP}	Input Swing (Note 3.)	CLK	250		1000	250		1000	250		1000	mV
t _{RR}	Reset Recovery Time				100			100			100	ps
t _{PW}	Minimum Pulse Width	CLK MR	500 700			500 700			500 700			ps
t _r , t _f	Output Rise/Fall Times	s Q (20% – 80%)	280		550	280		550	280		550	ps

AC CHARACTERISTICS $V_{CC}\text{=}~3.3~\text{V};~V_{EE}\text{=}~0.0~\text{V}~~\text{or}~~V_{CC}\text{=}~0.0~\text{V};~V_{EE}\text{=}~-3.3~\text{V}~(\text{Note 1.})$

1. V_{EE} can vary ±0.3 V.

 Skew is measured between outputs under identical transitions.
V_{PP}(min) is minimum input swing for which AC parameters are guaranteed. The device will function reliably with differential inputs down to 100 mV.

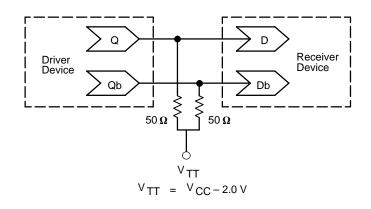
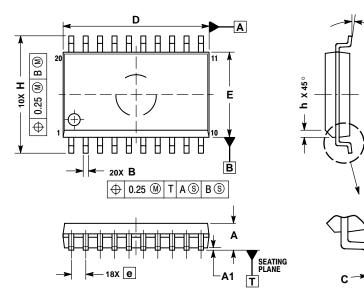


Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

Resource Reference of Application Notes


AN1404	_	ECLinPS Circuit Performance at Non–Standard $V_{\mbox{\scriptsize IH}}$ Levels
AN1405	_	ECL Clock Distribution Techniques
AN1406	_	Designing with PECL (ECL at +5.0 V)
AN1503	_	ECLinPS I/O SPICE Modeling Kit
AN1504	_	Metastability and the ECLinPS Family
AN1560	_	Low Voltage ECLinPS SPICE Modeling Kit
AN1568	_	Interfacing Between LVDS and ECL
AN1596	_	ECLinPS Lite Translator ELT Family SPICE I/O Model Kit
AN1650	_	Using Wire–OR Ties in ECLinPS Designs
AN1672	_	The ECL Translator Guide
AND8001	_	Odd Number Counters Design
AND8002	_	Marking and Date Codes

AND8020 _ Termination of ECL Logic Devices

PACKAGE DIMENSIONS

SOIC-20 **DW SUFFIX** PLASTIC SOIC PACKAGE CASE 751D-05 **ISSUE F**

_

- NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS								
DIM	MIN	MAX							
Α	2.35	2.65							
A1	0.10	0.25							
В	0.35	0.49							
С	0.23	0.32							
D	12.65	12.95							
Е	7.40	7.60							
е	1.27	BSC							
Н	10.05	10.55							
h	0.25	0.75							
L	0.50	0.90							
θ	0 °	7 °							

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

- German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–german@hibbertco.com French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
- Email: ONlit–french@hibbertco.com
- English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com Toll–Free from Mexico: Dial 01–800–288–2872 for Access –

then Dial 866–297–9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303-675-2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001-800-4422-3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.