

2N6660CSM4

MECHANICAL DATA

Dimensions in mm (inches)

N-CHANNEL ENHANCEMENT MODE MOSFET

 V_{DSS} 60V I_{D} 1.0A $R_{DS(op)}$ 3.0 Ω

LCC3 PACKAGE (MO-041BA)

(Underside View)

PAD 1 – DRAIN PAD 3 – SOURCE PAD 2 – N/C PAD 4 – GATE

FEATURES

- Faster switching
- Low Ciss
- Integral Source-Drain Diode
- High Input Impedance and High Gain

DESCRIPTION

This enhancement-mode (normally-off) vertical DMOS FET is ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Hi-Reliability Military and Space screening options available

ABSOLUTE MAXIMUM RATINGS $T_{CASE} = 25^{\circ}C$ unless otherwise stated

V _{DS}	Drain - Source Voltage	60V		
I _D	Drain Current - Continuous ($T_c = 25^{\circ}C$)	1.0A		
I _{DM}	Drain Current - Pulsed (Note 1)	3A		
$V_{\sf GS}$	Gate - Source Voltage	±20V		
$P_{tot(1)}$	Total Power Dissipation at T mounting base ≤ 25°C	3.0W		
	De-rate Linearly above 25°C	0.020W/°C		
$P_{tot(2)}$	Total Power Dissipation at T _{ambient} ≤ 25°C	0.5W		
T_{j}, T_{stg}	Operating and Storage Junction Temperature Range	-55 to +175°C		

THERMAL DATA

R_{thj-mb}	Thermal Resistance Junction – Mounting base	Max	50	°C/W
--------------	---	-----	----	------

NOTES:

- 1) Repetitive Rating: Pulse Width limited by maximum junction temperature.
- 2) Pulse Test: Pulse Width ≤ 300μS, Duty Cycle, δ 2%

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

2N6660CSM4

STATIC ELECTRICAL RATINGS (T_{case}=25°C unless otherwise stated)

	Parameter	Test Cond	Min.	Тур.	Max.	Unit	
V _{(BR)DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0V$	$I_D = 10\mu A$	60	-	-	
		$V_{DS} = V_{GS}$	I _D = 1.0mA	0.8	-	2	V
$V_{\rm GS(th)}$	Gate – Source threshold Voltage		T _c = 125°C	0.3	-	-	
			T _c = -55°C	-	-	2.5	
I _{GSS}	Gate – Source Leakage Current	$V_{GS} = \pm 20V$	$V_{DS} = 0V$	-	-	±100	nA
			T _c = 125°C	-	-	±500	IIA
	Zero Gate Voltage Drain Current	$V_{DS} = 48V$	$V_{GS} = 0V$	-	-	1.0	^
I _{DSS}	Zero Gate Voltage Drain Gurrent		T _c = 125°C	-	-	100	μΑ
I _{D(on)}	On – State Drain Current (Note 2)	V _{DS} = 10V	$V_{GS} = 10V$	1.5	-	-	Α
		$V_{GS} = 5V$	I _D = 0.3A	-	-	5	
R _{DS(on)}	Drain - Source On Resistance (Note 2)	V _{GS} = 10V	I _D = 1.0A	-	-	3	Ω
			T _c = 125°C	-	-	5.6	
g _{FS}	Forward Transconductance (Note 2)	V _{DS} = 25V	I _D = 0.5A	170	-	-	ms
V _{SD}	Diode Forward Voltage (Note 2)	$V_{GS} = 0V$	I _s = 1.0A	0.7	-	1.6	V
t _{rr}	Body Diode Reverse Recovery	$V_{GS} = 0V$	I _s = 1.0A	-	350	-	ns

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	V _{DS} = 25V f = 1.0MHz V _{GS} =		-	-	50	pF
C _{oss}	Output Capacitance		$V_{GS} = 0V$		-	40	
C _{rss}	Reverse Transfer Capacitance				-	10	
$T_{d(on)}$	Turn-On Delay	$V_{DD} = 25V$ $R_{GS} = 50\Omega$	$I_{DD} = 25V$ $I_{D} = 1.0A$ $R_{GS} = 50\Omega$ (Note 3)	•	ı	10	20
$T_{d(off)}$	Turn-Off Delay Time			-	-	10	ns

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk