## MC10E431, MC100E431

## 5V ECL 3-Bit Differential Flip-Flop

The MC10E/100E431 is a 3-bit flip-flop with differential clock, data input and data output.

The asynchronous Set and Reset controls are edge-triggered rather than level controlled. This allows the user to rapidly set or reset the flip-flop and then continue clocking at the next clock edge, without the necessity of de-asserting the set/reset signal (as would be the case with a level controlled set/reset).

The E431 is also designed with larger internal swings, an approach intended to minimize the time spent crossing the threshold region and thus reduce the metastability susceptibility window.

The differential input structures are clamped so that the inputs of unused registers can be left open without upsetting the bias network of the device. The clamping action will assert the $\overline{\mathrm{D}}$ and the $\overline{\mathrm{CLK}}$ sides of the inputs. Because of the edge triggered flip-flop nature of the device simultaneously opening both the clock and data inputs will result in an output which reaches an unidentified but valid state. Note that the input clamps only operate when both inputs fall to 2.5 V below $\mathrm{V}_{\mathrm{CC}}$.

The 100 Series contains temperature compensation.
The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to $V_{\mathrm{BB}}$ as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and $V_{C C}$ via a $0.01 \mu \mathrm{~F}$ capacitor and limit current sourcing or sinking to 0.5 mA . When not used, $\mathrm{V}_{\mathrm{BB}}$ should be left open.

- Edge-Triggered Asynchronous Set and Reset
- Differential D, CLK and Q; VBB Reference Available
- 1100 MHz Min. Toggle Frequency
- PECL Mode Operating Range: $\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$ to 5.7 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- NECL Mode Operating Range: $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -5.7 V
- Internal Input Pulldown Resistors
- ESD Protection: > 1 KV HBM, > 75 V MM
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1

For Additional Information, see Application Note AND8003/D

- Flammability Rating: UL-94 code V-0 @ $1 / 8$ ",

Oxygen Index 28 to 34

- Transistor Count $=348$ devices


## ON Semiconductor ${ }^{\text {® }}$

http://onsemi.com


ORDERING INFORMATION

| Device | Package | Shipping |
| :--- | :---: | :---: |
| MC10E431FN | PLCC-28 | 37 Units/Rail |
| MC10E431FNR2 | PLCC-28 | 500 Units/Reel |
| MC100E431FN | PLCC-28 | 37 Units/Rail |
| MC100E431FNR2 | PLCC-28 | 500 Units/Reel |



* All $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{CCO}}$ pins are tied together on the die.

Warning: All $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCO}}$, and $\mathrm{V}_{\mathrm{EE}}$ pins must be externally connected to Power Supply to guarantee proper operation.


PIN DESCRIPTION

| PIN | FUNCTION |
| :--- | :--- |
| $D[0: 2], \bar{D}[0: 2]$ | ECL Differential Data Inputs |
| $C L K[0: 2], \overline{C L K}[0: 2]$ | ECL Differential Clock |
| $S[0: 2]$ | ECL Edge Triggered Set Inputs |
| $R[0: 2]$ | ECL Edge Triggered Reset Input |
| $Q[0: 2], \bar{Q}[0: 2]$ | ECL Differential Data Outputs |
| $V_{B B}$ | Reference Voltage Output |
| $V_{C C}, V_{\text {CCO }}$ | Positive Supply |
| $V_{E E}$ | Negative Supply |

FUNCTION TABLE

| Dn | CLKn | Rn | Sn | Qn |
| :---: | :---: | :---: | :---: | :---: |
| L | Z | L | L | L |
| H | Z | L | L | H |
| X | X | Z | L | L |
| X | X | L | Z | H |

[^0]MAXIMUM RATINGS (Note 1)

| Symbol | Parameter | Condition 1 | Condition 2 | Rating | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CC }}$ | PECL Mode Power Supply | $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ |  | 8 | V |
| $V_{\text {EE }}$ | NECL Mode Power Supply | $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ |  | -8 | V |
| $V_{\text {I }}$ | PECL Mode Input Voltage NECL Mode Input Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{I}} \geq \mathrm{V}_{\mathrm{EE}} \end{aligned}$ | $\begin{gathered} \hline 6 \\ -6 \end{gathered}$ | $\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| Iout | Output Current | Continuous Surge |  | $\begin{gathered} \hline 50 \\ 100 \end{gathered}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| IBB | VBB Sink/Source |  |  | $\pm 0.5$ | mA |
| TA | Operating Temperature Range |  |  | 0 to +85 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {stg }}$ | Storage Temperature Range |  |  | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| ${ }^{\text {JJA }}$ | Thermal Resistance (Junction to Ambient) | $\begin{aligned} & \hline 0 \text { LFPM } \\ & 500 \text { LFPM } \end{aligned}$ | $\begin{aligned} & 28 \text { PLCC } \\ & 28 \text { PLCC } \end{aligned}$ | $\begin{aligned} & \hline 63.5 \\ & 43.5 \end{aligned}$ | $\begin{aligned} & \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{w} \end{aligned}$ |
| $\theta$ JC | Thermal Resistance (Junction to Case) | std bd | 28 PLCC | 22 to 26 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{V}_{\mathrm{EE}}$ | PECL Operating Range NECL Operating Range |  |  | $\begin{gathered} \hline 4.2 \text { to } 5.7 \\ -5.7 \text { to }-4.2 \end{gathered}$ | $\begin{aligned} & \overline{\mathrm{V}} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{T}_{\text {sol }}$ | Wave Solder | <2 to 3 sec @ $248^{\circ} \mathrm{C}$ |  | 265 | ${ }^{\circ} \mathrm{C}$ |

1. Maximum Ratings are those values beyond which device damage may occur.

10E SERIES PECL DC CHARACTERISTICS $V_{C C x}=5.0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}$ (Note 1)

| Symbol | Characteristic | $0^{\circ} \mathrm{C}$ |  |  | $25^{\circ} \mathrm{C}$ |  |  | $85^{\circ} \mathrm{C}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| IEE | Power Supply Current |  | 110 | 132 |  | 110 | 132 |  | 110 | 132 | mA |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage (Note 2) | 3980 | 4070 | 4160 | 4020 | 4105 | 4190 | 4090 | 4185 | 4280 | mV |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage (Note 2) | 3050 | 3210 | 3370 | 3050 | 3210 | 3370 | 3050 | 3227 | 3405 | mV |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage (Single Ended) | 3830 | 3995 | 4160 | 3870 | 4030 | 4190 | 3940 | 4110 | 4280 | mV |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage (Single Ended) | 3050 | 3285 | 3520 | 3050 | 3285 | 3520 | 3050 | 3302 | 3555 | mV |
| $\mathrm{V}_{\mathrm{BB}}$ | Output Voltage Reference | 3.62 |  | 3.63 | 3.65 |  | 3.75 | 3.69 |  | 3.81 | V |
| $\mathrm{V}_{\text {IHCMR }}$ | Input HIGH Voltage Common Mode Range (Differential) (Note 3) | 2.7 |  | 5.0 | 2.7 |  | 5.0 | 2.7 |  | 5.0 | V |
| $\mathrm{IIH}^{\text {H }}$ | Input HIGH Current |  |  | 150 |  |  | 150 |  |  | 150 | $\mu \mathrm{A}$ |
| IIL | Input LOW Current | 0.5 | 0.3 |  | 0.5 | 0.25 |  | 0.3 | 0.2 |  | $\mu \mathrm{A}$ |

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$. $\mathrm{V}_{\mathrm{EE}}$ can vary $+0.46 \mathrm{~V} /-0.06 \mathrm{~V}$.
2. Outputs are terminated through a 50 ohm resistor to $\mathrm{V}_{\mathrm{CC}}-2$ volts.
3. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}$, max varies $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$.

10E SERIES NECL DC CHARACTERISTICS $\mathrm{V}_{\mathrm{CCx}}=0.0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$ (Note 1)

| Symbol | Characteristic | $0^{\circ} \mathrm{C}$ |  |  | $25^{\circ} \mathrm{C}$ |  |  | $85^{\circ} \mathrm{C}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| IEE | Power Supply Current |  | 110 | 132 |  | 110 | 132 |  | 110 | 132 | mA |
| V OH | Output HIGH Voltage (Note 2) | -1020 | -930 | -840 | -980 | -895 | -810 | -910 | -815 | -720 | mV |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage (Note 2) | -1950 | -1790 | -1630 | -1950 | -1790 | -1630 | -1950 | -1773 | -1595 | mV |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage (Single Ended) | -1170 | -1005 | -840 | -1130 | -970 | -810 | -1060 | -890 | -720 | mV |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage (Single Ended) | -1950 | -1715 | -1480 | -1950 | -1715 | -1480 | -1950 | -1698 | -1445 | mV |
| $\mathrm{V}_{\mathrm{BB}}$ | Output Voltage Reference | -1.38 |  | -1.37 | -1.35 |  | -1.25 | -1.31 |  | -1.19 | V |
| VIHCMR | Input HIGH Voltage Common Mode Range (Differential) (Note 3) | -2.3 |  | 0.0 | -2.3 |  | 0.0 | -2.3 |  | 0.0 | V |
| $\mathrm{IIH}^{\text {H }}$ | Input HIGH Current |  |  | 150 |  |  | 150 |  |  | 150 | $\mu \mathrm{A}$ |
| IIL | Input LOW Current | 0.5 | 0.3 |  | 0.5 | 0.065 |  | 0.3 | 0.2 |  | $\mu \mathrm{A}$ |

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$. $\mathrm{V}_{\mathrm{EE}}$ can vary $+0.46 \mathrm{~V} /-0.06 \mathrm{~V}$.
2. Outputs are terminated through a 50 ohm resistor to $\mathrm{V}_{\mathrm{CC}}-2$ volts.
3. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}$, max varies $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$.

100E SERIES PECL DC CHARACTERISTICS $\mathrm{V}_{\mathrm{C}} \mathrm{x}=5.0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}$ (Note 1 )

| Symbol | Characteristic | $0^{\circ} \mathrm{C}$ |  |  | $25^{\circ} \mathrm{C}$ |  |  | $85^{\circ} \mathrm{C}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| IEE | Power Supply Current |  | 110 | 132 |  | 110 | 132 |  | 127 | 152 | mA |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage (Note 2) | 3975 | 4050 | 4120 | 3975 | 4050 | 4120 | 3975 | 4050 | 4120 | mV |
| $\mathrm{V}_{\text {OL }}$ | Output LOW Voltage (Note 2) | 3190 | 3295 | 3380 | 3190 | 3255 | 3380 | 3190 | 3260 | 3380 | mV |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage (Single Ended) | 3835 | 4050 | 4120 | 3835 | 4120 | 4120 | 3835 | 4120 | 4120 | mV |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage (Single Ended) | 3190 | 3300 | 3525 | 3190 | 3525 | 3525 | 3190 | 3525 | 3525 | mV |
| $\mathrm{V}_{\mathrm{BB}}$ | Output Voltage Reference | 3.62 |  | 3.74 | 3.62 |  | 3.74 | 3.62 |  | 3.74 | V |
| VIHCMR | Input HIGH Voltage Common Mode Range (Differential) (Note 3) | 2.7 |  | 5.0 | 2.7 |  | 5.0 | 2.7 |  | 5.0 | V |
| IIH | Input HIGH Current |  |  | 150 |  |  | 150 |  |  | 150 | $\mu \mathrm{A}$ |
| IIL | Input LOW Current | 0.5 | 0.3 |  | 0.5 | 0.25 |  | 0.5 | 0.2 |  | $\mu \mathrm{A}$ |

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{C}}$. $\mathrm{V}_{E E}$ can vary $+0.46 \mathrm{~V} /-0.8 \mathrm{~V}$.
2. Outputs are terminated through a 50 ohm resistor to $\mathrm{V}_{\mathrm{CC}}-2$ volts.
3. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}$, max varies $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$.

100E SERIES NECL DC CHARACTERISTICS $V_{C C x}=0.0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$ (Note 1 )

| Symbol | Characteristic | $0^{\circ} \mathrm{C}$ |  |  | $25^{\circ} \mathrm{C}$ |  |  | $85^{\circ} \mathrm{C}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| IEE | Power Supply Current |  | 110 | 132 |  | 110 | 132 |  | 127 | 152 | mA |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage (Note 2) | -1025 | -950 | -880 | -1025 | -950 | -880 | -1025 | -950 | -880 | mV |
| VOL | Output LOW Voltage (Note 2) | -1810 | -1705 | -1620 | -1810 | -1745 | -1620 | -1810 | -1740 | -1620 | mV |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage (Single Ended) | -1165 | -950 | -880 | -1165 | -880 | -880 | -1165 | -880 | -880 | mV |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage (Single Ended) | -1810 | -1700 | -1475 | -1810 | -1475 | -1475 | -1810 | -1475 | -1475 | mV |
| $\mathrm{V}_{\mathrm{BB}}$ | Output Voltage Reference | -1.38 |  | -1.26 | -1.38 |  | -1.26 | -1.38 |  | -1.26 | V |
| VIHCMR | Input HIGH Voltage Common Mode Range (Differential) (Note 3) | -2.3 |  | 0.0 | -2.3 |  | 0.0 | -2.3 |  | 0.0 | V |
| IIH | Input HIGH Current |  |  | 150 |  |  | 150 |  |  | 150 | $\mu \mathrm{A}$ |
| IIL | Input LOW Current | 0.5 | 0.3 |  | 0.5 | 0.25 |  | 0.5 | 0.2 |  | $\mu \mathrm{A}$ |

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$. $\mathrm{V}_{\text {EE }}$ can vary $+0.46 \mathrm{~V} /-0.8 \mathrm{~V}$.
2. Outputs are terminated through a 50 ohm resistor to $\mathrm{V}_{\mathrm{CC}}-2$ volts.
3. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}$, max varies $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$.

AC CHARACTERISTICS $\mathrm{V}_{C C x}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{C}} \mathrm{Cx}=0.0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$ (Note 1)

| Symbol | Characteristic | $-40^{\circ} \mathrm{C}$ |  |  | $25^{\circ} \mathrm{C}$ |  |  | $85^{\circ} \mathrm{C}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| fMAX | Maximum Toggle Frequency |  | TBD |  |  | 1.1 |  |  | TBD |  | GHz |
| $\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$ | Propagation Delay to Output CLK (Diff) <br>  CLK (SE) <br>  R <br>  S | $\begin{aligned} & 410 \\ & 460 \\ & 500 \\ & 500 \end{aligned}$ | $\begin{aligned} & 600 \\ & 600 \\ & 725 \\ & 725 \end{aligned}$ | $\begin{aligned} & 790 \\ & 840 \\ & 975 \\ & 975 \end{aligned}$ | $\begin{aligned} & 450 \\ & 400 \\ & 550 \\ & 550 \end{aligned}$ | $\begin{aligned} & \hline 600 \\ & 600 \\ & 725 \\ & 725 \end{aligned}$ | $\begin{aligned} & 750 \\ & 800 \\ & 925 \\ & 925 \end{aligned}$ | $\begin{aligned} & 450 \\ & 400 \\ & 550 \\ & 550 \end{aligned}$ | $\begin{aligned} & 600 \\ & 600 \\ & 725 \\ & 725 \end{aligned}$ | $\begin{aligned} & 750 \\ & 800 \\ & 925 \\ & 925 \end{aligned}$ | ps |
| ts | Setup Time D <br>  R (Note 1.) <br> S (Note 1.)  | $\begin{gathered} \hline 250 \\ 1100 \\ 1100 \end{gathered}$ | $\begin{gathered} \hline 0 \\ 700 \\ 700 \end{gathered}$ |  | $\begin{gathered} \hline 200 \\ 1000 \\ 1000 \end{gathered}$ | $\begin{gathered} \hline 0 \\ 700 \\ 700 \end{gathered}$ |  | $\begin{gathered} 200 \\ 1000 \\ 1000 \end{gathered}$ | $\begin{gathered} \hline 0 \\ 700 \\ 700 \end{gathered}$ |  | ps |
| $\mathrm{t}_{\mathrm{H}}$ | Hold Time D | 250 | 0 |  | 200 | 0 |  | 200 | 0 |  | ps |
| tpw | Minimum Pulse Width CLK | 400 |  |  | 400 |  |  | 400 |  |  | ps |
| tskew | Within-Device Skew (Note 2.) |  | 50 |  |  |  |  |  | 50 |  | ps |
| tJITTER | Cycle-to-Cycle Jitter |  | TBD |  |  | TBD |  |  | TBD |  | ps |
| VPP | Minimum Input Swing (Note 3.) | 150 |  | 1000 |  |  |  | 150 |  | 1000 | mV |
| $\mathrm{tr}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$ | $\begin{aligned} & \text { Rise/Fall Times } \\ & (20-80 \%) \end{aligned}$ | 250 | 450 | 700 |  |  |  | 275 | 450 | 650 | ps |

1. 10 Series: $\mathrm{V}_{\mathrm{EE}}$ can vary $+0.46 \mathrm{~V} /-0.06 \mathrm{~V}$. 100 Series: VEE can vary $+0.46 \mathrm{~V} /-0.8 \mathrm{~V}$.
2. These setup times define the minimum time the CLK or SET/RESET input must wait after the assertion of the RESET/SET input to assure the proper operation of the flip-flop.
3. Within-device skew is defined as identical transitions on similar paths through a device.
4. Minimum input swing for which AC parameters are guaranteed.


Figure 1. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.)

## MC10E431, MC100E431

| Resource Reference of Application Notes |  |
| :---: | :---: |
| AN1404 | - ECLinPS Circuit Performance at Non-Standard $\mathrm{V}_{\mathrm{IH}}$ Levels |
| AN1405 | - ECL Clock Distribution Techniques |
| AN1406 | - Designing with PECL (ECL at +5.0 V ) |
| AN1503 | - ECLinPS I/O SPICE Modeling Kit |
| AN1504 | - Metastability and the ECLinPS Family |
| AN1568 | - Interfacing Between LVDS and ECL |
| AN1596 | - ECLinPS Lite Translator ELT Family SPICE I/O Model Kit |
| AN1650 | - Using Wire-OR Ties in ECLinPS Designs |
| AN1672 | - The ECL Translator Guide |
| AND8001 | - Odd Number Counters Design |
| AND8002 | - Marking and Date Codes |
| AND8020 | - Termination of ECL Logic Devices |

## MC10E431, MC100E431

## PACKAGE DIMENSIONS

## PLCC-28

FN SUFFIX
PLASTIC PLCC PACKAGE
CASE 776-02
ISSUE E


VIEW $S$

NOTES:

1. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.
2. DIM G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.
3. DIM R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
5. CONTROLLING DIMENSION: INCH.
6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOS EXTREMES OF THE PLASTIC BODY EXCUSIVE OF MOLD FLASH TIE BAR EURRS GATE BURRS AND INTERIEAD UURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL

| DIM | INCHES |  | MILLIMETERS |  |
| :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |
| A | 0.485 | 0.495 | 12.32 | 12.57 |
| B | 0.485 | 0.495 | 12.32 | 12.57 |
| C | 0.165 | 0.180 | 4.20 | 4.57 |
| E | 0.090 | 0.110 | 2.29 | 2.79 |
| F | 0.013 | 0.019 | 0.33 | 0.48 |
| G | 0.050 BSC |  | 1.27 BSC |  |
| H | 0.026 | 0.032 | 0.66 | 0.81 |
| J | 0.020 | - | 0.51 | - |
| K | 0.025 | - | 0.64 | - |
| R | 0.450 | 0.456 | 11.43 | 11.58 |
| U | 0.450 | 0.456 | 11.43 | 11.58 |
| V | 0.042 | 0.048 | 1.07 | 1.21 |
| W | 0.042 | 0.048 | 1.07 | 1.21 |
| X | 0.042 | 0.056 | 1.07 | 1.42 |
| Y | - | 0.020 | - | 0.50 |
| Z | $2^{\circ}$ | $10^{\circ}$ | $2^{\circ}$ | $10^{\circ}$ |
| G1 | 0.410 | 0.430 | 10.42 | 10.92 |
| K1 | 0.040 | - | 1.02 | - | NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635)

## MC10E431, MC100E431

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

## PUBLICATION ORDERING INFORMATION

Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.


[^0]:    $\mathrm{Z}=$ Low to high transition
    X = Don't Care

