

Renesas Microcomputer

REJ03B0259-0110 Rev.1.10 Jun. 05, 2009

Overview

This LSI is a single-chip microcontroller unit (MCU) built around the H8/300H CPU. Four I/O ports, ROM, RAM, EEPROM, a random number generator (RNG), a watchdog timer (WDT), a firewall management unit (FMU), interval timers (TMR1/TMR2), I²C bus interface (IIC2), synchronous serial communication unit (SSU), and a coprocessor are included.

Operating at a maximum 10-MHz internal clock rate, the H8/300H CPU rapidly executes bit manipulation instructions, arithmetic and logic instructions, and data transfer instructions.

The on-chip coprocessor executes modular multiplications (such as $ABR^{-1} \mod N + kN$), which are used to calculate modular exponentiation $X^{Y} \mod N$, and DES calculation processing at a high speed.

Table 1 lists the features of this LSI.

Table 1 Features

ltem	Specification						
CPU	H8/300H CPU						
	Upper compatible with the H8/300 CPU in the object level						
	Sixteen 16-bit registers (Sixteen 8-bit registers + eight 16-bit registers or Eight 32-bit registers)						
	High-speed operation						
	 Maximum clock rate: internal clock 10 MHz 						
	— Add/subtract: 0.20 μs (10 MHz)						
	— Multiply/divide: 1.40 μs (10 MHz)						
	Streamlined, concise instruction set						
	 — 16-bit variable instruction length: 2 to 10 bytes 						
	 arithmetic and logic operations between registers 						
	 MOV instruction for data transfer between registers and memory 						
	Maximum 16-Mbyte address space						
	Instruction set features						
	 — 8-, 16-, or 32-bit transfer or arithmetic instructions 						
	— Unsigned or signed multiply instruction (8 bits \times 8 bits and 16 bits \times 16 bits)						
	 Unsigned or signed divide instruction (16 bits ÷ 8 bits and 32 bits ÷ 16 bits) 						
	— Bit-accumulator instructions						
	Register-indirect specification of bit positions						
	 EEPROM write instruction (EEPMOV.B instruction) 						
	 High-speed block transfer instruction (EEPMOV.W instruction) 						
I/O ports	Four general-purpose input/output ports (Also used for interrupts)						
	Note: When writing to the DDR7 to DDR4 bits, use the MOV instruction instead of the bit						
	manipulation instruction.						

Item	Specification
On-chip memory	• EEPROM: 16 kbytes + 2 kbytes (64 bytes × (256 + 32) pages)
	 Writing function by dedicated transfer instruction from CPU
	 Page write (1 byte to 64 bytes) and erase
	 Protected against accidental writing and erasing
	 Generates an EWE interrupt before an EEPMOV.B instruction is executed
	 On-chip high voltage generation circuit for writing and erasing
	 Built-in oscillator and timer
	 Write/erase time (maximum value): 3 ms (rewrite), 1.5 ms (erase)
	— Rewrite endurance: 1×10^5 times (-20°C to +75°C)
	— Data retention time: 10 years
	ROM: 112 kbytes
	RAM: 4 kbytes
Random number	Generates 16-bit random numbers.
generator (RNG)	 Interrupts can be generated on completion of random number generation.
	One of four random number generation times can be selected.
Watchdog timer (WDT)	Generates a UDF interrupt constantly at any interval.
	Stops the on-chip functions when the halt flag is set.
	One of four counter clock sources can be selected.
Firewall management	Monitors memory access address of the user application.
unit (FMU)	Monitoring function of access between memory (monitors program execution on RAM and
	EEPROM)
Interval timer	Generates an interval interrupt constantly at any interval.
(TMR1/TMR2)	One of four counter clock sources can be selected.
	Countable at a maximum of 4.5 seconds.
Modular multiplication	 Modular multiplication (ABR⁻¹ mod N + kN, etc.)
coprocessor	 Modular exponentiation (X^Y mod N) with CPU control
	• Programmable data length: 160, 192, 256, 320, 384, 448, 512, 576, 640, 768, 896, or 1024
	bits
	Four operations:
	 — Three types of modular multiplications:
	ABR ⁻¹ mod N + kN, A^2R^{-1} mod N + kN, and AR^{-1} mod N + kN
	 One type of multiplication:
	$A \times N$ (A is fixed to 32 bits, and the maximum data length of operation results is 1024
	bits)
	512-byte special-purpose registers
	 Four 128-byte (1024-bit) registers (Registers A, B, N, and W)
	 Can be used as RAM for the CPU when coprocessor calculations are not being
	performed
	 Interrupt request to the CPU when the coprocessor completes calculation
	Built-in multiplier allows up to 4× speed operation.
Interrupt	 Four external interrupt pins: P1/IRQ to P4/IRQ
	 Used for interrupt input in sleep modes 1 and 2
	 — Same exception handling vector is assigned to the four pins
	 Internal interrupts (excluding TRAPA instruction)
DataShoot/II com	 — Ten interrupt sources: EWE, UDF, RNG, TMR1, TMR2, IIC2, SSU, modular
.Data5fleet40.com	multiplication coprocessor, voltage monitor circuit, and clock multiplier
	 Notes: 1. When using I/O ports and sleep mode 1 is entered, clear DDR to 0 to use the pins as I/O input port pins before executing the SLEEP instruction. 2. Execute MOV instruction instead of bit manipulation when writing to bits DDR7 to
	DDR4. 3. Set the corresponding bit of IOIRQS to 1 when using the external interrupt on returning from sleep modes 1 and 2.

Item	Specification
Security	High frequency detector
	High voltage detector
	High temperature detector
	Low frequency detector
	Low voltage detector
	Low temperature detector
	Illegal access detector
	Illegal instruction detector
	EWE interrupt
	RNG failure detector
Power-down states	Sleep modes 1 and 2 (sleep mode is entered by the SLEEP instruction)
Power-on reset circuit	• On-chip
On-chip oscillator	Internal clock
	• CPU: 6 MHz (± 20 %)
	Modular multiplication coprocessor: 12 MHz (± 20 %)
Power	Single-voltage power supply
	1.8 V to 3.6 V
Operating frequency	When the internal clock for the CPU is generated by dividing the external clock by 2
range	(CPUCS1, CPUCS0 = 00): $f_{CLK} = 1$ MHz to 8 MHz
	• When the external clock is directly supplied as the internal clock for the CPU (CPUCS1,
	CPUCS0 = 01): $f_{CLK} = 1$ MHz to 8 MHz
	 When the internal clock for the CPU is generated by multiplying the external clock by 1 by on-chip PLL (CPUCS1, CPUCS0 = 10): f_{CLK} = 1 MHz to 8 MHz
	 When the internal clock for the CPU is generated by multiplying the external clock by 2 by on-chip PLL (CPUCS1, CPUCS0 = 11); for K = 1 MHz to 5 MHz
	Operating frequency of the modular multiplication coprocessor is as follows:
	• When $4 \times$ speed calculation (PS1, PS0 = 10): $f_{COPRO} = 20$ MHz at maximum
	• When $2 \times$ speed calculation (PS1, PS0 = 01): $f_{COPRO} = 16$ MHz at maximum
	• When 1× speed calculation (PS1, PS0 = 00): $f_{COPRO} = 8$ MHz at maximum (f_{CLK} : externally
	input clock frequency; f _{COPRO} : operating frequency of the modular multiplication
	coprocessor)
Operating temperature	• -20 to +75°C
Other function	Cold/Warm reset judgment function
	System clock multiplying function by PLL circuit

Block Diagram

Figure 1 is a block diagram of this LSI.

Figure 1 Block Diagram

Pin Assignment

Figure 2 shows the pin arrangement of this LSI.

Figure 2 Pin Assignment

Pin Functions

Table 2 lists the pin functions of this LSI.

Table 2 Pin Functions

Туре	Symbol	I/O	Name and Description			
Power supply	Vcc	I	Power supply pin: 3.0 V to 3.6 V			
	Vss	I	Ground pin: 0 V			
Clock	CLK	I	External clock input pin			
Reset	RES ^{*1}	I	Reset pin: Low-level input resets the chip.			
I ² C bus interface 2	SCL	I/O	IIC2 clock input/output pin			
(IIC2)	SDA	I/O	IIC2 data input/output pin			
Synchronous serial	SSI	I/O	SSU data input/output pin			
communication	SSO	I/O	SSU data input/output pin			
unit(SSU)	SSCK	I/O	SSU clock input/output pin			
	SCS	I/O	SSU chip select input/output pin			
External interrupt	ĪRQ ^{*2}	Ι	Interrupt pin: In sleep modes 1 and 2, this pin can be used as an interrupt input pin.			
Port	P1	I/O	I/O port pin: Input or output can be selected by software.			
	P2	I/O	I/O port pin: Input or output can be selected by software.			
	P3	I/O	I/O port pin: Input or output can be selected by software.			
	P4	I/O	I/O port pin: Input or output can be selected by software.			

Notes: 1. An input pull-up MOS is connected to the $\overline{\text{RES}}$ pin as shown in figure 3.

Figure 3 Block Diagram of the RES Pin

2. The P1/IRQ to P4/IRQ pins can be used as data I/O and interrupt input pins. Input pull-up MOSs are connected to these pins.

Electrical Characteristics

Absolute Maximum Ratings

Table 3 Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Power supply voltage	V _{CC}	-0.3 to +7.0	V
Input voltage	V _{in}	-0.3 to V _{CC} + 0.3	V
Operating temperature	T _{opr}	-20 to +75	°C
Storage temperature	T _{stg}	–55 to +75	°C

Note: Permanent damage may occur to the chip if maximum ratings are exceeded. Normal operation should be under the recommended operating conditions. Exceeding these conditions could affect the reliability of the chip.

DC Characteristics

Table 4 DC Characteristics

Conditions: V_{CC} = 1.8 to 3.6 V, V_{SS} = 0 V, T_a = -20 to +75°C, unless otherwise specified.

Item			Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Input high voltage	RES, CLK		VIH	V_{CC} = 3.0 to 3.6 V	$V_{\text{CC}} \times 0.7$	_	V _{CC} + 0.3	V
	P1, P2, P3, P4							
	SDA, SCL, \overline{SCS} , SSCH	K, SSI, SSO		V_{CC} = 1.8 to 3.0 V	$V_{\text{CC}} \times 0.85$	—	V _{CC} + 0.3	V
Input low voltage	RES, CLK		V _{IL}	V_{CC} = 3.0 to 3.6 V	-0.3		$V_{\text{CC}} \times 0.2$	V
	P1, P2, P3, P4							
	SDA, SCL, SCS, SSCH	K, SSI, SSO		$V_{\rm CC} = 1.8$ to 3.0 V	-0.3	—	0.2	V
Output high	P1, P2, P3, P4		V _{OH}	I _{OH} = -200 μA	$V_{\text{CC}} \times 0.7$	—	V _{CC}	V
voltage	SCS, SSCK, SSI, SSO	I						
Output low	P1, P2, P3, P4		V_{OL}	$I_{OL} = 1 \text{ mA}$	0	—	0.4	V
voltage	SDA, SCL, SCS, SSCH	K, SSI, SSO						
Input leakage current	P1, P2, P3, P4, CLK		I _{in}	V_{in} = 0.5 to V_{CC} – 0.5 V	—	_	10	μA
Input pull-up MOS	RES		-l _p	$V_{in} = 0 V$	_		150	μA
current*1	P1, P2, P3, P4		-			_	150	-
Supply Current*2	CPU half of the	Coprocessor stops*3	Icc		_		7.5	mA
	external clock/							
	external clock		_					_
	CPU multiplied by one	Exclusive mode $*^3$			—	—	7.5	
	with PLL		_					_
	CPU multiplied by two	Normal speed of			_	—	10	
	with PLL	coprocessor in						
		maximum mode*°	_					
Supply Current* ²	Sleep mode 1			V_{in} (I/O ports and \overline{RES})	—	—	100	μA
				= V _{CC} -0.5 V to V _{CC} or				
				I/O ports open*'				
				T _a ≤ 50°C				-
				V _{in} (I/O ports and RES)	_	—	200	
				= V_{CC} -0.5 V to V_{CC} or				
				I/O ports open*				
				$I_a > 50^{\circ}C$			4.5	
Pin capacitance			Ср	$v_{in} = 0 V,$ f = 1 MH-7		_	15	р⊢
				$T_{CLK} = 1 \text{ IVITIZ},$				
				a = 200				

Notes: 1. The input pull-up MOS's in the RES is always turned on, even in sleep mode 1 and sleep mode 2. To avoid the input pull-up MOS current, the RES must be kept high during sleep mode 1 and sleep mode 2.

2. $V_{IHmin} = V_{CC} - 0.5 V$, $V_{ILmax} = 0.5 V$, and values are when all output pins are unloaded.

3. These are operating modes other than sleep mode 1. In this case, CLK must be input according to the DC and AC characteristics.

AC Characteristics

Table 5 AC Characteristics

Conditions: V_{CC} = 1.8 to 3.6 V, V_{SS} = 0 V, T_a = -20 to +75°C, unless otherwise specified.

Item		Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Clock cycle time (external clock)	t _{cyc}	Figure 4.1	See table	7		
System clock (cycle time PUCS = 0)	t _{scyc}	Figure 4.2	278	333	417	ns
System clock (cycle time PUCS = 1)	t _{scyc}	Figure 4.2	139	166	208	ns
System clock ()) (External clock)	cycle time	t _{scyc}	Figure 4.3	100	—	2000	ns
Clock high-level v	vidth	t _{CH}	Figure 4.1	0.4	_	0.6	t _{cyc}
Clock low-level w	idth	t _{CL}	Figure 4.1	0.4	—	0.6	t _{cyc}
Clock fall time		t _{Cf}	Figure 4.1	—	—	0.09*	t _{cyc}
Clock rise time		t _{Cr}	Figure 4.1	_	_	0.09*	t _{cyc}
I/O port input fall time		t _f	Figure 5	—	—	1.0	μs
I/O port input rise	time	tr	Figure 5	—	—	1.0	μs
RES pulse width	Cold reset	t _{RWL1}	Figure 6	500	—	—	μs
	Warm reset	t _{RWL2}	Figure 6	400	—	—	t _{scyc}
Power supply ON	time	t _{ON}	Figure 6	0	—	—	ms
Power supply OF	F time	t _{OFF}	Figure 6	0	—	—	ms
EEPROM write tir	ne	t _{EPW}	Rewrite	_	_	3	ms
			Erase	_	_	1.5	ms
Clock hold time		t _{CLKH}	Figure 7	400	_	_	t _{cyc}
Clock setup time		t _{CLKS}	Figure 7	20		_	t _{cyc}
Interrupt pulse	Sleep mode 2	t _{IRQW}	Figure 7	4		_	t _{scyc}
width (IRQ)	Other modes			400	_	_	ns

Notes: * Set CLK so as no noise is generated by the clock input and the frequency of the clock signal increases or decreases monotonically.

Table 6Clock Cycle Times

Conditions: V_{CC} = 1.8 to 3.6 V, unless otherwise specified.

Item	Coprocessor Operation	Min.	Тур.	Max.	Unit
CPU is driven by an external clock divided by 2	Stopped or normal speed operation (Vcc = 1.8 to 3.0V)	0.2		1.0	μs
	Stopped or normal speed operation (Vcc = 3.0 to 3.6V)	0.125	_	1.0	μs
	Double speed operation (Vcc = 1.8 to 3.0V)	0.2	—	1.0	μs
	Double speed operation (Vcc = 3.0 to 3.6V)	0.125	—	1.0	μs
	Quad speed operation	0.2	—	1.0	μs
CPU is driven at the same clock rate as the external clock	Stopped or normal speed operation (Vcc = 1.8 to 3.0V)	0.2	_	1.0	μs
	Stopped or normal speed operation (Vcc = 3.0 to 3.6V)	0.125	_	1.0	μs
	Double speed operation (Vcc = 1.8 to 3.0V)	0.2	_	1.0	μs
	Double speed operation (Vcc = 3.0 to 3.6V)	0.125	—	1.0	μs
	Quad speed operation	0.2	_	1.0	μs
CPU is driven by an external clock doubled by PLL	Stopped or normal speed operation (Vcc = 1.8 to 3.0V)	0.2	_	1.0	μs
	Stopped or normal speed operation (Vcc = 3.0 to 3.6V)	0.125	—	1.0	μs
	Double speed operation (Vcc = 1.8 to 3.0V)	0.2	—	1.0	μs
	Double speed operation (Vcc = 3.0 to 3.6V)	0.125	—	1.0	μs
	Quad speed operation	0.2	_	1.0	μs
CPU is driven at the same clock rate	Stopped or normal speed operation	0.2	_	1.0	μs
as the external clock (doubled by PLL	Double speed operation	0.2	_	1.0	μs
and then divided by 2)	Quad speed operation	0.2	_	1.0	μs

Figure 4.1 CLK Input Waveform

Figure 4.2 System Clock Timing (Internal clock)

Figure 5 I/O Port Input Waveform

Figure 6 Power ON/OFF and RES Input Timing

Figure 7 Interrupt Timing in Sleep Mode 1 and Sleep Mode 2

Reset Circuit Characteristics

Table 7 Reset Circuit Characteristics

Conditions: V_{CC} = 1.8 to 3.6 V, V_{SS} = 0 V, T_a = -20 to +75°C, unless otherwise specified.

Item	Symbol	Test Conditions	s Min.	Тур.	Max.	Unit
Power-on reset effective voltage	V _{POR1}	Figure 8	_	_	0.1	V
Power-on reset release voltage rise time	t _{PWON1}	Figure 8	_		0.5	ms
		$t_{POR1} \ge 1s^*$				
Power-on reset release voltage rise time	t _{PWON1}	Figure 8	—		1	ms
		$t_{POR1} \geq 10s^*$				
Power-on reset release time	t _{PRST}	Figure 8		_	500	μs

Note: * t_{POR1} is the time needed to enable the power-on reset by keeping the external power supply Vcc to lower than the effective voltage (V_{POR1}).

Figure 8 Power-On Reset Timing

Voltage Monitoring Circuit

Table 8 Voltage Monitoring Circuit Characteristics

Conditions: V_{CC} = 1.8 to 3.6 V, V_{SS} = 0 V, T_a = -20 to +75°C, unless otherwise specified.

Figure 9 Voltage Monitoring Circuit Timing

Communication Interface Timing

Timing of Synchronous Communication Unit (SSU)

Table 9 Timing of Synchronous Communication Unit (SSU)

Conditions: $V_{CC} = 3.0$ to 3.6 V, $V_{SS} = 0$ V, $T_a = -20$ to $+75^{\circ}$ C, $C_L = 30$ pF*, unless otherwise specified.

								Test
Item	า	Symbol	Applicable Pin	min.	typ.	max.	Unit	Conditions
Clock period		t _{sucyc}	SSCK	4	_	_	t _{scyc}	Figures 10 to
Clock high-level pulse	width	t _{HI}	SSCK	0.4		0.6	t _{sucyc}	figure 14
Clock low-level pulse	width	t _{LO}	SSCK	0.4	_	0.6	t _{sucyc}	_
Clock rise time	Master	t _{RISE}	SSCK	_	_	1	t _{scyc}	
	Slave			_	_	0.1	μs	_
Clock fall time	Master	t _{FALL}	SSCK	_	_	1	t _{scyc}	_
	Slave			_	_	0.1	μs	_
Data input setup time		t _{SU}	SSO, SSI	1	_	_	t _{scyc}	_
Data input hold time		t _H	SSO, SSI	1	_	_	t _{scyc}	_
CS setup time	Slave	t _{LEAD}	SCS	4	_	_	t _{scyc}	_
CS hold time	Slave	t _{LAG}	SCS	2	_	_	t _{scyc}	_
Data output delay time	;	t _{OD}	SSO, SSI	_	_	1	t _{scyc}	_
Slave access time		t _{SA}	SSI	_	_	2	t _{scyc}	_
Slave out release time)	t _{OR}	SSI	_		2	t _{scyc}	

Note: * Load capacitance of the measured pins.

Figure 10 SSU I/O Timing (Clock Synchronous Mode)

Figure 12 SSU I/O Timing (4-Line Bus Communication Mode, Master, CPHS = 0)

Figure 13 SSU I/O Timing (4-Line Bus Communication Mode, Slave, CPHS = 1)

www.DataSheet4U. Figure 14 SSU I/O Timing (4-Line Bus Communication Mode, Slave, CPHS = 0)

Timing of I²C Bus Interface 2 (IIC2)

Table 10 Timing of I²C Bus Interface 2 (IIC2)

Conditions: V_{CC} = 3.0 to 3.6 V, V_{SS} = 0 V, T_a = -20 to +75°C, unless otherwise specified.

		Applicable					
Item	Symbol	Pin	min.	typ.	max.	Unit	Test Conditions
SCL input cycle time	t _{SCL}	SCL	12 t _{scyc} + 600	_	_	ns	Figures 15
SCL input high-level pulse width	t _{SCLH}	SCL	3 t _{scyc} + 300	—	—	ns	
SCL input low-level pulse width	t _{SCLL}	SCL	5 t _{scyc} + 300	—	—	ns	
SCL/SDA input fall time	t _{Sf}	SCL, SDA	_	—	300	ns	
SCL/SDA input spike pulse removal time	t _{SP}	SCL, SDA	—	_	1	t _{scyc}	-
SDA input bus free time	t _{BUF}	SDA	5	_	_	t _{scyc}	-
Start condition input hold time	t _{STAH}	SCL, SDA	3	_	—	t _{scyc}	
Repeated start condition input setup time	t _{STAS}	SCL, SDA	3	_	_	t _{scyc}	-
Stop condition input setup time	t _{stos}	SCL, SDA	3	_	_	t _{scyc}	-
Data input setup time	t _{SDAS}	SDA	1 t _{scyc} + 20	_	_	ns	_
Data input hold time	t _{SDAH}	SDA	0	_	_	ns	_

Figure 15 I/O Timing of I²C Bus Interface 2

Package Dimensions

www.DataSheet4U.com

RENESAS

Revision History

R5H30211 Data Sheet

			Description
Rev.	Date	Page	Summary
1.00	2008.Jul.29		First edition issued
1.10	2009.Jun.05	1	A logo mark is added to the cover page.
		5	Figure 2
			The pin number (pin 13) in the pin assignment figure was changed.
		9	Table 5
			The minimum values of the items "RES pulse width" and "interrupt pulse width (IRQ)" were changed.
			"A system clock (f) cycle time (external clock)" ware added.
			Part of the symbols and units were changed from t_{cyc} to t_{scyc} .
			Reference figures were changed because figures 4.2 and 4.3 were added.
		10	Table 6
			The item of "the CPU operates on the clock pulse obtained by multiplying the
			external clock frequency by two using the internal PLL" was changed.
		10 to	The figure number of figure 4 was changed to figure 4.1.
		11	Figures 4.2 and 4.3 were added.
		13	Table 9
			The item of "min, typ, and max" was changed.
			The unit of t_{cyc} was changed to t_{scyc} .
		16	Table 10
			The item of "min, typ, and max" were changed.
			The unit of t_{cyc} was changed to t_{scyc} .

www.DataSheet4U.com

All trademarks and registered trademarks are the property of their respective owners.

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Notes:
 Notes:
 This document is provided for reference purposes only so that Renessa customers may select the appropriate Renessa products for their use. Renessa neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 This document is provided for reference purposes only so that Renessa customers may select the appropriate Renessa products for their use. Renessa neither makes warranties or representations with respect to the information in this document.
 This document is provided for reference purposes only so that Renessa customers may select the appropriate Renessa products for the trues of any information in this document.
 This document is provided data. diagrams, charts, programs, algorithms, and application scuch as the development of weapons of mass distruction, and products or the technology described herein, you should follow the applicable export control laws and regulations, and product dures required by such laws and regulations.
 All information included in this document, but has product data, diagrams, charts, programs, algorithms, and application sizuit axamples, is current as of the data this document, but here applicable export control laws and regulations, and proceedures required by such laws and regulation.
 Renessa has used reasonable care in compiling the information in this document, but Pensesa assumes no liability whatsoever for any damages incurred as a constraint on the information in the is document. Dut Renessas products application specific development on the iso document, but Pensesas assumes no liability whatsoever for any damages incurred as a discover of their use. Renessas markes no tepresentations, warranties or guaranties regarding the subability of the specifications of the respecification and traffic document.
 When using or otherwise in systems the failute or malitability of the uses as elso office, bealthocare, combusion contro

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd www.Data{Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com