

General Description

The MAX98304 mono 3.2W Class D amplifier provides Class AB audio performance with Class D efficiency. This device offers five selectable gain settings (0dB, 3dB, 6dB, 9dB, and 12dB) set by a single gain-select input (GAIN).

Active emissions-limiting, edge-rate, and overshoot control circuitry greatly reduces EMI. A filterless spreadspectrum modulation scheme eliminates the need for output filtering found in traditional Class D devices. These features reduce application component count.

The IC's 0.95mA at 3.7V (1.2mA at 5V) guiescent current extends battery life in portable applications.

The IC is available in a 9-bump (1.0mm x 1.0mm) WLP with 0.3mm pitch that is specified over the extended -40°C to +85°C temperature range.

Applications

Notebook and Netbook Computers

Cellular Phones

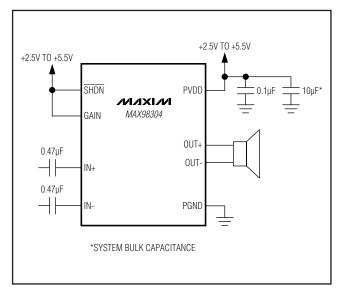
Tablets

MP3 Plavers

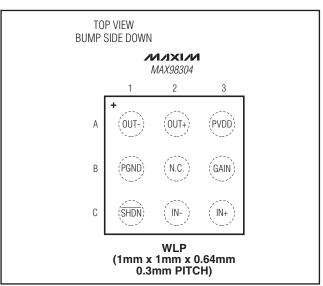
Portable Audio Players

VoIP Phones

Features


- ♦ Low Quiescent Current: 0.95mA at 3.7V
- ♦ Spread Spectrum and Active Emissions Limiting
- **♦ Five Pin-Selectable Gains**
- ♦ 19µVRMS Ultra-Low Noise
- ♦ 90dB PSRR
- ♦ Click-and-Pop Suppression
- **♦ Thermal and Overcurrent Protection**
- **♦ Low-Current Shutdown Mode**
- ♦ 1.0mm x 1.0mm, 9-Bump WLP (0.3mm Pitch) **Space-Saving Package**

Ordering Information


PART	PART TEMP RANGE		TOP MARK
MAX98304EWL+	-40°C to +85°C	9 WLP	AIR

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Typical Application Circuit

Pin Configuration

/U/IXI/U

ABSOLUTE MAXIMUM RATINGS

PVDD, IN+, IN-, SHDN, GAIN to PGN	ID0.3V to +6V
All Other Pins to PGND	0.3V to (V _{PVDD} + 0.3V)
Continuous Current Into/Out of PVDD), PGND, OUT ±750mA
Continuous Input Current (all other p	ins)±20mA
Duration of Short Circuit Between	
OUT_ and PVDD, PGND	Continuous
OUT+ and OUT	Continuous

Continuous Power Dissipation (T _A = +70°C) for Multilayer Board
9-Bump WLP (derate 10.6mW/°C)	848mW
Junction Temperature	+150°C
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(VPVDD = V\overline{SHDN} = 5.0V, VPGND = 0V, AV = 12dB (GAIN = PGND), RL = \infty, RL connected between OUT+ to OUT-, AC measurement bandwidth 20Hz to 22kHz, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Notes 1, 2)$

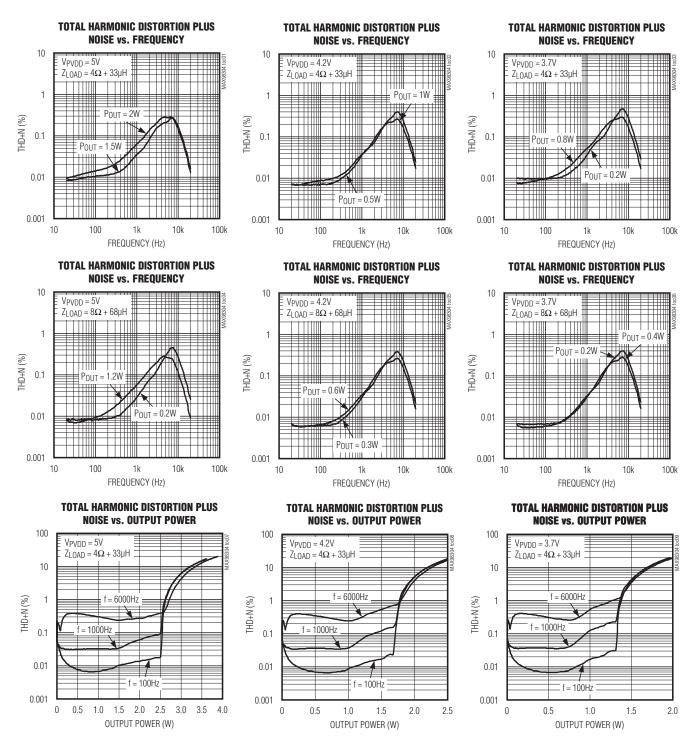
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	PVDD	Inferred from PSRR test		2.5		5.5	V
Undervoltage Lockout	UVLO	PVDD falling		1.5	1.8	2.2	V
		. TA = +25°C			1.2	1.8	,
Quiescent Supply Current	IDD	V _{PVDD} = 3.7V			0.95		mA
Shutdown Supply Current	ISHDN	VSHDN = 0V, TA = +25	5°C		< 0.1	10	μΑ
Turn-On Time	ton				3.4	10	ms
Bias Voltage	VBIAS				PVDD/2		V
			$A_V = 12dB$	45	70		kΩ
			Av = 9dB	64	100		
Input Resistance	RIN	T _A = +25°C,	$A_V = 6dB$	90	140		
		single-ended	Av = 3dB	128	200		
			$A_V = 0dB$	180	280		
		Connect GAIN to PGND		11.5	12	12.5	
Voltage Gain		Connect GAIN to PGND through 100kΩ ±5%		8.5	9	9.5	dB
	Av	Connect GAIN to PVDD		5.5	6	6.5	
		Connect GAIN to PVDD through 100k Ω ±5%		2.5	3	3.5	
		GAIN unconnected		-0.5	0	+0.5	
Output Offset Voltage	Vos	$T_A = +25^{\circ}C \text{ (Note 3)}$			±1	±4.5	mV
Click and Pop	KCP	Peak voltage, A-weighted, 32 samples per second, R _L = 8Ω (Notes 3, 4)	Into shutdown		-74		
			Out of shutdown		-60		dBV
Common-Mode Rejection Ratio	CMRR	f _{IN} = 1kHz, input referred			80		dB

ELECTRICAL CHARACTERISTICS (continued)

 $(VPVDD = VSHDN = 5.0V, VPGND = 0V, AV = 12dB (GAIN = PGND), RL = \infty, RL connected between OUT+ to OUT-, AC measurement bandwidth 20Hz to 22kHz, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Notes 1, 2)$

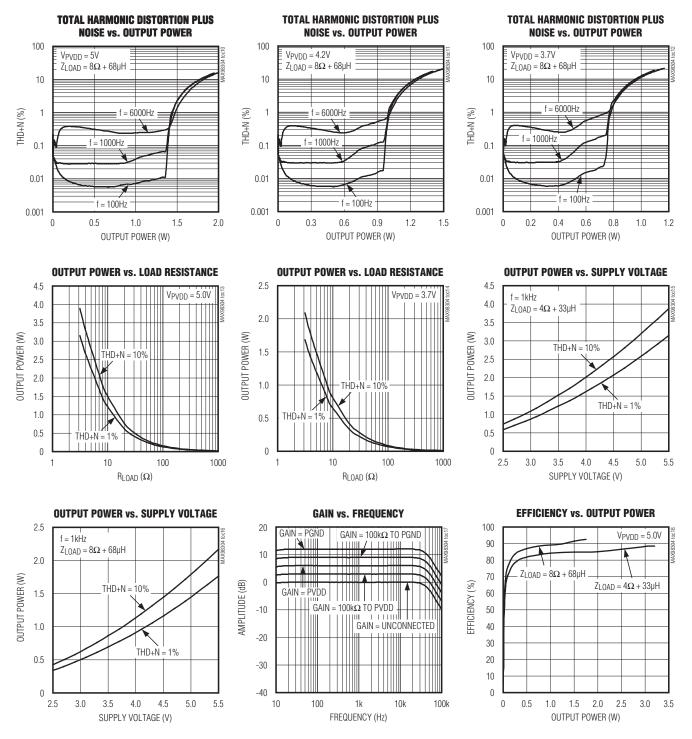
PARAMETER	SYMBOL	CONE	DITIONS	MIN	TYP	MAX	UNITS	
		$V_{PVDD} = 2.5V \text{ to } 5.5V$	′, T _A = +25°C	72	90			
Power-Supply Rejection Ratio (Note 3)	PSRR	VRIPPLE = 200mVp-p	f = 217Hz		80		dB	
	PORK		f = 1kHz		84			
			f = 20kHz		84			
		THD+N = 10%, f = 1kHz,	$V_{PVDD} = 5.0V$		3.2			
			$V_{PVDD} = 4.2V$		2.2			
		$R_L = 4\Omega + 33\mu H$	$V_{PVDD} = 3.7V$		1.7			
		THD+N = 1%,	$V_{PVDD} = 5.0V$		2.6			
		f = 1kHz,	$V_{PVDD} = 4.2V$		1.8			
Output Power	DOLLE	$R_L = 4\Omega + 33\mu H$	$V_{PVDD} = 3.7V$		1.4		W	
Cutput Fower	Pout	THD+N = 10%,	VPVDD = 5.0V		1.8] vv	
		f = 1kHz,	$V_{PVDD} = 4.2V$		1.2			
		$R_L = 8\Omega + 68\mu H$	VPVDD = 3.7V		0.96			
		THD+N = 1%,	$V_{PVDD} = 5.0V$		1.4			
		f = 1kHz, $R_L = 8\Omega + 68\mu H$	VPVDD = 4.2V		1			
			$V_{PVDD} = 3.7V$		0.8			
Total Harmonic Distortion	TUD. N	fin = 1kHz	$R_L = 4\Omega$ $P_{OUT} = 1W$		0.03	0.1	- %	
Plus Noise	THD+N		$R_L = 8\Omega$ $P_{OUT} = 0.7W$		0.03			
Oscillator Frequency	fosc				300		kHz	
Spread-Spectrum Bandwidth					±12.5		kHz	
Efficiency	η	Pout = 1.75W, R _L = 3	8Ω		93		%	
			$A_V = 12dB$		31			
			$A_V = 9dB$		26		μVRMS	
Noise	VN	A-weighted (Note 3)	Av = 6dB		23			
			$A_V = 3dB$		21			
			Av = 0dB		19		1	
Output Current Limit	ILIM		•		2.8		А	
Thermal Shutdown Level					155		°C	
Thermal Shutdown Hysteresis					15		°C	
DIGITAL INPUT (SHDN)								
Input-Voltage High	VINH	$V_{PVDD} = 2.5V \text{ to } 5.5V$,	1.4			V	
Input-Voltage Low	VINL	$V_{PVDD} = 2.5V \text{ to } 5.5V$	·			0.4	V	
Input Leakage Current		T _A = +25°C				±1	μΑ	

Note 1: All devices are 100% production tested at +25°C. All temperature limits are guaranteed by design.


Note 2: Testing performed with a resistive load in series with an inductor to simulate an actual speaker load. For $R_L = 4\Omega$, $L = 33\mu H$. For $R_L = 8\Omega$, $L = 68\mu H$.

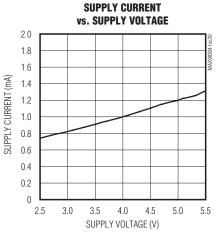
Note 3: Amplifier inputs AC-coupled to ground.

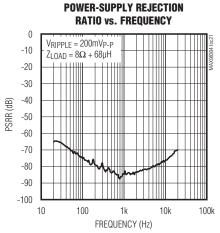
Note 4: Mode transitions controlled by SHDN.


Typical Operating Characteristics

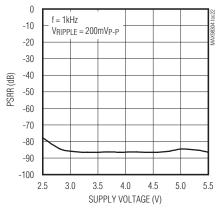
 $(V_{PVDD} = V_{\overline{SHDN}} = 5.0V, V_{PGND} = 0V, A_V = 6dB, R_L = \infty, R_L connected between OUT+ to OUT-, AC measurement bandwidth 20Hz to 22kHz, T_A = +25°C, unless otherwise noted.)$

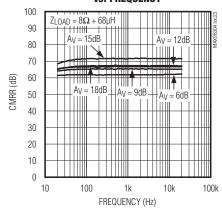
Typical Operating Characteristics (continued)

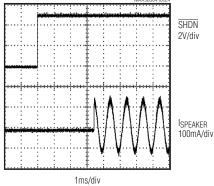

 $(V_{PVDD} = V_{\overline{SHDN}} = 5.0V, V_{PGND} = 0V, A_{V} = 6dB, R_{L} = \infty, R_{L}$ connected between OUT+ to OUT-, AC measurement bandwidth 20Hz to 22kHz, $T_{A} = +25^{\circ}C$, unless otherwise noted.)

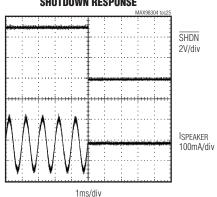


Typical Operating Characteristics (continued)

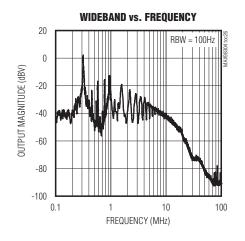

 $(V_{PVDD} = V_{\overline{SHDN}} = 5.0V, V_{PGND} = 0V, A_V = 6dB, R_L = \infty, R_L connected between OUT+ to OUT-, AC measurement bandwidth 20Hz to 22kHz, T_A = +25°C, unless otherwise noted.)$

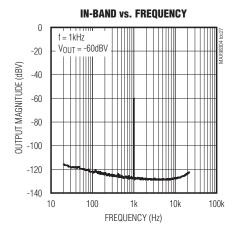


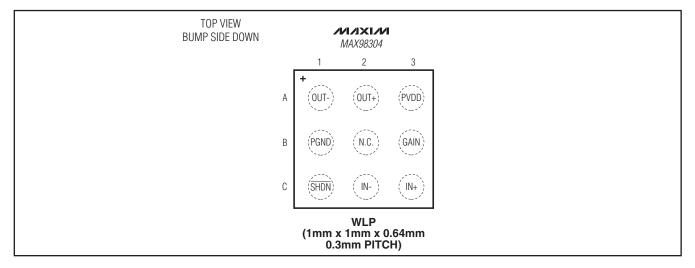



COMMON-MODE REJECTION RATIO vs. FREQUENCY

STARTUP RESPONSE




SHUTDOWN RESPONSE


Typical Operating Characteristics (continued)

 $(V_{PVDD} = V_{\overline{SHDN}} = 5.0V, V_{PGND} = 0V, A_V = 6dB, R_L = \infty, R_L connected between OUT+ to OUT-, AC measurement bandwidth 20Hz to 22kHz, T_A = +25°C, unless otherwise noted.)$

Pin Configuration

Pin Description

BUMP	NAME	FUNCTION
A1	OUT-	Negative Speaker Output
A2	OUT+	Positive Speaker Output
А3	PVDD	Power Supply. Bypass PVDD to PGND with 0.1µF II 10µF.
B1	PGND	Ground
B2	N.C.	No Connection. Can be left unconnected, or connected to PGND.
В3	GAIN	Gain Select. See Table 1 for GAIN settings.
C1	SHDN	Active-Low Shutdown Input. Drive SHDN low to place the device in shutdown.
C2	IN-	Inverting Audio Input
C3	IN+	Noninverting Audio Input

Detailed Description

The MAX98304 features low quiescent current, a low-power shutdown mode, comprehensive click-and-pop suppression, and excellent RF immunity.

The device offers Class AB audio performance with Class D efficiency in a minimal board-space solution.

The Class D amplifier features spread-spectrum modulation, edge-rate, and overshoot control circuitry that offers significant improvements to switch-mode amplifier radiated emissions.

The amplifier features click-and-pop suppression that reduces audible transients on startup and shutdown. The amplifier includes thermal overload and short-circuit protection.

Class D Speaker Amplifier

The filterless Class D amplifier offers much higher efficiency than Class AB amplifiers. The high efficiency of a Class D amplifier is due to the switching operation of the output stage transistors. Any power loss associated with the Class D output stage is mostly due to the I²R loss of the MOSFET on-resistance and quiescent current overhead.

Ultra-Low EMI Filterless Output Stage

Traditional Class D amplifiers require the use of external LC filters, or shielding, to meet EN55022B electromagnetic-interference (EMI) regulation standards. Maxim's patented active emissions-limiting edge-rate control circuitry and spread-spectrum modulation reduces EMI emissions, while maintaining up to 93% efficiency.

Maxim's patented spread-spectrum modulation mode flattens wideband spectral components, while proprietary techniques ensure that the cycle-to-cycle variation of the switching period does not degrade audio reproduction or efficiency. The IC's spread-spectrum modulator randomly varies the switching frequency by ±12.5kHz around the center frequency (300kHz). Above 10MHz, the wideband spectrum looks like noise for EMI purposes (Figure 1).

Speaker Current Limit

If the output current of the speaker amplifier exceeds the current limit (2.8A typ), the IC disables the outputs for approximately 100µs. At the end of 100µs, the outputs are reenabled. If the fault condition still exists, the IC continues to disable and reenable the outputs until the fault condition is removed.

Selectable Gain

The IC offers five programmable gain selections through a single gain input (GAIN).

Table 1. Gain Control Configuration

GAIN PIN	MAXIMUM GAIN (dB)
Connect to PGND	12
Connect to PGND through 100kΩ ±5% resistor	9
Connect to PVDD	6
Connect to PVDD through $100 \text{k}\Omega$ $\pm 5\%$ resistor	3
Unconnected	0

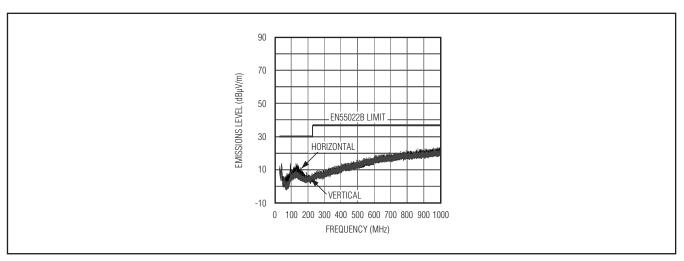


Figure 1. EMI with 60cm of Speaker Cable and No Output Filtering

Shutdown

The IC features a low-power shutdown mode, drawing less than $0.1\mu A$ (typ) of supply current. Drive \overline{SHDN} low to put the IC into shutdown.

Click-and-Pop Suppression

The IC speaker amplifier features Maxim's comprehensive click-and-pop suppression. During startup, the click-and-pop suppression circuitry reduces any audible transient sources internal to the device. When entering shutdown, the differential speaker outputs ramp down to PGND quickly and simultaneously.

Applications Information Filterless Class D Operation

Traditional Class D amplifiers require an output filter. The filter adds cost, size, and decreases efficiency and THD+N performance. The IC's filterless modulation scheme does not require an output filter.

Because the switching frequency of the IC is well beyond the bandwidth of most speakers, voice coil movement due to the switching frequency is very small. Use a speaker with a series inductance > $10\mu H$. Typical 8Ω speakers exhibit series inductances in the $20\mu H$ to $100\mu H$ range.

Component SelectionPower-Supply Input (PVDD)

PVDD powers the speaker amplifier. PVDD ranges from 2.5V to 5.5V. Bypass PVDD with a $0.1\mu F$ and $10\mu F$ capacitor to PGND. Apply additional bulk capacitance at the device if long input traces between PVDD and the power source are used.

Input Filtering

The input-coupling capacitor (C_{IN}), in conjunction with the amplifier's internal input resistance (R_{IN}), forms a highpass filter that removes the DC bias from the incoming signal. These capacitors allow the amplifier to bias the signal to an optimum DC level.

Assuming zero source impedance CIN is:

$$C_{IN} = \frac{2\pi \times R_{IN}}{f_{-3dB}} [\mu F]$$

where f-3dB is the -3dB corner frequency and RIN is the input resistance shown in the *Electrical Characteristics* table. Use capacitors with adequately low voltage-coefficient for best low-frequency THD performance.

Layout and Grounding

Proper layout and grounding are essential for optimum performance. Good grounding improves audio performance and prevents switching noise from coupling into the audio signal.

Use wide, low-resistance output traces. As the load impedance decreases, the current drawn from the device increases. At higher current, the resistance of the output traces decreases the power delivered to the load. For example, if 2W is delivered from the device output to a 4Ω load through $100m\Omega$ of total speaker trace, 1.904W is being delivered to the speaker. If power is delivered through $10m\Omega$ of total speaker trace, 1.99W is being delivered to the speaker. Wide output, supply, and ground traces also improve the power dissipation of the device.

The IC is inherently designed for excellent RF immunity. For best performance, add ground fills around all signal traces on top or bottom PCB planes.

WLP Applications Information

For the latest application details on WLP construction, dimensions, tape carrier information, PCB techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to Application Note 1891: Wafer-level packaging (WLP) and its applications. Figure 2 shows the dimensions of the WLP balls used on the IC.

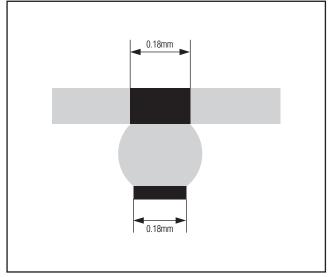
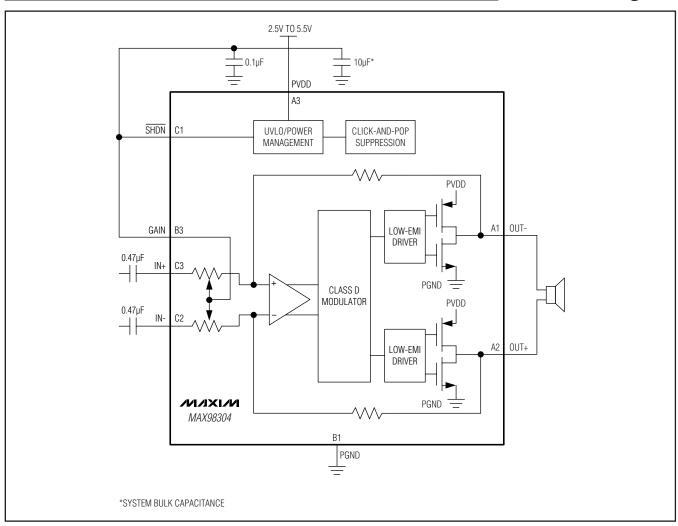
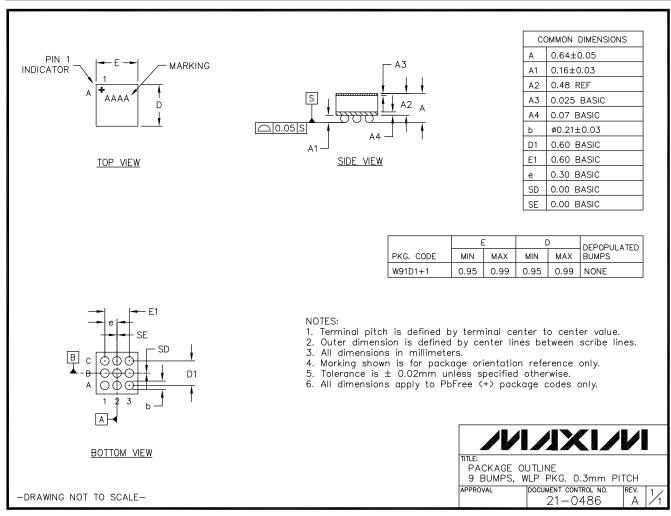



Figure 2. MAX98304 WLP Ball Dimensions

Functional Diagram


Chip Information

PROCESS: CMOS

Package Information

For the latest package outline information and land patterns, go to <u>www.maxim-ic.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
9 WLP	W91D1+1	<u>21-0486</u>	_

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	
0	9/10	Initial release	_

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.