

TRISIL™ FOR TELECOM EQUIPMENT PROTECTION

FEATURES

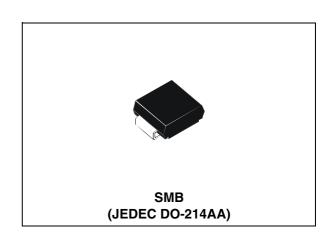
■ Bidirectional crowbar protection

Voltage: 8V

Low leakage current : I_R = 2µA max
 Holding current: I_H = 150 mA min
 Repetitive peak pulse current : I_{PP} = 75 A (10/1000µs)

MAIN APPLICATIONS

Any sensitive equipment requiring protection against lightning strikes and power crossing:


■ Ethernet, T1/E1

DESCRIPTION

The SMP75-8 is a very low voltage transient surge arrestor especially designed to protect sensitive telecommunication equipment against lightning strikes and other transients. Its low voltage makes it suitable to protect low voltage transformer in T1/E1, ethernet links without saturation of the transformer.

BENEFITS

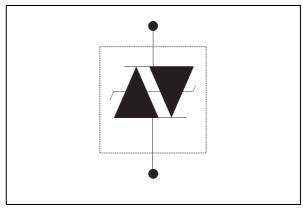

Trisils are not subject to ageing and provide a fail safe mode in short circuit for a better protection. They are used to help equipment to meet main standards such as UL1950, IEC950 / CSA C22.2 and UL1459. They have UL94 V0 approved resin. SMB package is JEDEC registered (DO-214AA). Trisils comply with the following standards GR-1089 Core, ITU-T-K20/K21, VDE0433, VDE0878, IEC61000-4-5 and FCC part 68.

Table 1: Order Code

Part Number	Marking		
SMP75-8	L08		

Figure 1: Schematic Diagram

TM: TRISIL is a trademark of STMicroelectronics.

Table 2: In compliances with the following standards

STANDARD	Peak Surge Voltage (V)	Waveform Voltage	Required peak current (A)	Current waveform	Minimum serial resistor to meet standard (Ω)
GR-1089 Core First level	2500 1000	2/10 μs 10/1000 μs	500 100	2/10 μs 10/1000 μs	5 3.3
GR-1089 Core Second level	5000	2/10 μs 500 2/10 μs		10	
GR-1089 Core Intra-building	1500	2/10 μs	100	2/10 μs	0
ITU-T-K20/K21	6000 1500	10/700 μs	150 37.5	5/310 µs	10 0
ITU-T-K20 (IEC61000-4-2)	8000 15000	1/60 ns	ESD contact discharge ESD air discharge		0
VDE0433	4000 2000	10/700 μs	100 50 5/310 μs		0
VDE0878	4000 2000	1.2/50 µs	100 50 1/20 µs		0
IEC61000-4-5	4000 4000	10/700 μs 1.2/50 μs	100 5/310 μs 100 8/20 μs		0
FCC Part 68, lightning surge type A	1500 800	10/160 μs 10/560 μs	200 10/160 µs 100 10/560 µs		2.5 0
FCC Part 68, lightning surge type B	1000	9/720 μs 25 5/320 μs		0	

Table 3: Absolute Ratings $(T_{amb} = 25^{\circ}C)$

Symbol	Parameter	Value	Unit	
Ірр	Repetitive peak pulse current	10/1000 µs 8/20 µs 10/560 µs 5/310 µs 10/160 µs 1/20 µs 2/10 µs	75 250 100 120 150 250	Α
I _{FS}	Fail-safe mode : maximum current (note 1)	5	kA	
I _{TSM}	Non repetitive surge peak on-state current (sinusoidal)	t = 0.2 s t = 1 s t = 2 s t = 15 mn	14 8 6.5 2	А
l ² t	I ² t value for fusing	12 12.2	A ² s	
T _{stg} T _j	Storage temperature range Maximum junction temperature	-55 to 150 150	°C	
T _L	Maximum lead temperature for soldering during 10 s.		260	°C

Note 1: in fail safe mode, the device acts as a short circuit

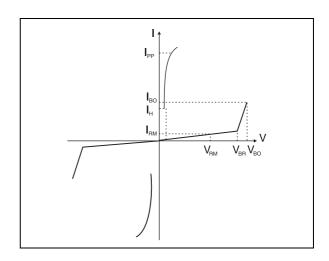

2/8

Table 4: Thermal Resistances

Symbol	Parameter	Value	Unit
R _{th(j-a)}	Junction to ambient (with recommended footprint)	100	°C/W
R _{th(j-l)}	Junction to leads	20	°C/W

Table 5: Electrical Characteristics $(T_{amb} = 25^{\circ}C)$

Symbol	Parameter
V _{RM}	Stand-off voltage
V _{BR}	Breakdown voltage
V _{BO}	Breakover voltage
I _{RM}	Leakage current
I _{PP}	Peak pulse current
I _{BO}	Breakover current
lΗ	Holding current
V _R	Continuous reverse voltage
I _R	Leakage current at V _R
С	Capacitance

	I _{RM} @	V _{RM}	I _R @	V _R	Dynamic V _{BO}	Sta V _{BO} (ntic @ I _{BO}	I _H	С
Types	Types max.	av.	max.		max.	max.	max.	typ.	max.
		ax.	no	te1	note 2	not	e 3	note 4	note 5
	μΑ	V	μΑ	V	V	V	mA	mA	pF
SMP75-8	2	6	5	8	20	15	800	50	60

Note 1: IR measured at VR guarantee VBR min \geq VR

Note 2: see functional test circuit 1

Note 3: see test circuit 2

Note 4: see functional holding current test circuit 3 Note 5: VR = 2V bias, VRMS=1V, F=1MHz

Figure 2: Pulse waveform

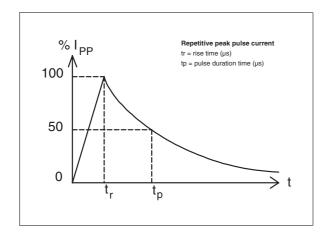


Figure 3: Non repetitive surge peak on-state current versus overload duration

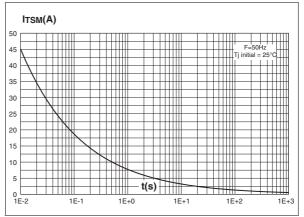


Figure 4: On-state voltage versus on-state current (typical values)

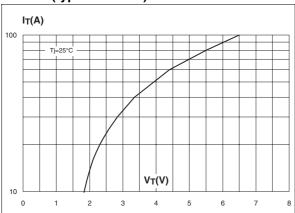


Figure 6: Relative variation of breakover voltage versus junction temperature

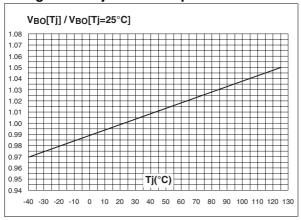


Figure 8: Variation of thermal impedance junction to ambient versus pulse duration (Printed circuit board FR4, SCu=35µm, recommended pad layout)

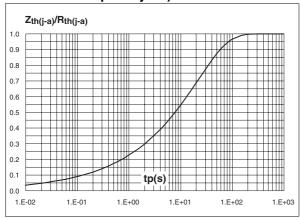


Figure 5: Relative variation of holding current versus junction temperature

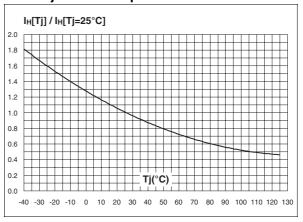


Figure 7: Relative variation of leakage current versus reverse voltage applied (typical values)

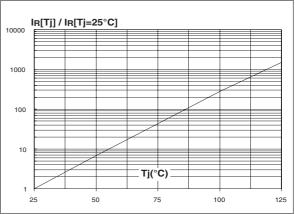
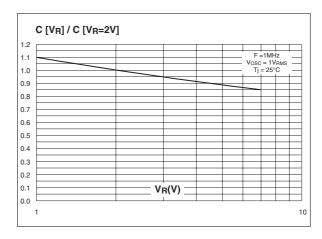



Figure 9: Relative variation of junction capacitance versus reverse voltage applied (typical values)

4/8

Figure 10: Test circuit 1 for dynamic I_{BO} and V_{BO} parameters

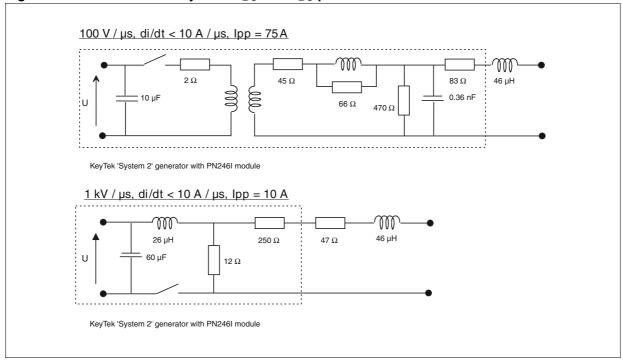


Figure 11: Test circuit 2 for I_{BO} and V_{BO} parameters

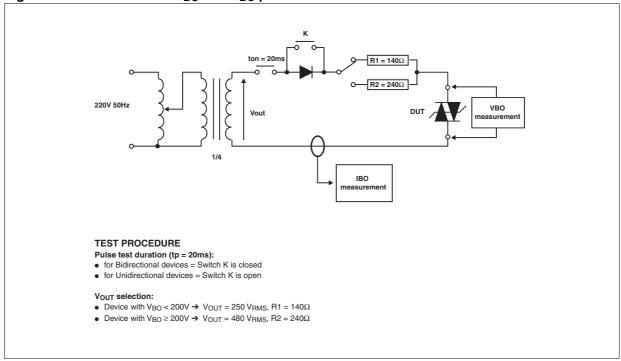


Figure 12: Test circuit 3 for dynamic I_H parameter

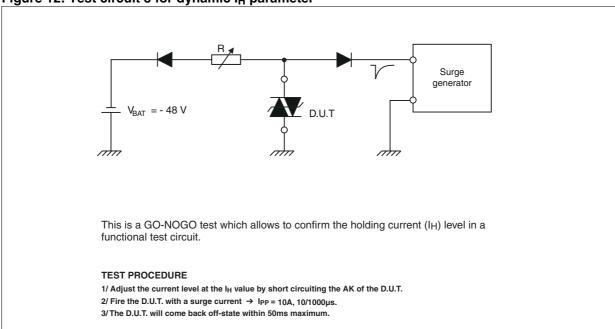


Figure 12: Ordering Information Scheme

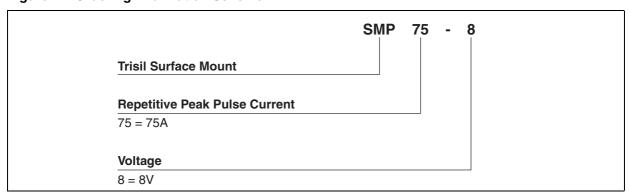
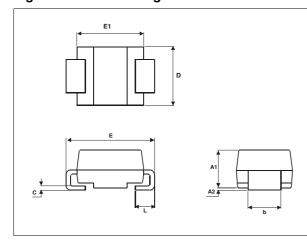
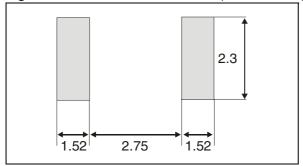




Figure 13: SMB Package Mechanical data

	DIMENSIONS						
REF.	Millin	neters	Inc	hes			
	Min.	Max.	Min.	Max.			
A1	1.90	2.45	0.075	0.096			
A2	0.05	0.20	0.002	0.008			
b	1.95	2.20	0.077	0.087			
С	0.15	0.41	0.006	0.016			
Е	5.10	5.60	0.201	0.220			
E1	4.05	4.60	0.159	0.181			
D	3.30	3.95	0.130	0.156			
L	0.75	1.60	0.030	0.063			

Figure 14: Foot Print Dimensions (in millimeters)

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Table 6: Ordering Information

Part Number	Marking	Package	Weight	Base qty	Delivery mode
SMP75-8	L08	SMB	0.11 g	2500	Tape & reel

Table 7: Revision History

Date	Revision	Description of Changes
19-July-2005	3	Previous issue
02-Jan-2006	4	Added ECOPACK statement and changed page layout. Minor updates to technical values in Tables 2, 3, and 5.

7/8

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

> The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

> > © 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of compagnies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

