International **TCR** Rectifier

IGBT SIXPACK MODULE

Features

- + Low V_{CE} (on) Non Punch Through IGBT Technology
- + Low Diode V_{F}
- 10µs Short Circuit Capability
- Square RBSOA
- HEXFRED Antiparallel Diode with Ultrasoft Reverse Recovery Characteristics
- Positive $V_{\mbox{\scriptsize CE}}$ (on) Temperature Coefficient
- Ceramic DBC Substrate
- · Low Stray Inductance Design

Benefits

- Benchmark Efficiency for Motor Control
- Rugged Transient Performance
- Low EMI, Requires Less Snubbing
- Direct Mounting to Heatsink
- PCB Solderable Terminals
- Low Junction to Case Thermal Resistance
- UL Approved E78996

GB10XF120K

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	1200	V
I _C @ Tc=25°C	Continuous Collector Current	20	А
I _C @ Tc=80°C	Continuous Collector Current	13	
Ісм	Pulsed Collector Current (Ref. Fig. C.T.5)	40	
ILM	Clamped Inductive Load Current	40	
I _F @Tc=25°C	Diode Continuous Forward Current	20	
I _F @ Tc=80°C	Diode Continuous Forward Current	12	
I _{FM}	Diode Maximum Forward Current	40	
V _{GE}	Gate-to-Emitter Voltage	±20	V
P _D @Tc=25°C	Maximum Power Dissipation (IGBT and Diode)	151	W
P _D @Tc=80°C	Maximum Power Dissipation (IGBT and Diode)	85	
TJ	Maximum Operating Junction Temperature	150	°C
T _{STG}	Storage Temperature Range	-40 to +125	
VISOL	Isolation Voltage	AC 2500 (MIN)	V

Thermal and Mechanical Characteristics

	Parameter	Min	Typical	Maximum	Units
R _{θJC} (IGBT)	Junction-to-Case IGBT	-	-	1.42	°C/W
$R_{\theta JC}$ (Diode)	Junction-to-Case Diode	-	-	1.97	
$R_{\theta CS}$ (Module)	Case-to-Sink, flat, greased surface	-	0.05	-	
	Mounting Torque (M5)	2.7	-	3.3	N*m
	Weight	-	170	-	g

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _(CES)	Collector-to-Emitter Breakdown Voltage	1200	-	-	V	$V_{GE} = 0$ I _C = 500µA
$\Delta V_{(BR)CES} / \Delta T_J$	Temp. Coefficient of Breakdown Voltage	-	0.87	-	V/°C	V _{GE} = 0 I _C = 1mA (25°C - 125°C)
V _{CE(ON)}	Collector-to-Emitter Voltage	-	2.64	2.85	V	I _C = 10A V _{GE} = 15V
		-	3.59	3.94		I _C = 20A V _{GE} = 15V
		-	3.17	3.46		$I_{C} = 10A$ $V_{GE} = 15V$ $T_{J} = 125^{\circ}C$
		-	4.48	4.97		I_{C} =20A V_{GE} = 15V T_{J} = 125°C
V _{GE} (th)	Gate Threshold Voltage	4	-	6		$V_{CE} = V_{GE}$ I _C = 250µA
$\Delta V_{GE}(th)/\Delta T_J$	Thresold Voltage temp. coefficient	-	-10.4	-	mV/°C	$V_{CE} = V_{GE}$ I _C = 1mA (25°C-125°C)
I _{CES}	Zero Gate Voltage Collector Current	-	-	100	μA	V _{GE} = 0 V _{CE} = 1200V
		-	750	-		V _{GE} = 0 V _{CE} = 1200V Tj = 125°C
V _{FM}	Diode Forward Voltage Drop	-	2.00	2.28	V	I _F = 10A
		-	2.48	2.90		I _F = 20A
		-	2.16	2.51		I _F = 10A Tj = 125°C
		-	2.87	3.42		I _F = 20A Tj = 125°C
I _{GES}	Gate-to-Emitter Leakage Current	-	-	±200	nA	$V_{GE} = \pm 20V$

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Switching Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Q _G	Total Gate Charge (turn-on)	-	48	75		I _C = 10A
Q _{GE}	Gate-to-Emitter Charge (turn-on)	-	8	15	nC	V _{CC} = 600V
Q _{GC}	Gate-to-Collector Charge (turn-on)	-	22	33		V _{GE} = 15V
E _{ON}	Turn-On Switching Loss	-	0.84	1.26	mJ	I _C = 10A V _{CC} = 600V
E _{OFF}	Turn-Off Switching Loss	-	0.36	0.54		V_{GE} = 15V R _G = 22 Ω L = 1mH
E _{TOT}	Total Switching Loss	-	1.20	1.81		Tj = 25°C ①
E _{ON}	Turn-On Switching Loss	-	1.14	1.71	mJ	I _C = 10A V _{CC} = 600V
E _{OFF}	Turn-Off Switching Loss	-	0.64	0.96		V_{GE} = 15V R _G = 22 Ω L = 1mH
E _{TOT}	Total Switching Loss	-	1.78	2.67		Tj = 125°C ①
t _{d(on)}	Turn-On delay time	-	83	124	ns	I _C = 10A V _{CC} = 600V
t _r	Risetime	-	21	32		V_{GE} = 15V R _G = 22 Ω L = 1mH
t _{d(off)}	Turn-Off delay time	-	115	172		Tj = 125°C
t _f	Falltime	-	279	420		
Cies	Input Capacitance	-	750	1150	pF	V _{GE} = 0
C _{oes}	Output Capacitance	-	190	290		$V_{CC} = 30V$
C _{res}	Reverse Transfer Capacitance	-	20	35		f = 1Mhz
RBSOA	Reverse Bias Safe Operating Area	FU	LLSQL	JARE		Tj = 150°C I _C = 40A
						$R_G = 22\Omega$ $V_{GE} = 15V$ to 0
SCSOA	Short Circuit Safe Operating Area	10	-	-	μs	Tj = 150°C
						V _{CC} = 960V V _P = 1200V
						$R_G = 22\Omega$ $V_{GE} = 15V$ to 0
l _{rr}	Diode Peak Rev. Recovery Current	-	22	-	А	Tj = 125°C
						$V_{CC} = 600V$ I _F = 10A L = 1mH
						V_{GE} = 15V R _G = 22 Ω

0 Energy losses include "tail" and diode reverse recovery.

Inverter

GB10XF120K Bulletin I27151 Rev.A 07/03

Inverter

Fig.C.T.1 - Gate Charge Circuit (turn-off)

Fig.C.T.3 - S.C. SOA Circuit

Fig.C.T.2 - RBSOA Circuit

Fig.C.T.4 - Switching Loss Circuit

Fig.C.T.5 - Resistive Load Circuit

GB10XF120K Bulletin I27151 Rev.A 07/03

Econo2 6Pak Package Outline

Dimensions are shown in millimeters (inches)

Econo2 6Pak Part Marking Information

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR's Web site.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/02 www.irf.com