2N5672

MECHANICAL DATA

Dimensions in mm (inches)

TO-3 (TO-204AE) Pin 1 – Base Pin 2 – Emitter Case – Collector

ABSOLUTE MAXIMUM RATINGS

T_{CASE} = 25°C unless otherwise stated Collector - Base Voltage 150V V_{CBO} Collector - Emitter Voltage ($I_{B} = 0$) V_{CEO} 120V V_{EBO} Emitter – Base Voltage ($I_c = 0$) 7.0V **Continuous Collector Current** \mathbf{I}_{c} 30A **Base Current** I_B 10A P_{tot} **Total Power Dissipation at** 140W T_{case} ≤ 25°C T_{amb} ≤ 25°C 6W T_{sta} Operating and Storage Temperature Range -65 to +200°C Τ, Junction Temperature 200°C

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab pic. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: <u>sales@semelab.co.uk</u> Website: <u>http://www.semelab.co.uk</u>

NPN HIGH POWER SILICON TRANSISTOR

Features

- High Current & High Speed Switching
- High Reliability Screening Options
 Available Including:-
- Semelab Space Level discrete component processing which is based on conformance & screening levels of MIL-PRF-19500 & ESCC 5000

Applications

For high reliability general purpose applications, where high speed & high current switching and amplification is required.

THERMAL DATA

R _{thi-case}	Thermal Resistance Junction - Case	Max	1.25	°C/W
11-0030				

ELECTRICAL CHARACTERISTICS (T_{case}=25°C unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{(BR)CER} *	Collector Emitter Breakdown Voltage	I _c = 200mA	I _B = 0	120	-	-	
$V_{(BR)CEX}$	Collector Emitter Breakdown Voltage	I _c = 200mA	V _{BE} = -1.5V	150	-	-	V
$V_{(BR)CER}$	Collector Emitter Breakdown Voltage	I _c = 200mA	R _{BE} = 50	140	-	-	
I _{CEX}	Collector-Emitter Cut-Off Current	$V_{ce} = 135V$	$V_{\text{BE}} = -1.5V$	-	-	10	
I _{CEO}	Collector-Emitter Cut-Off Current	V _{CE} = 80V	$I_{B} = 0A$	-	-	10	mA
I _{EBO}	Emitter-Base Cut-Off Current	$V_{EB} = 7.0V$	$I_c = 0$	-	-	10	
h *	DC Current Gain	I _c = 20A	$V_{\rm CE} = 5.0V$	20	-	-	
II _{FE}		I _c = 15A	V _{CE} = 2.0V	20	-	100	
V _{BE} *	Base Emitter Voltage	I _c = 15A	$V_{ce} = 5.0V$	-	-	1.6	
V _{CE sat} *	Collector-Emitter Saturation Voltage	I _c = 15A	I _B = 1.2A	-	-	0.75	V
V_BE sat	Base-Emitter Saturation Voltage	I _c = 15A	I _B = 1.2A	-	-	1.5	
f _T	Transition Frequency	I _c = 2A f = 5MHz	$V_{ce} = 10V$	50	-	-	MHz
C _{obo}	Collector Base Capacitance	l _e = 0 f = 1.0MHz	$V_{\rm CB} = 10V$	-	-	900	pF
T _{on}	Switching Time			-	-	0.5	
T _s	Switching Time	$I_c = 15A$ $V_{cc} = 30V$ $I_c = I_c = 1.2A$		-	-	0.5	μS
T _{off}	Switching Time	·B1 - ·B2 - ···		-	-	1.5	

* Pulse test $t_{_{D}}$ = 300µs, δ < 2%

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: <u>sales@semelab.co.uk</u> Website: <u>http://www.semelab.co.uk</u>

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.