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"Hammer" Goals

e Build a next-generation system architecture
which serves as the foundation for future
processor platforms

e Enable a full line of server and workstation
products

Leading edge x86 (32-bit) performance and
compatibility

Native 64-bit support

Establish x86-64 Instruction Set Architecture
Extensive Multiprocessor support

RAS features

e Provide top-to-bottom desktop and mobile
processors



e X86-64™ Technology

e "Hammer" Architecture

e "Hammer" System Architecture



X86-64™ Technology



Why 64-Bit Computing?

e Required for large memory programs
— Large databases
— Scientific and Engineering Problems
e Designing CPUs ©
e But,
— Limited Demand for Applications which require 64
bits
e Most applications can remain 32-bit x86 instructions, if

the processor continues to deliver leading edge x86
performance

e ANd,

— Software is a huge investment (tool chains,
applications, certifications)

— Instruction set is first and foremost a vehicle for
compatibility

e Binary compatibility
e Interpreter/JIT support is increasingly important



X86-64 Instruction Set Architecture AMD

e X86-64 mode built on x86
— Similar to the previous extension from 16-bit to 32-
bit
— Vast majority of opcodes and features unchanged

— Integer/Address register files and datapaths are
native 64-bit

— 48-Bit Virtual Address Space, 40-Bit Physical
Address Space

e Enhancements
— Add 8 new integer registers
— Add PC relative addressing

— Add full support for SSE/SSEII based Floating Point
Application Binary Interface (ABI)

e including 16 registers
— Additional Registers and Data Size added through
reclaim of one byte increment/decrement opcodes
(0Ox40-0x4F) for use as a single optional prefix
e Public specification
— WWW.X86-64.0rg 6



X86-64 Programmer’s Model
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X86-64 Code Generation and Quality AMD

e Compiler and Tool Chain is a straight forward port

e Instruction set is designed to offer all the
advantages of CISC and RISC

— Code density of CISC
— Register usage and ABI models of RISC
— Enables easy application of standard compiler
optimizations
e Speclnt2000 Code Generation (compared to 32 bit x86)
— Code size grows <10%b
e Due mostly to instruction prefixes
— Static Instruction Count SHRINKS by 10%0
— Dynamic Instruction Count SHRINKS by at least 5%
— Dynamic Load/Store Count SHRINKS by 20%b
— All without any specific code optimizations




xX86-64™ Summary

e Processor is fully x86 capable

— Full native performance with 32-bit applications and
oS

— Full compatibility (BIOS, OS, Drivers)

e Flexible deployment
— Best-in-class 32-bit, x86 performance

— Excellent 64-bit, x86-64 instruction execution when
needed

e Server, Workstation, Desktop, and Mobile share
same architecture

— OS, Drivers and Applications can be the same
— CPU vendors focus not split, ISV focus not split

— Support, optimization, etc. all designed to be the
same



The "Hammer"
Architecture



The “Hammer” Architecture
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Processor Core Overview
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Processor Core Overview
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Processor Core Overview
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"Hammer" Pipeline
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Fetch/Decode Pipeline
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DRAM Pipeline

1
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Large Workload Branch Prediction
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Large Workload TLBs
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DDR Memory Controller

e Integrated Memory Controller Detalils
— Memory controller details
e 8 or 16-byte interface

e 16-Byte interface supports

— Direct connection to 8 registered DIMMs
— Chipkill ECC

e Unbuffered or Registered DIMMs
e PC1600, PC2100, and PC2700 DDR memory

e Integrated Memory Controller Benefits
— Significantly reduces DRAM latency
— Memory latency improves
e as CPU and HyperTransport™ link speed improves
— Bandwidth and capacity grows with number of CPUs
— Snoop probe throughput scales with CPU frequency
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Reliability and Availability

e L1 Data Cache ECC Protected
e L2 Cache AND Cache Tags ECC Protected

e DRAM ECC Protected
— With Chipkill ECC support

e On Chip and off Chip ECC Protected Arrays include
background hardware scrubbers

e Remaining arrays parity protected
— L1 Instruction Cache, TLBs, Tags
— Generally read only data which can be recovered

e Machine Check Architecture
— Report failures and predictive failure results

— Mechanism for hardware/software error containment
and recovery
23



HyperTransport™ Technology

e Next-generation computing performance goes beyond the
Microprocessor

e Screaming 1/0 for chip-to-chip communication
— High bandwidth
— Reduced pin count
— Point-to-point links
— Split transaction and full duplex

e Open standard
— Industry enabler for building high bandwidth 1/0 subsystems
— 1/0 subsystems: PCI-X, G-bit Ethernet, Infiniband, etc.

e Strong Industry Acceptance

— 100+ companies evaluating specification & several licensing
technologies through AMD (2000)

— First HyperTransport technology-based south bridge announced
by nVIDIA (June 2001)

e Enables scalable 2-8 processor SMP systems
— Glueless MP 24



CPU With Integrated Northbridge AMD
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Northbridge Overview
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Northbridge Command Flow
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Northbridge Data Flow
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Coherent HyperTransport™
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Coherent HyperTransport™
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Coherent HyperTransport™
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Coherent HyperTransport™
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Coherent HyperTransport™

Read Request
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Coherent HyperTransport™

Read Request
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Coherent HyperTransport™
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Coherent HyperTransport™
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Coherent HyperTransport™
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"Hammer" Architecture Summary AMD

e 8th Generation microprocessor core
— Improved IPC and operating frequency
— Support for large workloads

e Cache subsystem
— Enhanced TLB structures
— Improved branch prediction

e Integrated DDR memory controller
— Reduced DRAM latency

e HyperTransport™ technology
— Screaming 1/0 for chip-to-chip communication
— Enables glueless MP
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"Hammer' System
Architecture



“Hammer” System Architecture AMD
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“Hammer” System Architecture
Glueless Multiprocessing: 2-way
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“Hammer” System Architecture
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“Hammer” System Architecture

Glueless Multiprocessing: 8-wa
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MP System Architecture

e Software view of memory is SMP
— Physical address space is flat and fully coherent

— Latency difference between local and remote
memory in an 8P system is comparable to the
difference between a DRAM page hit and DRAM page
conflict

— DRAM location can be contiguous or interleaved

e Multiprocessor support designed in from the
beginning
— Lower overall chip count

— All MP system functions use CPU technology and
frequency

e 8P System parameters
— 64 DIMMs (up to 128GB) directly connected
— 4 HyperTransport links available for 10 (25GB/s)
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The Rewards of Good Plumbing AMD

e Bandwidth

— 4P system designed to achieve 8GB/s aggregate
memory copy bandwidth
e With data spread throughout system
— Leading edge bus based systems limited to about

2.1GB/s aggregate bandwidth (3.2GB/s theoretical
peak)

e Latency

— Average unloaded latency in 4P system (page miss)
Is designed to be 140ns

— Average unloaded latency in 8P system (page miss)
Is designhed to be 160ns

— Latency under load planned to increase much more
slowly than bus based systems due to available
bandwidth

— Latency shrinks quickly with increasing CPU clock
speed and HyperTransport link speed
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"Hammer” Summary

e 8th generation CPU core

— Delivering high-performance through an optimum balance of
IPC and operating frequency

e X86-64™ technology

— Compelling 64-bit migration strategy without any significant
sacrifice of existing code base

— Full speed support for x86 code base
— Unified architecture from notebook through server

e DDR memory controller
— Significantly reduces DRAM latency

e HyperTransport™ technology
— High-bandwidth 170
— Glueless MP

e Foundation for future portfolio of processors

— Top-to-bottom desktop and mobile processors

— High-performance 1-, 2-, 4-, and 8-way servers and
workstations 46
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