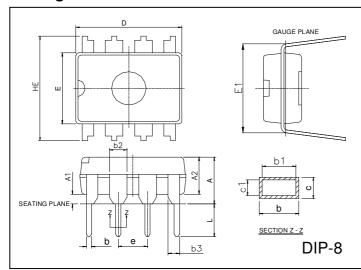
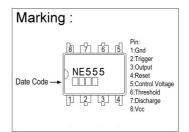
GPNE555

SINGLE TIMER

Description

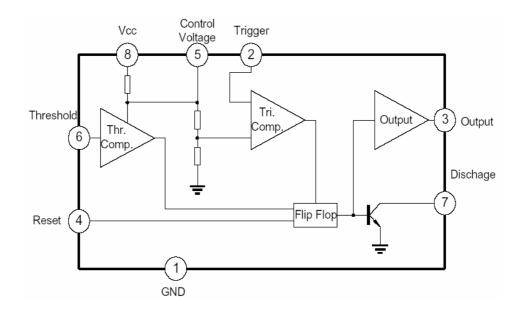
The GPNE555 is a highly stable timer integrated circuit. It can be operated in Astable mode and Monostable mode. With monostable operation, the time delay is controlled by one external and one capacitor. With a stable operation, the frequency and duty cycle are accurately controlled with two external resistors and one capacitor.


Features


- High current driver capability (=200mA)
- Adjustable duty cycle
- Timing form µSec to Hours
- Turn off time less than 2µSec

Applications

- Precision timing
- Pulse generation
- Time delay generation


Package Dimensions

REF.	Millimeter		REF.	Millimeter		
	Min.	Max.	Ľ	Min.	Max.	
Α	-	0.5334	c1	0.203	0.279	
A1	0.381	-	D	9.017	10.16	
A2	2.921	4.953	Е	6.096	7.112	
b	0.356	0.559	E1	7.620	8.255	
b1	0.356	0.508	е	2.540 BSC		
b2	1.143	1.778	HE	-	10.92	
b3	0.762	1.143	L	2.921	3.810	
С	0.203	0.356				

Block Diagram & Pin Configuration

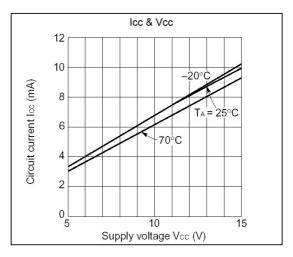
GPNE555 Page: 1/5 Absolute Maximum Ratings (Ta=25℃)

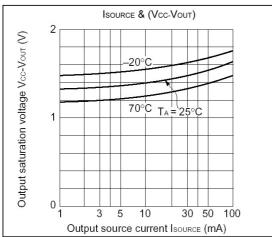
Parameter	Symbol	Value	Unit	
Supply Voltage	Vcc	16	V	
Output Current	lo	200	mA	
Power Dissipation	Pd	600	mW	
Lead Temperature (10sec)	Tlead	300	$^{\circ}\mathbb{C}$	
Operating Temperature	Topr	0 ~ 70	$^{\circ}\!\mathbb{C}$	
Storage Temperature	Tstg	-65 ~ 150	$^{\circ}\!\mathbb{C}$	

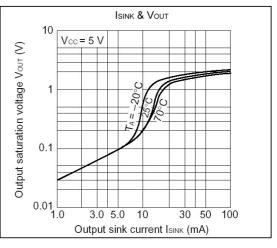
Electrical Characteristics (TA=25°C VCC=5 ~ 15V)

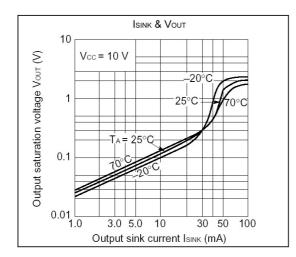
Parameter	Symbol	Test Conditions	Min	Тур.	Max.	Unit				
Supply Voltage	Vcc		4.5	-	16	V				
Supply Current (Note 1)	ICC	Vcc=5V, RL=∞	-	3	6	mA				
Supply Current (Note 1)		Vcc=15V, RL=∞	-	10	15	mA				
Timing Error(monostable)										
Initial Accurary (Note 1)	Accur	Ra=1k to 100kΩ	-	1.0	-	%				
Drift with Temperature	∆t/∆T	C=0.1µF	-	50	-	ppm/°C				
Drift with Supply Voltage	∆t/∆Vcc		-	0.1	-	%/V				
Timing Error(astable)										
Initial Accurary (Note 1)	Accur	Ra=1k to 100kΩ	-	2.25	-	%				
Drift with Temperature	∆t/∆T	C=0.1µF	-	150	-	ppm/°C				
Drift with Supply Voltage	∆t/∆Vcc		-	0.3	-	%/V				
Control Voltage	Vc	Vcc=15V	9.0	10.0	11.0	V				
Control voltage	VC	Vcc=5V	2.6	3.33	4.0	V				
Threshold Voltage	Vтн	Vcc=15V	9.2	10.0	10.8	V				
Tilleshold voltage	VIH	Vcc=5V	3.1	3.33	3.55	V				
Threshold Current (Note 3)	ITH		-	0.1	0.25	μA				
Trigger Voltage	Vtr	Vcc=5V	1.1	1.67	2.2	V				
Trigger voltage	v tr	Vcc=15V	4.5	5	5.6	V				
Trigger Current	Itr	Vtr=0	-	-	2.0	μΑ				
Reset Voltage	Vrst		0.4	0.7	1.0	V				
Reset Current	Irst		-	0.1	0.4	mA				
	Vol	VCC=15V, Isink=10mA	-	0.06	0.25	V				
Low Output Voltage		VCC=15V, Isink=50mA	-	0.3	0.75					
		VCC=5V, Isink=5mA	-	0.05	0.35					
	Vон	VCC=15V, Isource=200mA	-	12.5	-	V				
High Output Voltage		VCC=15V, Isource=100mA	12.75	13.3	15					
		VCC=5V, Isource=100mA	2.75	3.3	5					
Reset Time of Output	tR		-	100	-	nSec				
Fall Time of Output	tF		-	100	-	nSec				
Discharge leakage Current	ILKG		-	20	100	nA				

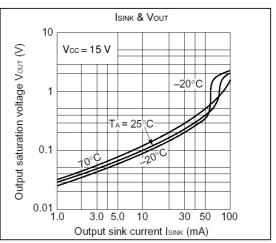

Note1: Supply current when output is high typically 1mA less at Vcc=5V.

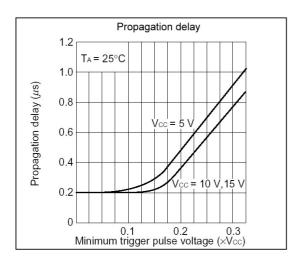

GPNE555 Page: 2/5

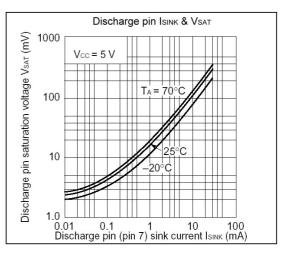

Note2: Tested at Vcc=5V and Vcc=15V.

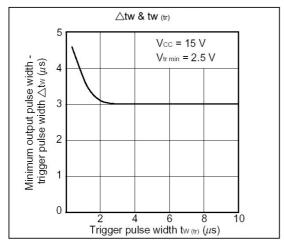

Note3: This will determine the maximum value of RA+RB for 15V operation, the maximum total is $R=20M\Omega$, and for 5V operation the maximum total is $R=6.7M\Omega$.

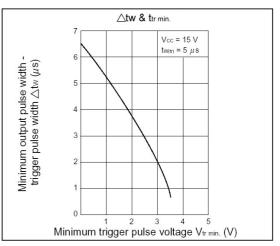

Characteristics Curve



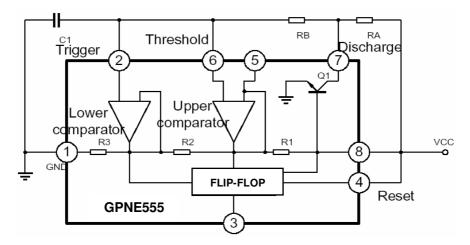








GPNE555 Page: 3/5



GPNE555 Page: 4/5

Application Circuit

Application Notes

The application circuit shows a stable mode configuration.

Pin 6 (Threshold) is tied to Pin 2 (Trigger) and Pin 4 (Reset) is tied to Vcc (Pin 8). The external capacitor C1 of Pin 6 and Pin 2 charges through RA, RB and discharge through RB only. In the internal circuit of GPNE555, one input of the upper comparator is at voltage of 2/3Vcc (R1=R2=R3), another input is connected to Pin 6. As soon as C1 is charging to higher than 2/3Vcc, transistor Q1 is turned ON and discharge C1 to collector voltage of transistor Q1. Therefore, the flip-flop circuit is reset and output is low. One input of lower comparator is at voltage of 1/3Vcc, discharge transistor Q1 turn off and C1 charges through RA and RB. Therefore, flip-flop circuit is set output high.

That is, when C1 charges through RA and RB, output is high and when C1 discharge through RB, output is low. The charge time (output is high) t1 is 0.693 (RA+RB) C1 and the discharge time (output is low) T2 is 0.693RB*C1.

$$\ln \left(\frac{\text{Vcc-} \frac{1}{3} \text{Vcc}}{\text{Vcc-} \frac{2}{3} \text{Vcc}} \right) = 0.693$$

T1=0.693*(RA+RB)*C1

Thus the total period time T is given by

T2=0.693*RB*C1

T=T1+T2=0.693(RA+2RB)*C1.

Then the frequency of astable mode is given by

$$f = \frac{1}{T} = \frac{1.44}{(RA+2RB)*C1}$$

The duty cycle is given by

$$D.C. = \frac{T2}{T} = \frac{RB}{RA + 2RB} .$$

portant Notice:

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of GTM.

GTM reserves the right to make changes to its products without notice.

GTM semiconductor products are not warranted to be suitable for use in life-support Applications, or systems GTM assumes no liability for any consequence of customer product design, infringement of patents, or application assistance

Office And Factory:
Taiwan: No. 17-1 Tatung Rd. Fu Kou Hsin-Chu Industrial Park, Hsin-Chu, Taiwan, R. O. C

TEL: 886-3-597-7061 FAX: 886-3-597-9220, 597-0785

China: (201203) No.255, Jang-Jiang Tsai-Lueng RD., Pu-Dung-Hsin District, Shang-Hai City, China
TEL: 86-21-5895-7671 ~ 4 FAX: 86-21-38950165

GPNE555 Page: 5/5