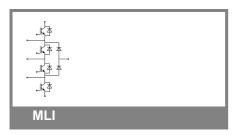


IGBT Module

SK50MLI065


Target Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultra Fast NPT IGBT technologyCAL technology FWD

Typical Applications*

Multi level inverter

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions		Values	Units		
IGBT						
V_{CES}	T _j = 25 °C		600	V		
I _C	T _j = 125 °C	T _s = 25 °C	54	Α		
		T _s = 80 °C	40	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		120	Α		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; VCES < 600 V	T _j = 125 °C	10	μs		
Inverse D	Piode			•		
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$	36	Α		
		T _s = 80 °C	24	Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	200	Α		
Freewhee	eling Diode					
I _F	T _j = 150 °C	T_{case} = 25 °C	64	Α		
		T _{case} = 80 °C	42	Α		
I _{FRM}				Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	440	Α		
Module				•		
$I_{t(RMS)}$				Α		
T _{vj}			-40 + 150	°C		
T _{stg}			-40 + 125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics $T_s =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1.4$ mA		3	4	5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,0044	mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			240	nA
V_{CE0}		T _j = 25 °C		1,4	1,9	V
		T _j = 125 °C		1,7	2,2	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C				mΩ
		T _j = 125°C		22		mΩ
V _{CE(sat)}	I _{Cnom} = 60 A, V _{GE} = 15 V			1,8		V
		$T_j = 125^{\circ}C_{chiplev}$		2,1		V
C _{ies}				3,2		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,3		nF
C _{res}				0,18		nF
t _{d(on)}				60		ns
t _r	R_{Gon} = 15 Ω	$V_{CC} = 300V$		30		ns
E _{on}		I _C = 40A		1,07		mJ
t _{d(off)}	$R_{Goff} = 15 \Omega$	T _j = 125 °C		223		ns
t _f		V _{GE} =±15V		20		ns
E _{off}				0,76		mJ
$R_{th(j-s)}$	per IGBT			·	0,85	K/W

IGBT Module

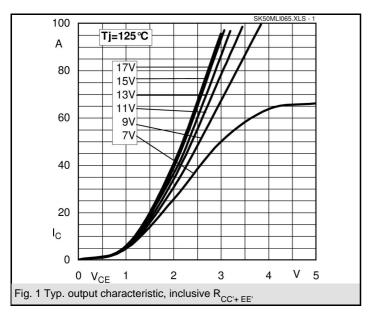
SK50MLI065

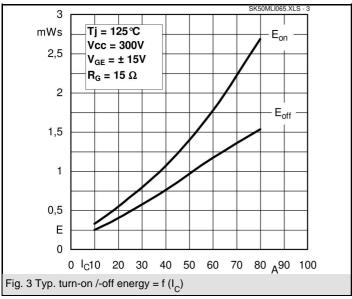
Target Data

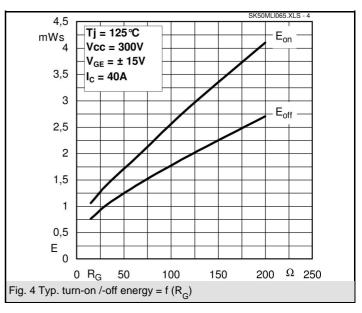
Features

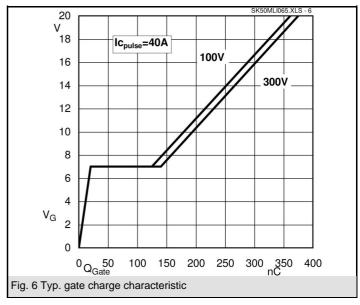
- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- · Ultra Fast NPT IGBT technology
- CAL technology FWD

Typical Applications*


Multi level inverter


Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Antiparallel Diode (D1)								
$V_F = V_{EC}$	I_{Fnom} = 25 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,45		V		
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,4		V		
V_{F0}		T _j = 25 °C				V		
		T _j = 125 °C		0,85		V		
r _F		T _j = 25 °C				mΩ		
		T _j = 125 °C		22		mΩ		
I _{RRM}	I _F = 50 A	T _j = 125 °C				Α		
Q_{rr}	di/dt = -2400 A/µs					μC		
E _{rr}	V _R = 300V					mJ		
$R_{th(j-s)D}$	per diode				1,7	K/W		
Freewhee	Freewheeling Diode (D2)							
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V			1,45		V		
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,4		V		
V_{F0}		T _j = 125 °C		0,85		V		
r _F		T _j = 125 °C		11		V		
I _{RRM}	I _F = 50 A	T _j = 125 °C				Α		
Q_{rr}	di/dt = -2400 A/µs					μC		
E _{rr}	V _R =300V					mJ		
$R_{th(j-s)FD}$	per diode				1,1	K/W		
M _s	to heat sink		2,25		2,5	Nm		
w				30		g		


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

