35ת，Low－Voltage，SPST／SPDT Analog Switches in UCSP Package

General Description

The MAX4696／MAX4697／MAX4698 low on－resistance （RON），low－voltage analog switches operate from a sin－ gle +2.0 V to +5.5 V supply．The MAX4696／MAX4697 are single－pole／single－throw（SPST）analog switches，and the MAX4698 is a single－pole／double－throw（SPDT）ana－ log switch．The MAX4696 is a normally open（NO） switch，and the MAX4697 is a normally closed（NC） switch．
When powered from a 2.7 V supply，these devices feature 35Ω（max）RoN，with 2Ω（max）RoN matching and 13Ω （max）flatness．The MAX4696／MAX4697／MAX4698 offer fast switching speeds（tON $=80 \mathrm{~ns}$ max，tOFF $=25 \mathrm{~ns}$ max）．The MAX4698 offers a break－before－make function． The digital logic inputs are 1.8 V logic compatible from a +2.7 V to +3.3 V supply and are TTL／CMOS compatible from $\mathrm{a}+4.5 \mathrm{~V}$ to +5.5 V supply．The MAX4696／MAX4697／ MAX4698 are packaged in the chip－scale package （UCSP ${ }^{\text {TM }}$ ），significantly reducing the required PC board area．The device occupies only a $1.50 \mathrm{~mm} \times 1.02 \mathrm{~mm}$ area．The 3×2 array of solder bumps are spaced with a 0.5 mm bump pitch．

MP3 Players

Battery－Operated Equipment
Relay Replacement
Audio and Video Signal Routing
Communications Circuits
PCMCIA Cards
Cellular Phones
Hard Drives
Modems

Rail－to－Rail is a registered trademark of Nippon Motorola，Ltd． UCSP is a trademark of Maxim Integrated Products，Inc．

0．Bump， 0.5 mm Pitch，UCSP（Package pending
－6－Bump，0．5mm Pitch，UCSP（Package pending full qualification－expected completion date 6／30／01．See UCSP Reliability section for more details．）
－RoN
35Ω max（＋3V Supply）
20Ω max（ +5 V Supply）
－ 2Ω max Ron Match Between Channels
－ 13Ω max Ron Flatness Over Signal Range
－Low Leakage Currents Over Temperature
1 nA （max）at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
－Fast Switching：toN $=80 \mathrm{~ns}$ ，toff $=25 \mathrm{~ns}$
－Guaranteed Break－Before－Make（MAX4698）
－＋2．0V to＋5．5V Single－Supply Operation
－Rail－to－Rail ${ }^{\circledR}$ Signal Handling
－Low Crosstalk：－75dB（100kHz）
－High Off－Isolation：－75dB（100kHz）
－ 1.8 V CMOS Logic Compatible
－－3dB Bandwidth：＞200MHz

Ordering Information

PART	TEMP． RANGE	PIN／BUMP－ PACKAGE	TOP MARK
MAX4696EBT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 UCSP＊	AAL
MAX4697EBT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 UCSP＊	AAM
MAX4698EBT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 UCSP＊	AAN

＊Note：Requires special solder temperature profile described in the Absolute Maximum Ratings section．
＊UCSP reliabilty is integrally linked to the user＇s assembly meth－ ods，circuit board material，and environment．Refer to the UCSP Reliability section of this data sheet for more infromation．

35,, Low-Voltage, SPST/SPDT Analog Switches in UCSP Package

ABSOLUTE MAXIMUM RATINGS

All Voltages Referenced to GND
V+, IN

..............................-0.3V to +6 V
COM, NO, NC (Note 1). \qquad -0.3 V to (V+ + 0.3V)
Continuous Current COM, NO, NC \qquad $\pm 20 \mathrm{~mA}$
Peak Current COM, NO, NC
(pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) \qquad

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
$3 \times 2 \mathrm{UCSP}$ (derate $10.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ at $+70^{\circ} \mathrm{C}$).................... 808 mW
Operating Temperature Range $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Bump Temperature (soldering) (Note 2) Infrared (15s) $+220^{\circ} \mathrm{C}$
Vapor Phase (60s)
$+215^{\circ} \mathrm{C}$

Note 1: Signals on NO, NC, and COM exceeding V + are clamped by an internal diode. Limit forward-diode current to maximum current rating.
Note 2: This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the device can be exposed to during board level solder attach and rework. This limit permits only the use of the solder profiles recommended in the industry standard specification, JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and convection reflow. Preheating is required. Hand or wave soldering is not allowed.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at +3 V and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 3, 9)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NO}}$, $V_{N C}$		TMin to TMAX	0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=+2.7 \mathrm{~V}, \mathrm{ICOM}_{\mathrm{CO}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		30	35	Ω
			TMIN to TMAX			40	
On-Resistance Match Between Channels (MAX4698 only) (Note 5)	$\Delta \mathrm{RoN}$	$\begin{aligned} & \mathrm{V}_{+}=+2.7 \mathrm{~V}, \mathrm{ICOM}^{\mathrm{CO}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		1	2	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			3	
On-Resistance Flatness (Note 6)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}_{+}=+2.7 \mathrm{~V}, \mathrm{ICOM}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 1.5 \mathrm{~V}, 2 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		10	13	Ω
			TMIN to TMAX			15	
NO, NC Off-Leakage Current (Note 4)	INO(OFF), INC(OFF)	$\begin{aligned} & \mathrm{V}_{+}=+3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V} \\ & 3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3.3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	± 0.01	0.5	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-1		1	
COM Off-Leakage Current (Note 4) (MAX4696, MAX4697 only)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}+=+3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}, \\ & 3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	± 0.01	0.5	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MaX }}$	-1		1	
COM On-Leakage Current (Note 4)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}+=+3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}, \\ & 3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V}, 3.3 \mathrm{~V} \text {, } \\ & \text { or floating } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	± 0.01	0.5	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-2		2	
DYNAMIC CHARACTERISTICS							
Turn-On Time (Note 4)	ton	$\begin{aligned} & \text { V+ = +2.7V; } \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { Figure } 1 \end{aligned}$	$+25^{\circ} \mathrm{C}$		50	80	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			110	

35 , Low-Voltage, SPST/SPDT Analog Switches in UCSP Package

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at +3 V and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 3, 9)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
Turn-Off Time (Note 4)	toff	$\begin{aligned} & \mathrm{V}_{+}=+2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \end{aligned}$ Figure 1	$+25^{\circ} \mathrm{C}$		20	25	ns
			TMIn to TMAX			40	
Break-Before-Make Time (MAX4698 only) (Note 4)	tBBM	$\mathrm{V}_{+}=+3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1.5 \mathrm{~V}$ Figure 2	$+25^{\circ} \mathrm{C}$		15		ns
			TMIN to $\mathrm{T}_{\text {MAX }}$	2			
Charge Injection	Q	$\begin{aligned} & \text { VGEN }=0, \text { RGEN }=0, \\ & C_{L}=1.0 n F \text {, Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		8		pC
On-Channel -3dB Bandwidth	BW	Signal $=0 \mathrm{dBm}, 50 \Omega$ in and out, Figure 4	$+25^{\circ} \mathrm{C}$		200		MHz
Off-Isolation (Note 7)	VISO	$\begin{aligned} & \hline f=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & C_{L}=5 \mathrm{pF}, \text { Figure } 4 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-75		dB
Crosstalk (MAX4698 only) (Note 8)	$V_{\text {CT }}$	$\begin{aligned} & \hline f=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \text { Figure } 4 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-75		dB
Total Harmonic Distortion	THD	$\begin{aligned} & f=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & 2 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.014		\%
NO, NC Off-Capacitance	CNO(OFF), CNC(OFF)	$f=1 \mathrm{MHz}$, Figure 5	$+25^{\circ} \mathrm{C}$		15		pF
COM Off-Capacitance	CCOM(OFF)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 5	$+25^{\circ} \mathrm{C}$		15		pF
Switch On-Capacitance	C(ON)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 6	$+25^{\circ} \mathrm{C}$		30		pF
DIGITAL I/O							
Input Logic High	V_{IH}		$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	1.4			V
Input Logic Low	VIL		$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.5	V
Input Leakage Current	IIN	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	TMIN to TMAX	-1		1	$\mu \mathrm{A}$
POWER SUPPLY							
Power-Supply Range	V+		TMin to TMAX	2.0		5.5	V
Supply Current	I+	$\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~V} \mid \mathbb{N}=0$ or $\mathrm{V}+$	TMIN to TMAX			1	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS-Single +5V Supply

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at +5 V and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 3, 9)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	Vcom, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}+=+4.5 \mathrm{~V}, \mathrm{I} \mathrm{COM}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		15	20	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			25	
On-Resistance Match (MAX4698 only) (Note 5)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{ICOM}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		1	3	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			4	

35』, Low-Voltage, SPST/SPDT Analog Switches in UCSP Package

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)
$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at +5 V and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.) (Notes 3,9)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
On-Resistance Flatness (Note 6)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}_{+}=+4.5 \mathrm{~V}, \mathrm{ICOM}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 2.25 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		3	4	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			5	
NO, NC Off-Leakage Current (Note 4)	INO(OFF), INC(OFF)	$\begin{aligned} & \mathrm{V}_{+}=+5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	± 0.01	0.5	nA
			TMIN to TMAX	-1		1	
COM Off-Leakage Current (MAX4696, MAX4697 only) (Note 4)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=+5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	± 0.01	0.5	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-1		1	
COM On-Leakage Current (Note 4)	ICOM_(ON)	$\mathrm{V}+=+5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V}$ V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 4.5 \mathrm{~V}$, or floating	$+25^{\circ} \mathrm{C}$	-0.5	± 0.01	0.5	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-2		2	
Turn-On Time (Note 4)	ton	$\begin{aligned} & \mathrm{V}_{+}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { Figure 1 } \end{aligned}$	$+25^{\circ} \mathrm{C}$		30	40	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			50	
Turn-Off Time (Note 4)	toff	$\begin{aligned} & \mathrm{V}_{+}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { Figure 1 } \end{aligned}$	$+25^{\circ} \mathrm{C}$		15	20	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			25	
Break-Before-Make Time (MAX4698 only) (Note 4)	tBBM	$\begin{aligned} & \mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{CL}=35 \mathrm{pF}, \\ & \text { Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		9		ns
			TMIN to TMAX	2			
DIGITAL I/O							
Input Logic High	V_{IH}			2.4			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$					0.8	V
Input Leakage Current	IIN	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$		-1		1	$\mu \mathrm{A}$
SUPPLY							
Power-Supply Range	V+			2.0		5.5	V
Supply Current	I+	$\mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V} / \mathrm{N}=0$ or $\mathrm{V}+$				1	$\mu \mathrm{A}$

Note 3: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 4: Guaranteed by design.
Note 5: \triangle RON = RON(MAX) - RON(MIN), between switches.
Note 6: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
Note 7: Off-Isolation $=20 \log _{10}\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 8: Between switches.
Note 9: UCSP parts are 100% tested at $+25^{\circ} \mathrm{C}$ only, and guaranteed by correlation at the full-rated temperature.

35ת, Low-Voltage, SPST/SPDT Analog Switches in UCSP Package

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

ON/OFF-LEAKAGE CURRENT vs.

TURN-ON/OFF TIME vs. TEMPERATURE

SUPPLY CURRENT vs. SUPPLY VOLTAGE

ON-RESISTANCE vs.
$\mathbf{V}_{\text {com }}\left(\mathbf{V}_{+}=+5 \mathrm{~V}\right.$)

TURN-ON/OFF TIME vs. SUPPLY VOLTAGE

LOGIC THRESHOLD VOLTAGE vs. SUPPLY VOLTAGE

35ת, Low-Voltage, SPST/SPDT Analog Switches in UCSP Package

Typical Operating Characteristics (continued)

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

FREQUENCY RESPONSE

TOTAL HARMONIC DISTORTION vs. FREQUENCY

Pin/Bump Description

PIN/BUMP			NAME	FUNCTION	
MAX4696	MAX4697	MAX4698			
B1	B1	B1	V+	Positive Supply Voltage Input	
B2	B2	B2	IN	Digital Control Input	
B3	B3	B3	GND	Ground	
-	A1	A3	NC	Analog Switch, Normally Closed Terminal	
A2, A3	A2, A3	A2	COM	Analog Switch, Common Terminal	
A1	-	A1	NO	Analog Switch, Normally Open Terminal	

Applications Information

Logic Inputs

Where the MAX4696/MAX4697/MAX4698 have a +3.3 V supply, IN may be driven low to GND and driven high to 5.5 V . Driving IN rail-to-rail minimizes power consumption. Logic inputs accept up to +5.5 V regardless of supply voltage.

Analog Signal Levels

Analog signals that range over the entire supply voltage (GND to $\mathrm{V}+$) are passed with very little change in Ron (see Typical Operating Characteristics). The switches are bidirectional, so the NO, NC, and COM terminals are both inputs or outputs.

Power-Supply Sequencing and Overvoltage Protection CAUTION: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to devices.
Proper power-supply sequencing is recommended for all CMOS devices. Always apply $\mathrm{V}+$ before applying analog signals, especially if the analog signal is not current limited. If this sequencing is not possible, and if the analog inputs are not current limited to $<20 \mathrm{~mA}$, add a small-signal diode (D1) as shown in Figure 6. Adding a protection diode reduces the analog range to a diode drop (about 0.7V) below V+ (for D1). Ron increases slightly at low supply voltages. Maximum supply voltage $(\mathrm{V}+$) must not exceed +6 V . Protection diode D1 also protects against some overvoltage situations. No

35ת, Low-Voltage, SPST/SPDT Analog Switches in UCSP Package

damage will result on the circuit in Figure 6 if the supply voltage is below the absolute maximum rating and if a fault voltage up to the absolute maximum rating is applied to an analog signal terminal.

UCSP Package Consideration

For general UCSP package information and PC layout considerations, please refer to the Maxim Application Note "Wafer-Level Ultra-Chip-Scale Packages".

UCSP Reliability

The chip-scale package (UCSP) represents a unique package that greatly reduces board space compared to other packages. UCSP reliability is integrally linked to the user's assembly methods, circuit board material, and usage environment. The user should closely review these areas when considering a UCSP. Performance through

Operating Life Test and Moisture Resistance is equal to conventional package technology as it is primarily determined by the wafer-fabrication process. However, this form factor may not perform equally to a packaged product through traditional mechanical reliability tests.

Mechanical stress performance is a greater consideration for a UCSP. UCSP solder joint contact integrity must be considered since the package is attached through direct solder contact to the user's PC board. Testing done to characterize the UCSP reliability performance shows that it is capable of performing reliably through environmental stresses. Results of environmental stress tests and additional usage data and recommendations are detailed in the UCSP application note, which can be found on Maxim's website, at www.maxim-ic.com.

Test Circuits/Timing Diagrams

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval (MAX4698 only)

35』, Low-Voltage, SPST/SPDT Analog Switches in UCSP Package

Figure 3. Charge Injection

MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS.
OFF-ISOLATION IS MEASURED BETWEEN COM AND "OFF" NO OR NC TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN COM AND "ON" NO OR NC TERMINAL ON EACH SWITCH.
CROSSTALK IS MEASURED FROM ONE CHANNEL TO ALL OTHER CHANNELS.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.
Figure 4. Off-Isolation/On-Channel Bandwidth, Crosstalk

Figure 5. Channel Off/On-Capacitance

Figure 6. Overvoltage Protection Using External Blocking Diodes

TRANSISTOR COUNT: 50

35 2 ，Low－Voltage，SPST／SPDT Analog Switches in UCSP Package

NOTES：
1．ALL DIMENSIONS ARE IN MILLIMETERS．
2．MEETS JEDEC M0195．

SIDE VIEW

