N-channel TrenchMOS standard level FET

Rev. 04 — 16 June 2010

Product data sheet

1. Product profile

1.1 General description

Standard level gate drive N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using advanced TrenchMOS technology. This product has been designed and qualified to the appropriate AEC standard for use in high performance automotive applications.

1.2 Features and benefits

- AEC Q101 compliant
- Avalanche robust

1.3 Applications

- 12V Motor, lamp and solenoid loads
- High performance automotive power systems
- High performance Pulse Width Modulation (PWM) applications

- Suitable for standard level gate drive
- Suitable for thermally demanding environment up to 175°C rating

www.DataSheet4U.com

N-channel TrenchMOS standard level FET

1.4 Quick reference data

Quick reference data								
Parameter	Conditions		Min	Тур	Мах	Unit		
drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	-	40	V		
drain current	V _{GS} = 10 V; T _{mb} = 25 °C; see <u>Figure 1</u> ; see <u>Figure 3</u>	<u>[1]</u>	-	-	100	A		
total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	-	203	W		
aracteristics								
drain-source on-state resistance	$\label{eq:VGS} \begin{array}{l} V_{GS} = 10 \text{ V}; \text{ I}_{D} = 25 \text{ A}; \\ T_{j} = 25 \ ^{\circ}\text{C}; \\ \text{see } \underline{\text{Figure 11}}; \text{ see } \underline{\text{Figure 12}} \end{array}$		-	3	3.6	mΩ		
e ruggedness								
non-repetitive drain-source avalanche energy	$ \begin{split} I_D &= 100 \text{ A}; V_{sup} \leq 40 \text{ V}; \\ R_{GS} &= 50 \Omega; V_{GS} = 10 \text{V}; \\ T_{j(\text{init})} &= 25 ^\circ\text{C}; \text{ unclamped} \end{split} $		-	-	292	mJ		
characteristics								
gate-drain charge	$\label{eq:V_GS} \begin{array}{l} V_{GS} = 10 \; V; \; I_D = 25 \; A; \\ V_{DS} = 32 \; V; \; T_j = 25 \; ^\circ C; \\ \text{see } \underline{Figure 14}; \; \text{see } \underline{Figure 13} \end{array}$		-	35	-	nC		
	Parameter drain-source voltage drain current total power dissipation aracteristics drain-source on-state resistance e ruggedness non-repetitive avalanche energy characteristics	ParameterConditionsdrain-source voltage $T_j \ge 25 \ ^\circ C; \ T_j \le 175 \ ^\circ C$ drain current $V_{GS} = 10 \ V; \ T_{mb} = 25 \ ^\circ C;$ see Figure 1; see Figure 3total power dissipation $T_{mb} = 25 \ ^\circ C;$ see Figure 2total power dissipation $T_{mb} = 25 \ ^\circ C;$ see Figure 2drain-source on-state resistance $V_{GS} = 10 \ V; \ I_D = 25 \ A;$ $T_j = 25 \ ^\circ C;$ see Figure 11; see Figure 12e ruggedness $I_D = 100 \ A; \ V_{sup} \le 40 \ V;$ $R_{GS} = 50 \ \Omega; \ V_{GS} = 10 \ V;$ $T_{j(init)} = 25 \ ^\circ C;$ unclampedcharacteristics $V_{GS} = 10 \ V; \ I_D = 25 \ A;$ $T_{j(init)} = 25 \ ^\circ C;$ gate-drain charge $V_{GS} = 10 \ V; \ I_D = 25 \ A;$ $V_{DS} = 32 \ V; \ T_j = 25 \ ^\circ C;$	$\begin{tabular}{ c c c c } \hline Parameter & Conditions \\ \hline drain-source & T_j \ge 25 \ ^\circ C; \ T_j \le 175 \ ^\circ C & \ voltage & \ T_j \ge 25 \ ^\circ C; \ T_j \le 175 \ ^\circ C & \ voltage & \ T_{mb} = 25 \ ^\circ C; & \ I1 & \ see \ Figure 1; \ see \ Figure 3 & \ T_{mb} = 25 \ ^\circ C; \ see \ Figure 2 & \ T_{mb} = 25 \ ^\circ C; \ see \ Figure 2 & \ T_{mb} = 25 \ ^\circ C; \ see \ Figure 1 & \ See \ $	$\begin{array}{c c c c c c } \hline Parameter & Conditions & Min \\ \hline drain-source & T_j \ge 25 \ ^\circ C; \ T_j \le 175 \ ^\circ C & - \\ \hline voltage & & & & \\ \hline drain current & V_{GS} = 10 \ ^\vee, \ T_{mb} = 25 \ ^\circ C; & & & \\ \hline drain current & T_{mb} = 25 \ ^\circ C; \ see \ Figure 3 & & \\ \hline total power & T_{mb} = 25 \ ^\circ C; \ see \ Figure 2 & - \\ \hline drain-source & V_{GS} = 10 \ ^\vee, \ ^I_D = 25 \ ^\circ, \ c; \\ \hline drain-source & T_j = 25 \ ^\circ C; \\ \hline resistance & see \ Figure 11; \ see \ Figure 12 & & \\ \hline e \ ruggedness & & \\ \hline non-repetitive & I_D = 100 \ ^\vee, \ ^V_{sup} \le 40 \ ^\vee; & - \\ \hline drain-source & R_{GS} = 50 \ ^\vee, \ ^V_{GS} = 10 \ ^\vee; \ ^V_{gS} = 32 \ ^\vee; \ ^V_{gS} = 32 \ ^\vee; \ ^V_{gS} = 25 \ ^\vee; \ ^V_{gS} = 32 \ ^\vee; \ ^V_{gS} = 25 \ ^\vee; \ ^V_{gS} = 32 \ ^\vee; \ ^V_{gS} = 25 \ ^\vee; \ ^V_{gS} = 32 \ ^\vee; \ ^V_{gS} = 25 \ ^\vee; \ ^V_{gS} = 10 \ ^\vee; \ ^V_{gS} = 10 \ ^\vee; \ ^V_{gS} = 10 \ ^\vee; \ ^V_{gS} = 32 \ ^\vee; \ ^V_{gS} = 32 \ ^\vee; \ ^V_{gS} = 25 \ ^\vee; \ ^V_{gS} = 10 \ ^\vee; \ ^V_{gS} = 10 \ ^\vee; \ ^V_{gS} = 10 \ ^\vee; \ ^V_{gS} = 32 \ ^\vee; \ ^V_{gS} = 25 \ ^\vee; \ ^V_{gS} = 10 \ ^\vee; \ ^V_{gS} = 32 \ ^\vee; \ ^V_{gS$	$\begin{array}{c c c c c c c } \hline Parameter & Conditions & Min & Typ \\ \hline drain-source & T_j \geq 25 \ ^\circ C; \ T_j \leq 175 \ ^\circ C & - & - \\ \hline voltage & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c } \hline Parameter & Conditions & Min & Typ & Max \\ \hline drain-source & T_j \geq 25 \ ^\circ C; \ T_j \leq 175 \ ^\circ C & - & - & 40 \\ \hline drain current & V_{GS} = 10 \ ^\circ Y; \ ^T_{mb} = 25 \ ^\circ C; & 11 & - & - & 100 \\ \hline see \ Figure 1; \ see \ Figure 3 & - & - & 203 \\ \hline total power & T_{mb} = 25 \ ^\circ C; \ see \ Figure 2 & - & - & 203 \\ \hline total power & T_{mb} = 25 \ ^\circ C; \ see \ Figure 2 & - & - & 203 \\ \hline total power & T_{mb} = 25 \ ^\circ C; \ see \ Figure 2 & - & - & 203 \\ \hline total power & T_{mb} = 25 \ ^\circ C; \ see \ Figure 12 & - & - & 203 \\ \hline total power & V_{GS} = 10 \ ^\circ Y; \ ^I_D = 25 \ ^\circ C; \\ resistance & see \ Figure 11; \ see \ Figure 12 & - & - & 3 & 3.6 \\ \hline non-repetitive & I_D = 100 \ ^\circ A; \ ^V_{SS} = 10 \ ^\circ Y; \ See \ ^I_D = 100 \ ^\circ Y_{GS} = 10 \ ^\circ Y; \ ^I_D = 25 \ ^\circ C; \ unclamped & - & - & 292 \\ \hline e \ ruggedness & & & & & & & & & & & & & & & & & & $		

[1] Continuous current is limited by package.

2. Pinning information

Table 2.	Pinning	g information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		_
2	D	drain	mb	
3	S	source		
mb	D	mounting base; connected to drain		mbb076 S

SOT404 (D2PAK)

3. Ordering information

Table 3. Ordering information					
Type number	Package				
	Name	Description	Version		
BUK763R6-40C	D2PAK	plastic single-ended surface-mounted package (D2PAK); 3 leads (one lead cropped)	SOT404		

BUK763R6-40C Product data sheet

N-channel TrenchMOS standard level FET

4. Limiting values

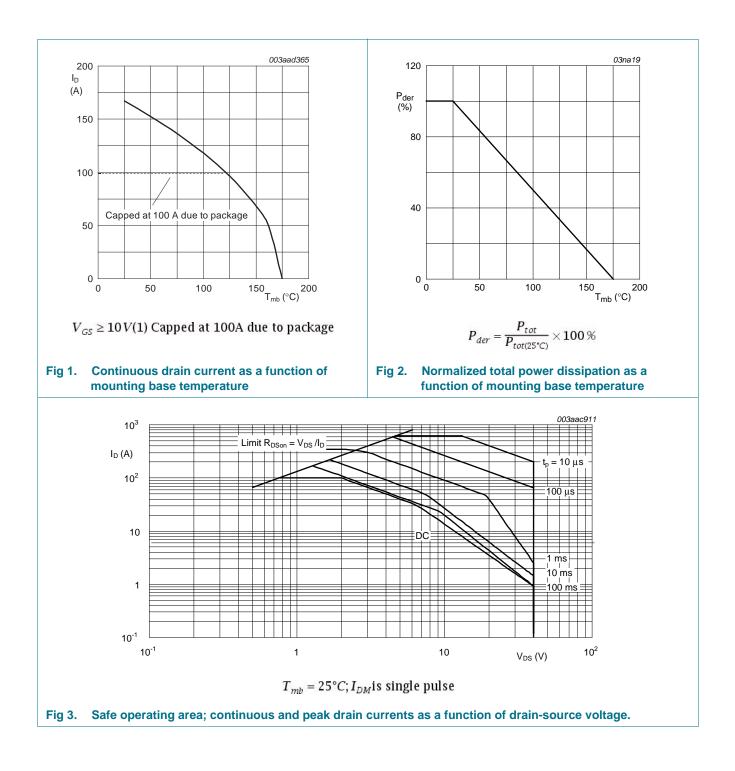
Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
-				141111	iyp		
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	-	40	V
V _{DGR}	drain-gate voltage	$R_{GS} = 20 \text{ k}\Omega$		-	-	40	V
V _{GS}	gate-source voltage		<u>[1]</u>	-20	-	20	V
I _D	drain current	$T_{mb} = 25 \text{ °C}; V_{GS} = 10 \text{ V}; \text{ see } \frac{\text{Figure 1}}{\text{Figure 3}};$	<u>[2]</u>	-	-	167	A
		T_{mb} = 100 °C; V_{GS} = 10 V; see <u>Figure 1</u>	<u>[3]</u>	-	-	100	А
		T_{mb} = 25 °C; V_{GS} = 10 V; see <u>Figure 1</u> ; see <u>Figure 3</u>	<u>[3]</u>	-	-	100	А
I _{DM}	peak drain current	T_{mb} = 25 °C; $t_p \le 10 \ \mu$ s; pulsed; see <u>Figure 3</u>		-	-	668	A
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	-	203	W
T _{stg}	storage temperature			-55	-	175	°C
Tj	junction temperature			-55	-	175	°C
Source-drai	n diode						
I _S	source current	T _{mb} = 25 °C	[3]	-	-	100	А
			[2]	-	-	167	А
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$		-	-	668	А
Avalanche r	uggedness						
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$\label{eq:ld} \begin{array}{l} I_D = 100 \text{ A}; \ V_{sup} \leq 40 \text{ V}; \ R_{GS} = 50 \ \Omega; \\ V_{GS} = 10 \text{ V}; \ T_{j(init)} = 25 \ ^\circ\text{C}; \ unclamped \end{array}$		-	-	292	mJ
	avalanche energy						

[1] -20V accumulated duration not to exceed 168 hrs.

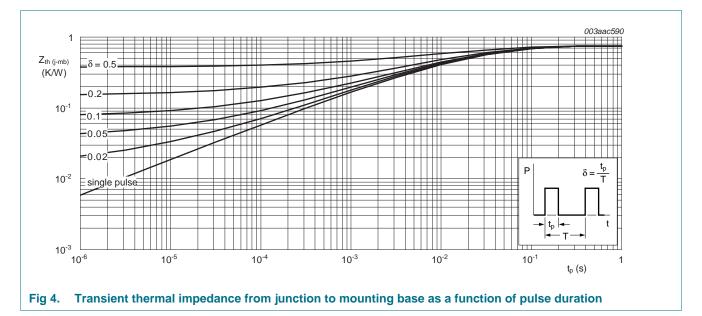
[2] Current is limited by power dissipation chip rating.


[3] Continuous current is limited by package.

NXP Semiconductors

www.DataSheet4U.com

BUK763R6-40C


N-channel TrenchMOS standard level FET

N-channel TrenchMOS standard level FET

5. Thermal characteristics

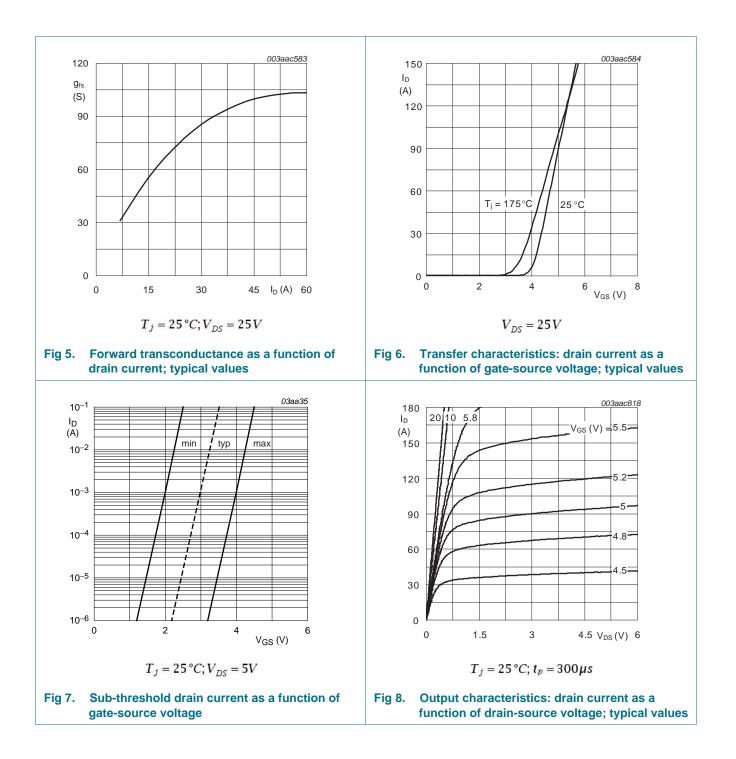
Table 5.	Thermal characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-mb)}	thermal resistance from junction to mounting base	see Figure 4	-	-	0.74	K/W
R _{th(j-a)}	thermal resistance from junction to ambient	mounted on printed circuit board; minimum footprint; SOT404 package	-	-	50	K/W

N-channel TrenchMOS standard level FET

6. Characteristics

Table 6.	Characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	aracteristics					
V _{(BR)DSS}	drain-source	$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	40	-	-	V
	breakdown voltage	$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = -55 \text{ °C}$	36	-	-	V
V _{GS(th)}	gate-source threshold voltage	I _D = 1 mA; V _{DS} = V _{GS} ; T _j = 25 °C; see <u>Figure 10</u>	2	3	4	V
		I _D = 1 mA; V _{DS} = V _{GS} ; T _j = 175 °C; see <u>Figure 10</u>	1	-	-	V
		I _D = 1 mA; V _{DS} = V _{GS} ; T _j = -55 °C; see <u>Figure 10</u>	-	-	4.4	V
I _{DSS}	drain leakage current	V _{DS} = 40 V; V _{GS} = 0 V; T _j = 175 °C	-	-	500	μA
		V _{DS} = 40 V; V _{GS} = 0 V; T _j = 25 °C	-	0.02	1	μA
I _{GSS}	gate leakage current	V _{DS} = 0 V; V _{GS} = 20 V; T _j = 25 °C	-	2	100	nA
		$V_{DS} = 0 V; V_{GS} = -20 V; T_j = 25 °C$	-	2	100	nA
R _{DSon}	drain-source on-state resistance	V _{GS} = 10 V; I _D = 25 A; T _j = 175 °C; see <u>Figure 11</u>	-	-	7.2	mΩ
		V _{GS} = 10 V; I _D = 25 A; T _j = 25 °C; see <u>Figure 11</u> ; see <u>Figure 12</u>	-	3	3.6	mΩ
Dynamic	characteristics					
Q _{G(tot)}	total gate charge	$I_D = 25 \text{ A}; V_{DS} = 32 \text{ V}; V_{GS} = 10 \text{ V};$	-	97	-	nC
Q _{GS}	gate-source charge	$T_j = 25 \text{ °C}; \text{ see } Figure 13; \text{ see } Figure 14$	-	21	-	nC
Q_{GD}	gate-drain charge	$I_D = 25 \text{ A}; V_{DS} = 32 \text{ V}; V_{GS} = 10 \text{ V};$ $T_j = 25 ^\circ\text{C}; \text{ see } \frac{\text{Figure } 14}{\text{Figure } 14}; \text{ see } \frac{\text{Figure } 13}{\text{Figure } 13}$	-	35	-	nC
C _{iss}	input capacitance	$V_{GS} = 0 V; V_{DS} = 25 V; f = 1 MHz;$	-	4391	5708	pF
C _{oss}	output capacitance	$T_j = 25 \text{ °C}; \text{ see } Figure 15$	-	800	1040	pF
C _{rss}	reverse transfer capacitance		-	535	696	pF
t _{d(on)}	turn-on delay time	V_{DS} = 30 V; R_{L} = 1.2 Ω ; V_{GS} = 10 V;	-	40	-	ns
t _r	rise time	R _{G(ext)} = 10 Ω; T _j = 25 °C	-	95	-	ns
t _{d(off)}	turn-off delay time		-	129	-	ns
t _f	fall time		-	92	-	ns
L _D	internal drain inductance	from drain lead 6 mm from package to centre of die ; $T_i = 25 ^\circ\text{C}$	-	4.5	-	nH
		from contact screw on mounting base to centre of die ; $T_j = 25 \text{ °C}$	-	3.5	-	nH
L _S	internal source inductance	from source lead to source bond pad ; $T_j = 25 \text{ °C}$	-	7.5	-	nH
Source-d	rain diode					
V _{SD}	source-drain voltage	I _S = 25 A; V _{GS} = 0 V; T _j = 25 °C; see <u>Figure 16</u>	-	0.83	1.2	V
t _{rr}	reverse recovery time	$I_{S} = 20 \text{ A}; \text{ d}I_{S}/\text{d}t = -100 \text{ A}/\mu\text{s};$	-	44	-	ns
Qr	recovered charge	V_{GS} = -10 V; V_{DS} = 30 V; T_j = 25 °C	-	57	-	nC

BUK763R6-40C
Product data sheet

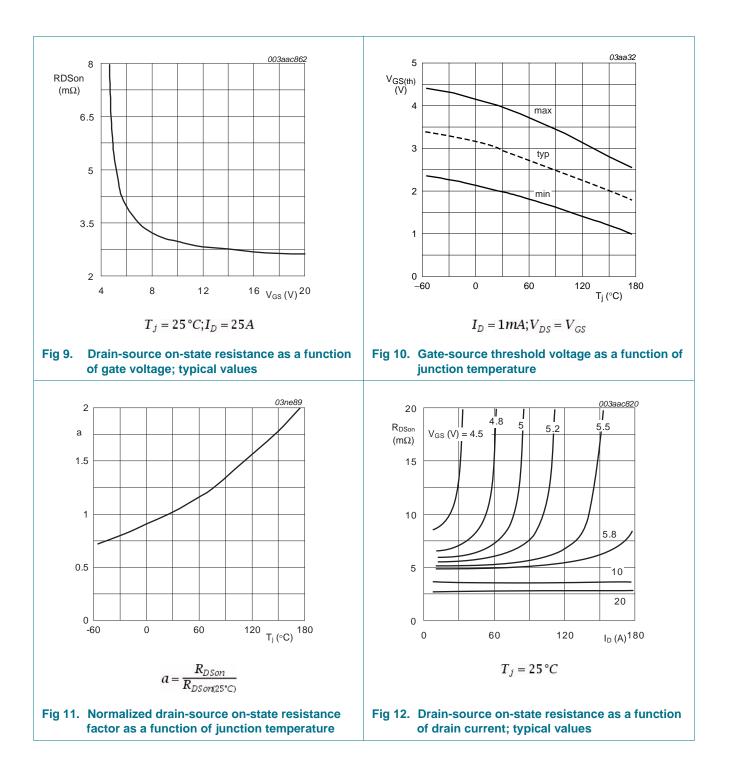

6 of 14

NXP Semiconductors

www.DataSheet4U.com

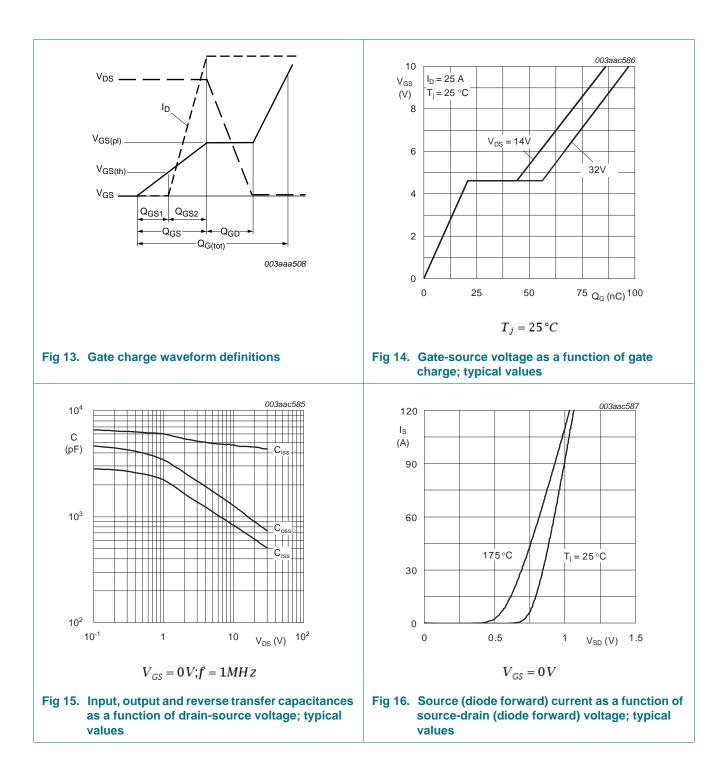
BUK763R6-40C

N-channel TrenchMOS standard level FET



NXP Semiconductors

www.DataSheet4U.com


BUK763R6-40C

N-channel TrenchMOS standard level FET

© NXP B.V. 2010. All rights reserved.

N-channel TrenchMOS standard level FET

N-channel TrenchMOS standard level FET

7. Package outline

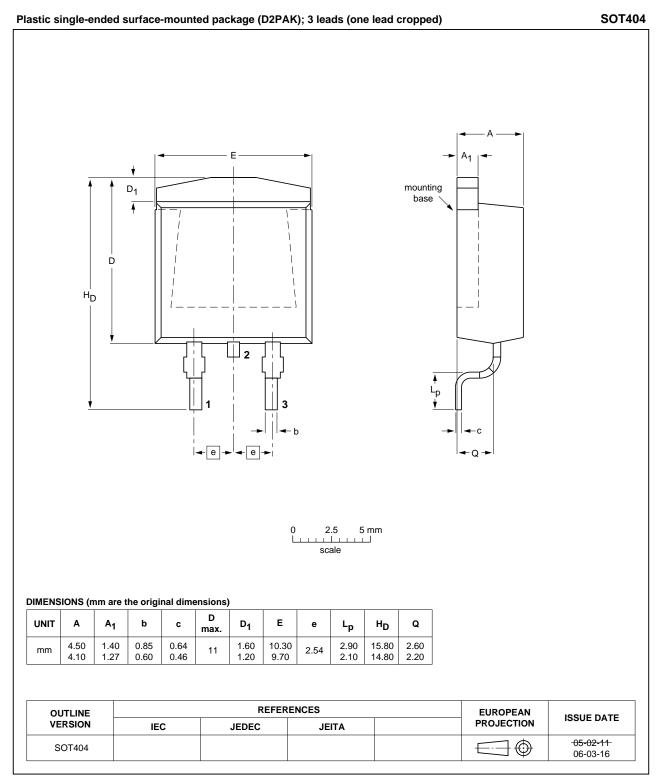


Fig 17. Package outline SOT404 (D2PAK)

All information provided in this document is subject to legal disclaimers.

BUK763R6-40C

10 of 14

N-channel TrenchMOS standard level FET

8. Revision history

Table 7.Revision h	istory			
Document ID	Release date	Data sheet status	Change notice	Supersedes
BUK763R6-40C v.4	20100616	Product data sheet	-	BUK763R6-40C v.3
Modifications:	 Various ch 	anges to content.		
BUK763R6-40C v.3	20100602	Product data sheet	-	-

N-channel TrenchMOS standard level FET

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nxp.com</u>.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

BUK763R6-40C

Product data sheet

© NXP B.V. 2010. All rights reserved.

12 of 14

N-channel TrenchMOS standard level FET

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

10. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV, FabKey, GreenChip, HiPerSmart, HITAG, I²C-bus logo, ICODE, I-CODE, ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse, QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET, TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V.

HD Radio and HD Radio logo — are trademarks of iBiquity Digital Corporation.

N-channel TrenchMOS standard level FET

11. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data2
2	Pinning information2
3	Ordering information2
4	Limiting values3
5	Thermal characteristics5
6	Characteristics6
7	Package outline10
8	Revision history11
9	Legal information
9.1	Data sheet status
9.2	Definitions12
9.3	Disclaimers
9.4	Trademarks
10	Contact information

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 16 June 2010 Document identifier: BUK763R6-40C