
AN1075/1098 1/98

APPLICATION NOTE

USING THE ST9+ MEMORY MANAGEMENT UNIT
(EXAMPLES FOR ST92195 AND ST92R195)

by Microcontroller Division Applications

INTRODUCTION

This application note describes techniques for creating software applications using the
Memory Management Unit (MMU) of the ST9+. In addition, it provides useful hints on using
the ST9+ C Compiler.

A description of the main characteristics of the ST9+ MMU will be given. Then, the C compiler
will be briefly described, emphasizing the Memory Management Unit aspects. Finally, the sub-
ject matter is developed using examples for a ROMless and a ROM microcontroller, the
ST92R195 and the ST92195 respectively.

After reading this document you should be able to understand the key features of the MMU,
how to manipulate the different MMU pointers and develop a software application on any ST9+
in a secure way with version V4.2 of the ST9+ GNU C Compiler.

To better understand and apply the features implemented in this application note, both a
knowledge of the ST9+ architecture and the GNU C Compiler for ST9+ are necessary.

1

2/98

Table of Contents

98

2

INTRODUCTION . 1

1 DEFINITIONS AND ABBREVIATIONS . 5

2 A BRIEF TOUR OF THE ST9+ MMU . 6

2.1 THE INSTRUCTION SET AND THE MMU . 6

2.1.1 Instruction cycle times .8
2.1.2 New ST9+ instructions summary . 9
2.1.3 The User Flag .9

2.2 INTERRUPTS AND THE MMU . 10

2.3 THE MEMORY MANAGEMENT UNIT . 10

2.3.1 The need for an MMU .11
2.3.2 Accessing Functions .12
2.3.3 Accessing the data .13
2.3.4 Swapping the DPRs and the PDRs . 14
2.3.5 The Bootrom .15

2.4 EXTERNAL MEMORY INTERFACE . 15

2.5 PROGRAM/DATA SELECTION . 16

2.5.1 SPM /SDM and the standard instructions . 16
2.5.2 The stacks .17
2.5.3 LDDD, LDPD, LDDP, LDPP instructions . 18
2.5.4 Interrupts and the Program/Data management . 20

3 THE V4.2 ST9+ GNU C COMPILER . 21

3.1 V4.2 GNU C COMPILER FEATURES AT A GLANCE 21

3.2 OPTIONS TO USE . 21

3.2.1 Compiler Options .21
3.2.2 Linker Options .22

3.3 HOW TO MANAGE THE MMU WITH THE COMPILER 22

3.3.1 MMU models handled by the V4.2 compiler . 22
3.3.2 Managing Functions .22
3.3.3 Managing Data .23

3.4 MAPPING YOUR APPLICATION WITH THE LINKER 23

3.4.1 The possible data/code sections and their mapping . 23
3.4.2 Notes on using Initialized Variables . 26
3.4.3 A tentative set of general rules . 28

3.5 SUMMARY OF V4.2 ST9+ GNU C COMPILER LIMITATIONS 29

3/98

Table of Contents

4 FIRST EXAMPLE: THE ST92195 . 30

4.1 MEMORY MAPPING . 30

4.2 DESCRIPTION OF THE APPLICATION . 31

4.3 MMU SETTINGS ON THE ST92195 . 31

4.4 MAPPING THE APPLICATION WITH THE SCRIPTFILE 33

4.5 INITIALIZED VARIABLES . 37

4.6 COMPILER AND LINKER OPTIONS . 38

4.7 APPLICATION FILES . 38

4.8 EMULATOR CONFIGURATION FILE . 39

5 SECOND EXAMPLE: THE ST92R195 . 40

5.1 ST92R195 MEMORY MAPPING . 40

5.2 APPLICATION DESCRIPTION . 41

5.3 MANAGING FUNCTIONS . 41

5.3.1 Using function pointers .42

5.4 MANAGING DATA . 47

5.4.1 C and Assembly directives for managing the data. 49
5.4.2 Managing the data pointer changes. 49
5.4.3 Data Page Registers and Port Data Registers . 51

5.5 MAPPING THE APPLICATION WITH THE SCRIPTFILE 52

5.6 LIBRARIES . 54

5.7 THE COMPILER AND LINKER OPTIONS . 54

5.8 APPLICATION FILES . 55

5.9 THE DEBUGGER CONFIGURATION FILE . 55

3

4/98

Table of Contents

98

6 APPENDIX - SOURCE FILES . 56

6.1 COMMON SOURCE FILES . 56

6.1.1 DEFINE.H .56
6.1.2 MMU.H .57
6.1.3 ST9MACRO.H .60
6.1.4 DISPLAY.H .61

6.2 THE FIRST APPLICATION EXAMPLE SOURCE FILES : THE ST92195 62

6.2.1 MAIN.C .62
6.2.2 ACTIONS.C .66
6.2.3 CONST.C .68
6.2.4 DISPLAY.C .70

6.3 THE SECOND APPLICATION EXAMPLE SOURCE FILES : THE ST92R195 78

6.3.1 MAIN.C .78
6.3.2 CONST.C .89
6.3.3 MENU1.C .90
6.3.4 MENU2.C .90
6.3.5 CODE04.C .91

4

5/98

Definitions and Abbreviations

1 DEFINITIONS AND ABBREVIATIONS

– Far function: A function that is defined in a 64K segment, and that can be called by a func-
tion from another 64K segment. This function is ended by the rets instruction.

– Far call: A call to a function located in a different 64K segment

– MMU: Memory Management Unit

– Bankswitch: An ST9 pointing mechanism for managing large code applications

– Physical address: A 22-bit address used to access the physical internal or external mem-
ory.

– Logical address: A 16-bit address, used in instructions, that is translated into a physical ad-
dress for accessing physical memory.

6/98

A BRIEF TOUR OF THE ST9+ MMU

2 A BRIEF TOUR OF THE ST9+ MMU

This section gives a summary of the key features of the ST9+ MMU.

2.1 THE INSTRUCTION SET AND THE MMU

The ST9+ instruction set is fully compatible with the ST9. This means that all applications run-
ning on ST9 may be run on ST9+. In fact, the instruction set of the ST9 has been improved in
the ST9+ to increase its power in terms of speed, code size, and debug support. Also, the
MMU allows you to easily implement applications with large code size using dedicated instruc-
tions for accessing far objects.

The new ST9+ instructions are:

LINK

This instruction was added to reduce C function transfer overhead. It implements the prologue
of a C function, that needs to reserve a defined number of bytes in system stack for passing
parameters and local variables.

The operation performed for each C function in a prologue is:
pushw rr12 step (1)

ldw rr12, SSPR step (2)

subw SSPR, #N step (3)

Thus, this would represent 9 bytes per prologue and 36 clock cycles.

It can now be done by:
link rr12, #N

which takes 3 bytes and 16/12 clock cycles depending if the stack is in the register file or in
memory.

UNLINK

This instruction is used in the epilogue of the C function, which is equivalent to the comple-
ment of the LINK instruction. It is also made for reducing the code size overhead and increase
the execution speed of the C functions.

The UNLINK replaces:

ldw SSPR, rr12

popw rr12

and is used by doing:
unlink rr12

In this case the amount of bytes saved is 2 and the number of clock cycles is between 14 and
18, depending on whether the stack is in the register file or in memory.

7/98

A BRIEF TOUR OF THE ST9+ MMU

LINKU - same as link instruction for the user stack

UNLINKU - same the unlink instruction for the user stack

JPS

The JPS instruction is an inter-segment jump. This means that this instruction does a jump to
a specified offset inside a specified page.

For example:
rr0 = 3000h

r2 = 20h

jps (rr0), r2

will do a jump to segment 20h at address 3000h inside this 64K segment

CALLS

The CALLS instruction allows you to do an inter-section call, that is a call to a function that is
located in a different 64K segment.

For example:
rr0 = 3000h

r2 = 20h

calls (rr0), r2

will call the function pointed to by rr0 in segment 20h.

Note that the CALLS stacks both the return address, and the current segment number.

RETS

The RETS instruction is used to return from a function that is called by the CALLS instruction.
It restores both the return address, and the segment to return to.

Note that it is used simply as RETS, without source or destination parameters.

WARNING : If a function is ended by a RETS, then all calls to this function should be done by
the CALLS instruction. Otherwise, if a CALL instruction is done, it will only stack the return ad-
dress, but the RETS instruction will try to restore both the return address and the segment
number.

8/98

A BRIEF TOUR OF THE ST9+ MMU

2.1.1 Instruction cycle times

Instruction cycle times have been optimized in the ST9+ core to increase the CPU speed.

You should be aware that even if the source code is fully compatible with the ST9 core, if rou-
tines use delay loops based on instruction cycle times, they will have to be modified.

An exhaustive list of the differences will not be given here. You should refer to the ST9+ pro-
gramming manual to get this information.

As a guideline, you can consider that, with the same external clock, the speed increase of the
ST9+ is about x1.5, compared to the ST9 instruction set. This evaluation is based on general
routines written in assembler or C. However, it is important to know that the difference is spe-
cific to each instruction.

For example:
or r,r

lasts 6 clock cycles on ST9 and only 4 clock cycles on ST9+, but
rlcw rr

lasts 8 clock cycles on ST9 and also 8 clock cycles on ST9+.

9/98

A BRIEF TOUR OF THE ST9+ MMU

2.1.2 New ST9+ instructions summary

2.1.3 The User Flag

The User Flag (UF) present on ST9 is no longer available to the user. This flag was bit 1 of the
FLAGR (R231) register in the system register group.

This flag is now reserved for emulation purposes. In a normal user application, reading or
writing to this bit has no effect. However, if the application is run on the emulator, writing to this
bit is prohibited. It will stop the emulator and an error message saying that an access that tried
to write to this register will be displayed.

Thus, it is advised make write accesses to the FLAGR only with or or and instructions, for ex-
ample:
or R231,#00000001b <= to set only bit 0

and R231,#00000010b <= to reset all bits except bit1 the UF user flag

Instruction Operands
Size

(bytes)

Clock

cycles
Comment

JPS

(R),(rr)

(r),(rr)

N,NN

3.00 10.00 Inter-segment jump

CALLS

(R),(rr)

(r),(rr)

N,NN

4.00 16.00 Inter-segment call to a subroutine

RETS 2.00 12/10 Inter-segment return from a subroutine

LINK

RR,

#Nrr,

#N

3.00 16/12
Adjust stack and frame pointer in a prologue func-
tion when using the system stack for parameter
passing

UNLINK RR,rr 3.00 10/6
Adjust stack and frame pointer in an epilogue func-
tion when using the system stack for parameter
passing

LINKU

RR,

#Nrr,

#N

3.00 16/12
Adjust stack and frame pointer in a prologue func-
tion when using the user stack for parameter pass-
ing

UNLINKU RR,rr 3.00 10/6
Adjust stack and frame pointer in an epilogue func-
tion when using the user stack for parameter pass-
ing

10/98

A BRIEF TOUR OF THE ST9+ MMU

2.2 INTERRUPTS AND THE MMU

There are some differences between the ST9 and ST9+ interrupts. The first main difference is
that in ST9 instructions cannot be interrupted by the CPU. In the ST9+, instructions can be in-
terrupted if they have not already modified the memory or the register file.

Also an option bit allows you to configure two different ways of handling interrupts, depending
on an option bit ENCPR, located in the EMR2 register of the Memory Management Unit.

In order to simplify the understanding of this, it can be considered that, by default, the behav-
iour of the interrupt handling in the ST9+ is fully compatible to the one in the ST9.

There is however one restriction to the MMU: it is not possible to use far calls (CALLS) inside
an interrupt service routine.

So, for example, on an MCU with only 64K of program memory like the ST92E195, there is no
difference between ST9 and ST9+.

On ST9+, a specific register is dedicated to pointing to the interrupt service routines.

This 16-bit register ISR (stands for Interrupt Segment Register) always points to a user de-
fined 64K segment, where the interrupt vectors and interrupt service routines should be lo-
cated.

Then depending on the ENCPR option bit, there are 2 cases:

– ENCPR = 0
When entering into the interrupt service routine, ISR is simply used instead of CSR. This is
ST9 compatible. In this case, it is not possible to use far calls in interrupt service rou-
tine because the CSR is not stacked. Only the return address (16-bit) and the flags (8-bit)
are saved into the system stack.

– ENCPR = 1
CSR is first pushed onto the stack and then takes the value of the ISR register. In this case
the interrupt stacks both the return address (16-bit), the segment (8-bit) and the flags (8-bit).

Refer to the Memory Management Unit chapter of any ST9+ datasheet for more information.

Warning: If you need to use the large code model (with more than 64K of code), then all func-
tions will be automatically defined as far functions by the compiler. In this case you will have
to use the large model for interrupts too (ENCPR = 1), i.e. because interrupt routines that use
far functions must imperatively use the large model.

2.3 THE MEMORY MANAGEMENT UNIT

This section will not describe the MMU completely, but will try to highlight the key points
needed to fully understand the examples, and the requirements imposed on the compiler.

11/98

A BRIEF TOUR OF THE ST9+ MMU

2.3.1 The need for an MMU

The ST9 is a 16-bit address CPU, which means that only 64K linear memory blocks can be ac-
cessed.

To remove this limitation, a mechanism, the ”bankswitch”, was used in the ST9 to access up
to 8 Mbytes of code.

This mechanism was based on a segmentation of the memory into two types:

– A static block (32K): accessible at any time

– Several dynamic blocks (32K): accessible only through a specific sequence in static block.

There was no specific instruction to access dynamic blocks and the access was user defined,
always via the static bank. This static bank being only 32K wide, the restriction was important.

To get around these restrictions and to access more than 64K of memory more easily and ef-
ficiently, while keeping the fast and cost-effective architecture of the ST9, the Memory Man-
agement Unit was built.

This MMU allows you to access up to 4 Mbytes (22-bit address) of code in an almost linear
manner, that is through specific instructions, providing a transparent way of managing func-
tions. Data are pointed to by four data pointers that can address the whole 4 Mbyte memory
range.

Seen in a simplified way, in the ST9+ we now have 22-bit addressing (16+6 bits) for code and
data accesses. Code addresses are almost linear and data addresses are paginated.

12/98

A BRIEF TOUR OF THE ST9+ MMU

2.3.2 Accessing Functions

A 6-bit register, the CSR (Code Segment Register) is dedicated to pointing to the 64 Kbyte
segment in use. Modification of this register is done only through 3 instructions: JPS, CALLS
and RETS.

Thus, to access a function located in a different segment, you must use the CALLS or JPS in-
structions. These instructions modify the CSR value, pointing to the new segment to access
and jump to the offset specified. If a CALLS is done, both the return address and the old CSR
value will be stacked.

Keep in mind that if a function is called with CALLS it must be ended by a RETS to keep the
stack frame coherent (the standard CALL instruction stacks only the return address, NOT the
CSR).

WARNING : It is prohibited to modify the CSR directly, using standard instructions. Only
CALLS , and JPS can modify it! Any modification of this register will completely lose control of
the segment location, and therefore Program Counter may not point to the correct segment.

Two different cases are now presented to the user:

– The application uses less than 64K of program:
No impact on the software, all functions are called with the CALL instruction and are ended
by RET.

– The application uses more than 64K of program:
With the compiler, it will be seen later on, that only Far functions (CALLS, RETS) will be used,
except for static functions, that are normal functions (CALL, RET).

13/98

A BRIEF TOUR OF THE ST9+ MMU

2.3.3 Accessing the data

To properly understand data management with the MMU, we must consider 2 types of ad-
dresses for the same data:

– The physical address: this is the address that is effectively put onto the memory bus (22-
bit). This address is the concatenation of the 14 least significant bits of the logical address
and the 8 bits of one of the 4 Data Page Registers (DPR0-3).

– The logical address: this is the address that will be given to the instruction (16-bit). It is only
16 bits long. The identification of which data pointer will be used to recreate the physical ad-
dress is made through the 15th and 14th bits, according to the following table:

Thus, any instruction that uses a 16-bit address between:

0x0000 and 0x3FFF will select DPR0
0x4000 and 0x7FFF will select DPR1
0x8000 and 0xCFFF will select DPR2
0xD000 and 0xFFFF will select DPR3

It will also be seen later on, that the linker allows you to force a data object to be accessed by
a specific DPR, whatever its physical address.

Any DPR can point to any 16 Kbyte page of any 64 Kbyte segment. The logical address se-
lects both which DPR to use (15th and 14th bits), and the 14-bit offset inside a block of 16
Kbytes.

In this way, with a fixed logical address, by selecting the proper DPR value, it is possible to ac-
cess 256 different locations in the 4 Mbyte memory (8 bits of the DPR).

15th bit 14th bit DPR selected
0 0 0
0 1 1
1 0 2
1 1 3

14/98

A BRIEF TOUR OF THE ST9+ MMU

For example:

If the logical address of FOO is 1000100010001000b (0x8888), then bits 15 and 14 select
DPR2 (10) automatically.

The offset inside the 16 Kbyte page, pointed to by DPR2 is 0x0888 (14 least significant bits of
FOO).

If DPR2 = 00100001b (0x21), the physical address obtained is:
xx00 1000 1000 1000 => logical address (without 15 & 14th bits)

0010 0001 => DPR value replaces 15 & 14th bits

____________________________ + the 6 most significant bits

xx00 1000 0100 1000 1000 1000 => physical address is 0x084888

^^

||______________ these bits are don’t care (only 22-bit address)

To summarize the management of data pointers in the MMU: these are the main things to re-
member:

– A logical address selects both one DPR and an offset inside the 16 Kbyte page pointed to
by this DPR.

– The physical address is made of the 8 bits of the DPR shifted by 2 (to replace the 15th &
14th bits of the 16-bit virtual address), concatenated with the 14 least significant bits of the
logical address.

– A DPR can point to any of the 16 Kbyte pages of memory in the 4 Mbyte address range.

– The linker will allow a data object to be pointed to by any DPR, whatever its physical address.

2.3.4 Swapping the DPRs and the PDRs

It is important to note also that the MMU allows you to map the DPRs either in register group
E of the register file, or in register group F, page 21.

This is a user selection that is done through an option bit DPRREM (stands for DPR REMap-
ping) of register EMR2 (see external memory registers).

If the DPRs are located in register group E, then the Port Data Registers are located in group
F, page 21, at the same address as the DPRs. This is what is meant when we say that they are
swapped with the DPRs.

This option allows you to have easy access (without changing the Register Page) either to the
Data Pointer Register or the Data Port Registers. This is because you can choose to map the
registers that will require the most frequent accesses in Group E.

In our examples we will only consider the case where the DPRs are located in Group F of page
21. This is also the default setting at MCU reset.

15/98

A BRIEF TOUR OF THE ST9+ MMU

2.3.5 The Bootrom

The bootrom is a piece of code (64 bytes) located in segment 21h. It is always internal to the
MCU, and performs different internal settings depending on the device.

After reset, the first instructions executed are the ones contained in the bootrom.

An important thing to note is that depending on the device, the bootrom will set the DPRs to a
certain location, for example in the ST92195, DPR0-1 point to page 0h and 1h (internal ROM),
DPR2 points to page 8Ah (seg 22h) where the TDSRAM is located, and DPR3 points to page
83h (seg 20h) where the RAM is located. The bootrom code also reads the user reset vector
and jumps (far jump) to the reset routine.

The bootrom code should be transparent to the user.

2.4 EXTERNAL MEMORY INTERFACE

For this part it is crucial to refer to the External Memory Interface chapter of the ST9+ device
datasheet for complete information. Note, however that some ST9+ devices do not have an
external memory bus.

Important facts to bear in mind are:

– In the ST9+, memory accesses are only 2 clock cycles long, they were 3 clock cycles long
on ST9 - Timing accesses should be carefully studied when building your application.

– 0 to 3 Wait states on DS (Data Strobe) and AS (Address Strobe) have been added for slow
external memories. These wait states are in addition to the wait states on program memory
and data memory previously present on ST9 (see also the description of the WCR register
in the datasheet)

– Various memory bus options can be selected through the EMR1 and EMR2 registers located
in page 21 of register file Group F.

16/98

A BRIEF TOUR OF THE ST9+ MMU

2.5 PROGRAM/DATA SELECTION

On the ST9, a pin was dedicated to the selection of program memory and data memory. Due
to the fact it was a physical pin, both memories had to be physically distinct.

On the ST9+, this pin has been removed and distinction between the program (opcode fetch)
and the data accesses is done through the MMU. This allows you to have a single physical
memory where both code and data can reside.

The Program (the code) is accessed using the CSR register pointer, while the Data is ac-
cessed using the DPRs .

Note that it is possible to have the CSR pointing to a segment and one (or more) DPRs
pointing to the same memory location. So all memories are accessible as data or code, and
code can thus be executed in RAM.

We can separate instructions into three types:

– Standard instructions (ld, or, and, ...), they are affected by SPM/SDM instructions and use
either the DPR or SCR registers.

– Stack instructions, always using the DPRs

– Program flow instructions (jp, call), always using the CSR

2.5.1 SPM /SDM and the standard instructions

The sdm and spm instructions are still valid on ST9+. We will see later that only the sdm in-
struction must used and spm should not be used anymore.

The effect of using these instructions is the following:

– When sdm precedes an instruction, the data is accessed through the selected DPR(0-3).

– When spm precedes an instruction, the data is accessed through the CSR.

For example:

Suppose:
CSR = 00h <= code register points to segment 0h

DPR0 = 00h <= DPR0 points to seg 0, page 0

DPR1 = 01h <= DPR1 points to seg 0, page 1

DPR2 = 02h <= DPR2 points to seg 0, page 2

DPR3 = 83h <= DPR3 points to seg 20h, page 3

17/98

A BRIEF TOUR OF THE ST9+ MMU

– First case: Instruction sdm has been used before this code sequence.

Address: Instruction
0xnnnn sdm

........

........

0xAFDE ld r0, F000h

is equivalent to:
0xAFDE 0xC4F0F000

The program counter will read address 0xAFDE, in the segment pointed to by the CSR, i.e.
segment 0h, and will access the data located in F000h in segment 20h using DPR3 (because
15th & 14th bits are 1 & 1 respectively).

– Second case: Instruction spm has been used before this code sequence.

Address: Instruction
0xnnnn spm

........

........

0xAFDE ld r0, F000h

The program counter will read address 0xAFDE, in the segment pointed to by CSR, i.e. seg-
ment 0h, and will access the data located in F000h in segment 0h using the CSR (because of
spm instruction).

2.5.2 The stacks

A stack is always considered as data, whatever the sdm/spm instruction was preceding a
stack access through push/pop instructions. This was already the case in the ST9.

If a stack instruction is executed, it will always use the DPR to access the memory. Selection
of the DPR uses the same process as for standard data.

For example:

The same settings as in the previous example are used for the CSR and DPRs.

– First case: The sdm instruction has been used before this code sequence.

Address: Instruction
0xnnnn sdm

........

0xmmmm ldw RR238,#0FF00h

........

0xAFDE push R0

0xAFE0 ld r0, F000h

18/98

A BRIEF TOUR OF THE ST9+ MMU

The program counter will read address 0xAFDE, in the segment pointed to by CSR, i.e. seg-
ment 0h, and will push R0 to address FF00h in segment 20h using DPR3 (because the 15th
& 14th bits are 1 & 1 respectively). The access to data at F000h also uses DPR3.

– Second case: The spm instruction has been used before this code sequence.
0xnnnn spm

........

0xmmmm ldw RR238,#0FF00h

........

0xAFDE push R0

0xAFE0 ld r0, F000h

The program counter will read address 0xAFDE, in the segment pointed to by CSR, i.e. seg-
ment 0h, and push R0 to address FF00h in segment 20h using DPR3 (because the 15th &
14th bits are 1 & 1 respectively). The access to data at F000h uses CSR, so a read from seg-
ment 0h, offset F000h is done.

This mechanism is valid for both user and system stacks.

2.5.3 LDDD, LDPD, LDDP, LDPP instructions

The specific instructions use the same mechanism as previously described.

– LDDD: source and destination are accessed through the 2 DPRs selected

– LDPD: source is accessed using DPR and destination is accessed through CSR

– LDDP: source is accessed using CSR and destination is accessed through DPR

– LDPP: source is accessed using CSR and destination is accessed through CSR

For example

Whatever the sdm/spm status is before the following instructions, and assuming the same set-
tings for CSR/DPRs as in the previous example.

Before the instruction the memory contains:

segment 0h: address F000h contains AAh

address F020h contains BBh

segment 20h address F000h contains CCh

address F020h contains DDh

– lddd instructions
ldw rr0, #0f000h

ldw rr2, #0f020h

lddd (rr0)+,(rr2)+

19/98

A BRIEF TOUR OF THE ST9+ MMU

After the instruction, the memory contains:

segment 0h: address F000h contains AAh

address F020h contains BBh

segment 20h address F000h contains DDh

address F020h contains DDh

– ldpd instruction
ldw rr0, #0f000h

ldw rr2, #0f020h

ldpd (rr0)+,(rr2)+

After the instruction, the memory contains:

segment 0h: address F000h contains DDh

address F020h contains BBh

segment 20h address F000h contains CCh

address F020h contains DDh

– lddp instruction
ldw rr0, #0f000h

ldw rr2, #0f020h

lddp (rr0)+,(rr2)+

After the instruction, the memory contains:

segment 0h: address F000h contains AAh

address F020h contains BBh

segment 20h address F000h contains BBh

address F020h contains DDh

– ldpp instruction
ldw rr0, #0f000h

ldw rr2, #0f020h

ldpp (rr0)+,(rr2)+

After the instruction, the memory contains:

segment 0h: address F000h contains BBh

address F020h contains BBh

segment 20h address F000h contains DDh

address F020h contains DDh

20/98

A BRIEF TOUR OF THE ST9+ MMU

2.5.4 Interrupts and the Program/Data management

Depending on the memory model you choose when you compile and link the application, the
compiler will use sdm/spm instructions or not.

On ST9+, the only model available is with the -mpd option, which tells the compiler that pro-
gram and data memories are distinct. In this configuration, the C compiler generates spm/sdm
instructions only in the following cases:

– SWITCH statements: During the switch statement, the compiler sometimes needs to access
tables located in ROM (.text section). It thus needs to perform an SPM, then access the table,
and return to the previous state by doing an SDM

– Interrupt service routines: An interrupt can occur at any time, and it is possible to enter an
interrupt service routine just after executing an spm instruction. So, the C compiler generates
an sdm instruction at the very beginning of a C interrupt service routine.

For the same reason, if an interrupt service routine is written in assembly it is strongly advised
to put an sdm at the very beginning of the interrupt routine.

Conclusion: It is strongly advised to place an sdm instruction at the very beginning of the pro-
gram and never use the spm/sdm inside the program again, except for an interrupt service
routine written in assembler.

21/98

The V4.2 ST9+ GNU C Compiler

3 THE V4.2 ST9+ GNU C COMPILER

This section does not provide comprehensive information on the compiler. You are advised to
read the ST9+ GNU C Toolchain Release 4.2 note. Most of the information in this section has
been directly extracted from this document and you will sometimes find more features docu-
mented than those given here. Here we will only focus on the following points:

– ST9+ MCU only, not the ST9 compatibility

– New important options

– The different mappings allowed by the compiler

3.1 V4.2 GNU C COMPILER FEATURES AT A GLANCE

– Runs on Windows NT, Windows 95, Windows 3.x and DOS.

– ST9 and ST9+ compatible with different options.

– Only tiny and small data memory models available.

– Improved linker for managing MMU data pointers:
The script file syntax supports new features for managing data and program memory blocks.

– Implementation of ST9+ new instructions.

– Set of assembly and C macros to facilitate MMU usage

– Optimization improvements

3.2 OPTIONS TO USE

In this part of the application note we will only consider the ST9+ MCU. Thus, only the impor-
tant options will be described.

3.2.1 Compiler Options

-mfar: This option is used if more than 64 Kbytes of code are used in the application. It de-
fines all functions as far, except static functions.

-mlink: This option will implement the prologue and epilogue of the C functions using the
new link/unlink instructions.

-mpd : This option, present on previous versions, specifies that a 2-memory model is used.
It is a default option, and must be used on ST9+.

-tr9: This option is to include TR9 in the compilation. By default TR9 is no longer called when
compiling a C file, and this option is needed only if macro-assembly is used inside the appli-
cation (C or Assembly files).

22/98

The V4.2 ST9+ GNU C Compiler

3.2.2 Linker Options

In this application note, the linker will always use a scriptfile. The only new and important op-
tion is thus:

-mmu: This option allows relocation of the data object through the DPR registers. It is also
needed to have access to the MMU macros defined in C or Assembly.

3.3 HOW TO MANAGE THE MMU WITH THE COMPILER

The first thing you should do is evaluate which of the MMU memory models provided by the
V4.2 Compiler is needed by your application.

3.3.1 MMU models handled by the V4.2 compiler

Two memory models can be handled by the compiler and linker:

– Total size of Code and Data is less than 64 Kbytes.
=> in this case the MMU is fully transparent to the user

– Code size is more than 64 Kbytes and Data size is not taken into account:
=> in this case the MMU Function management is fully handled by the compiler and the Data
management has to be done manually. However, the compiler provides features like reloca-
tion of data objects and several macros to help manage the data.

3.3.2 Managing Functions

If the size of the application code and data does not exceed 64 Kbytes, there will be no
problem, so only applications that do not fulfil this condition have to be discussed here.

If the code size is greater than 64 Kbytes, then you have to use the -mfar option.

This option will set all functions far, except static functions. The proper libraries are automati-
cally linked with the application.

Far function pointers are not supported by the V4.2 compiler. To allow pointing to functions lo-
cated in different segments, some macros are implemented in the sources provided with the
compiler. The passing of parameters and return values is also available with the help of
macros.

It should be noted that as macros are used, and because they don’t allow a variable number
of arguments, it is not possible to use far function pointers having a variable number of argu-
ments.

In the following examples, it will be investigated in a first step the case where the code size in
smaller than 64 Kbytes (ST92E195), no far functions will then be needed. In a second case,
where the code size is larger than 64 Kbytes, and where all functions are far, examples of
function pointers will be implemented.

23/98

The V4.2 ST9+ GNU C Compiler

3.3.3 Managing Data

By default no DPR management is done. depending on the application, and especially if you
use more than 64 Kbytes of data you will have to manage the data pointers manually.

In this way, you can relocate a data object by defining, as a linker option, which data pointer
will be selected when accessing the data in C or Assembly.

For example:

If FOO is located at physical address 0x200200, its 16-bit address should be 0x0200, and thus
only DPR0 should be pointing to FOO.
Then: ld R0, FOO<=> ld R0,0x0200 and DPR0 must be set to 0x80

We can tell the linker that FOO needs to be pointed to by DPR2 (for example), but keeping
FOO at the same physical address. Then after relocation, the linker uses address 0x8200 (in-
stead of 0x0200) to access FOO.

Then: ld R0, FOO<=> ld R0, 0x8200 and DPR2 contents must be 0x80

This relocation is very powerful as it allows you to have different blocks of data, pointed to by
the same DPR or group of DPRs, even if their physical addresses are completely different.
Then it’s up to you to switch the DPR values depending on the data that is accessed.

Some macros are provided to allow you to retrieve and set the correct DPR value corre-
sponding to particular data in a routine. These macros are:
PAG (symbol) <= returns the physical page number

POF(symbol) <= returns the offset inside the 16Kbyte memory block (14 bits).

For example, before accessing variable Var, if it has been relocated with DPR3, it is possible
to do:
DPR3 = PAG(Var);

Var = 0x12;

3.4 MAPPING YOUR APPLICATION WITH THE LINKER

In this application note, we advise you to define a scriptfile for each application. The scriptfile
is a memory description file that allows you to fine tune the memory mapping. With the script-
file, you can locate each section (.text, .data and .bss) of a selected file in a user-defined
memory region.

3.4.1 The possible data/code sections and their mapping

In ST9+, we consider as data, both the uninitialized variables (.bss section), the initialized var-
iables (.data section) and the constants (.data section).

With the -mpd complier option, there is no difference for the compiler and the linker between
constants and initialized variables. They are both located in the .data section.

24/98

The V4.2 ST9+ GNU C Compiler

It is crucial, however, that the constants be kept in non-volatile memory, the initialized varia-
bles in volatile memory (to modify them) and the copy of the initial value of the initialized vari-
ables in non-volatile memory.

Thus, the user has to participate in the separation of the constants and the initialized varia-
bles. This is possible only by separating the constants and the initialized variables into dif-
ferent files (remember the granularity of the linker is at the file level).

We therefore advise you generate files dedicated to the definition of the constants, and files
dedicated to the initialized variables. The memory scheme obtained is the following:

To implement this scheme it is necessary to map the .data section of the files containing the
constants, in ROM (or any non-volatile) memory region, to map the .data section of the files
containing the .data section of the initialized variables into the effective .data section that will
have its references in RAM.

Finally it is necessary to have the initial value of the initialized variables in ROM. These init
values are copied at startup from ROM to RAM.

25/98

The V4.2 ST9+ GNU C Compiler

For example:

Suppose:

– file CONST.C contains:
const unsigned char CONSTANT0[]=”This is an example of constants”;

– file INIT.C contains:
unsigned char INIT0[]=”This is an example of an init variable”;

– The scriptfile should look like:
OUTPUT_ARCH(st9)

MEMORY

{

rom : ORIGIN = 0x000000, LENGTH = 64K

ram : ORIGIN = 0x20FF00, LENGTH = 256

}

SECTIONS

{

.text : {

_text_start = .;

reset.o(.text)

_start_constants = .;

CONST.O(.data)

_end_constants = .;

*(.text)

_etext = .;

DO_OPTION_I

_text_end = .;

} > rom

.data : {

_data_start = .;

INIT.O(.data)

_edata = .;

_data_end = .;

} > ram

.bss : {

_bss_start = .;

*(.bss COMMON)

_ebss = .;

_bss_end = . ;

} > ram

}

26/98

The V4.2 ST9+ GNU C Compiler

3.4.2 Notes on using Initialized Variables

One limitation of the linker is that it is not possible to have more than 64 Kbytes of initialized
variables in one application. This is due to the fact that the .data section of the linker cannot
exceed 64 Kbytes.

Anyway, it is advised not to use any initialized variables, but to use non-initialized variables
that are initialized inside a specific routine.

Also, even if there are no initialized variables in an application, you are advised to separate the
constants and variables into dedicated files. This is not a real restriction, and it promotes de-
velopment of clean and maintainable software.

Anonymous strings are also a problem in the compiler, because they are mapped in the .text
section, but still need to be pointed to by a DPR.

To avoid this, for example, instead of:
void func()

{

printf(”Hello world”);

}

It is advised to do:

const unsigned char foo[] =”Hello world”;

unsigned char *pfoo;

void func()

{

pfoo = foo;

printf(pfoo);

}

Refer also to the LD9 linker Documentation for complete information on scriptfile syntax and
capabilities.

In the examples given in detail below, the mapping of the DATA in the script file will be dis-
cussed case by case, as various possibilities are available to the user.

Let us look now at the possibility of relocating the data objects so they can be pointed to by de-
fined DPRs.

The principle is the following:

If a data Var is to be mapped physically at address 0x200000, it seems obvious that if nothing
is done, the logical address of Var is 0x0000. Consequently, Var must use DPR0 to generate
the physical address.

27/98

The V4.2 ST9+ GNU C Compiler

Suppose that for different reasons, DPR0 needs to point to the 16 Kbyte segment starting at
address 0x220000, and that no modification of the value of DPR0 is possible (for example
DPR0 points to the stack location).

In this case you need to point to the Var variable with another DPR. This is then implemented
in the scriptfile by specifying which DPR points to a particular memory block.

For example, suppose we have originally:
RAM1: ORIGIN = 0x200000, LENGTH = 16K

with the linker of the V4.2 chain, it is possible to specify:
RAM1: ORIGIN = 0x200000, LENGTH = 16K, MMU = DPR2

In this case all data are relocated from 0x0000 to 0x3FFF to 0x8000 to 0xCFFF, and conse-
quently the physical addresses will be generated with the DPR2 value.

This means that whatever the physical address of a data object, it can use any of the DPR reg-
isters.

The general syntax for the scriptfile is:
NAME: ORIGIN = 22-bit address, LENGTH = xx, MMU = DPR list

where DPR list can be any one of the following:
DPR0, DPR1, DPR2, DPR3, CSR, NO

– If NO is specified, then no relocation is done. If data is found in the segment, and a reference
to this data is made, a warning is generated to tell the user that some data are present in this
region, without a specific DPR coverage.

– If CSR is specified, nothing is done (no relocation, no warning). This option is useful if a seg-
ment contains only code.

– If DPRx is specified, relocation of the 16 Kbytes block is based on DPRx.

Warning: Although it is possible to relocate data with the same DPR, inside a 64K segment,
you will still have to set the specific DPR to the correct value before accessing the data.

To avoid programming errors, you are advised to define blocks of data with the same size as
the area that can be covered by the total number of free DPRs. That is, for example, if DPR0
and DPR1 are free to access data, then you can define blocks of 32K covered by DPR0 and
DPR1 only.

Note: Relocation with DPR registers is done only on .data and .bss sections. You should be
aware that if some constants are defined in assembly using for example:
.text

TAB1:

.byte 0xAA

28/98

The V4.2 ST9+ GNU C Compiler

then TAB1 will not be relocated with specific DPRs because it is located in the .text section. In
assembly, to allow relocation the following notation should be used:

.data

TAB1:

.byte 0xAA

and of course, this constant should still be located in a separate file and follow the same map-
ping scheme as described previously.

3.4.3 A tentative set of general rules

It is difficult to follow general rules for managing the data pointers within an application. It fully
depends on the memory mapping of the MCU used, and on the requirements of the memory
application.

An application will always use:

– A stack: kept in RAM

– Non-initialized variables, kept in RAM

– Constants and initial values of initialized variables, mapped in ROM

– Code, located in ROM:

One DPR must be fixed, to always point to the system and user stacks. This is especially true
for applications written in C, as most parameters, local variables and return values are ac-
cessed through the system or user stacks. In general the stacks don’t take more than 16
Kbytes of memory, so only one pointer needs to be fixed.

For most applications, 16 Kbytes of RAM is enough, thus only one DPR can be used to access
the non-initialized variables and the stacks.
The 3 other free DPRs, can be either kept grouped together, which allow to treat data memory
blocks of 3x16 = 48 Kbytes. This case is suitable for large applications having a small amount
of RAM and very large ROM needs.
If large amounts of RAM are needed, this often means that large data memory transfers are
performed, and in this case, one DPR will be used to point to the source, another one to point
to the destination of the transfer. The third is free for other resources.

If a different memory exists, located in a different region from the RAM, for example the 8
Kbytes TDSRAM of the ST92E195, one pointer can be dedicated to this memory and the 2 re-
maining pointers used for accessing constants.

Anyway, the DPR allocation needs to be done case by case, and the current V4.2 compiler
does not provide an easy and transparent way of doing data management, so it up to the soft-
ware programmer to define a DPR allocation strategy that best suits the application needs.
The examples described below try to cover the most frequent memory situations that can
arise.

29/98

The V4.2 ST9+ GNU C Compiler

3.5 SUMMARY OF V4.2 ST9+ GNU C COMPILER LIMITATIONS

– No automatic and transparent data management

– In the large code model, no automatic and transparent function pointer, with the possibility
of using macros instead

– No variable number of arguments in pointers to far functions.

– Constants must be separated from the code and the initialized variables

All these limitations should be removed in the next ST9+ compiler generation.

30/98

First example: The ST92195

4 FIRST EXAMPLE: THE ST92195

The ST92195 is an MCU dedicated to TV applications. It is however very interesting for dem-
onstrating the MMU usage because of its specific memory mapping, with 3 different on-chip
memories, the ROM, RAM and TDSRAM.

The example will demonstrate a small OSD (On Screen Display) application showing a pos-
sible and recommended way of using the MMU with the C compiler V4.2, with such a memory
configuration.

4.1 MEMORY MAPPING

The ST92195 is a ROM device with 64K of ROM, 256 bytes of RAM and 8K of TDSRAM (dy-
namic RAM).

The memory mapping is the following:

no memory

TDSRAM
8Kbytes

BOOTROM
reserved

RAM
256 bytes

no memory

no memory

no memory

ROM
64Kbytes

Segment x

Segment 0

Segment 20

Segment 21

Segment 22

Segment x

0x000000

0x00FFFF

0x200000

0x20FF00

0x20FFFF

0x210000

0x21FFFF
0x220000

0x227FFF

0x228000

0x229FFF
0x22A000
0x22FFFF

no memory

31/98

First example: The ST92195

4.2 DESCRIPTION OF THE APPLICATION

The application proposed will display on 3 lines of OSD, representing an OSD Menu. Then
using an automaton table, specific events will select the different rows of the menu, or will es-
cape/enter into the menu.

This type of automaton management is a simple way of navigating in menus, and could be ap-
plied to any application.

To simplify the examples, 5 events where created, representing a user pressing either a key
UP, or DOWN, or ESCAPE, or SET_MENU. To avoid having to create a keyboard driver, a
routine generates random events in a periodic manner.

What the example would like to highlight is:

– Managing the 3 different memories: how to select the correct MMU settings

– Constants: how to map and use them

– Initialized variables: how to map and use them

The application will physically display the menu on a TV screen if the user has a ST92195 De-
moboard, or any board able to display the ST92195 OSD signals.

4.3 MMU SETTINGS ON THE ST92195

The memory mapping of the ST92195 shows 3 different memory types, firstly the ROM where
the code, constants, and initial values for the initialized variables should be located, secondly
the RAM needed for the variables (initialized or uninitialized) and the stack and thirdly, the TD-
SRAM used for the OSD display.

The ROM contains only 64 Kbytes, so no far calls will be needed, which means that working
with functions is completely transparent.

The stack and variables are in segment 20h, page 83h. As this memory needs to be accessed
at any time there must be a pointer set permanently to this location. DPR3 will thus be as-
signed to point to the RAM.

The TDSRAM must be accessed for transferring display variables, the characters and at-
tributes necessary for the OSD. Its location is segment 22h, page 8Ah. As this memory may
also contain teletext data, whose flow is independent of the program flow, it is important to al-
ways have a fixed pointer to this memory. DPR2 will be this pointer.

For the constants, located in the ROM, it is necessary to be more careful. Only 2 DPRs are left
free to access these constants, so 2 choices are possible depending on how many constants
are present in the application:

– Less than 32 Kbytes of constants are present:
=>In this case, it will be sufficient to set the DPRs to two 16 Kbyte contiguous pages, and to

32/98

First example: The ST92195

never modify the DPRs during the program execution. For example, it is possible to map all
the constants starting from 0x000000 to 0x007FFFF, then set DPR0 = 0x00 and DPR1 =
0x01.

– More than 32 Kbytes of constants are needed by the application:
=> In this case, the DPRs will need to be modified. This will have to be done explicitly in the
code when necessary. It will also be necessary to split the 64 Kbytes segment 0 into two
32 Kbyte blocks because of the risk of a data overlapping page 0x01 and 0x02.

In our example, only the first case will be developed further.

The expected MMU settings will be the following:

Warning: There is only one region with no DPR coverage, the region 0x008000 to 0x00FFFF.
It is important to understand this can be a problem ONLY if any data are accessed in this re-
gion. The scriptfile can avoid this problem, by defining which regions are uncovered in order to
generate a Warning during the link phase.

33/98

First example: The ST92195

4.4 MAPPING THE APPLICATION WITH THE SCRIPTFILE

This mapping will now be set with the help of the scriptfile:

The following is the format and list of file description.
OUTPUT_FORMAT(”a .out-st9”)

OUTPUT_ARCH(st9)

INPUT(crt9.o const.o actions.o main.o display.o) <=list of the files

Next is the definition of the memory mapping, forcing the first 32 Kbytes of ROM to be relo-
cated using DPR0 and DPR1, and to signal if the constants are overlapping on the upper 32
Kbyte block.
MEMORY { /* Define your memory mapping */

ROM : ORIGIN = 0x000000, LENGTH = 64K, MMU = DPR0 DPR1 NO NO

RAM : ORIGIN = 0x20FF00, LENGTH = 256, MMU = DPR3

TDSRAM : ORIGIN = 0x228000, LENGTH = 8K, MMU = DPR2

no memory

OSD and TXT
variables

BOOTROM
reserved

stacks
variables

no memory

no memory

no memory

code

constants

reset vectors

Segment x

Segment 0

Segment 20

Segment 21

Segment 22

Segment x

0x000000

0x00FFFF

0x200000

0x20FF00

0x20FFFF

0x210000

0x21FFFF
0x220000

0x227FFF

0x228000

0x229FFF
0x22A000
0x22FFFF

no memory

DPR0 = 0x00
DPR1 = 0x01

DPR3 = 0x83

DPR2 = 0x8A

CSR = 0

34/98

First example: The ST92195

Then the .data, .text and .bss sections are defined:
SECTIONS {

_stack_size = DEFINED(_stack_size) ? _stack_size : 40;

_user_stack_size = DEFINED(_user_stack_size)? _user_stack_size : 40;

Important: The .text section is defined here. It should be noted that the CRT9.O object file
contains the reset and interrupt vectors, so this file should be mapped starting at 0x000000.

Then just after the crt9 file, the files containing the constants are mapped. Note that only the
.data section of these files is taken, and mapped in a .text section. This is a trick to force the
linker to put the constants in ROM.

The DO_OPTION_I is an option that places the initial values of the initialized variables and the
end of the .text section in ROM. The crt9 file does the recopy of these values to the variables
at startup.

.text : {

_text_start = .;

crt9.o(.text)

const.o(.data)

*(.text)

_etext = .;

DO_OPTION_I;

_text_end = .;

} >ROM

As all the constants are now mapped in .text section, mapping the .data section of all other
files will then set only the initialized variables in .data.

.data :{

_data_start = .;

*(.data)

_data_end = .;

} >RAM

The .bss section will then contain the stacks and the non initialized variables.

35/98

First example: The ST92195

Note also that both the .data section and the .bss section are located in RAM.

.bss : {

_bss_start = .;

*(.bss COMMON)

_ebss =.;

_bss_end = .;

_stack_start = DEFINED(_stack_start)?

_stack_start : .;

_stack_end = _stack_start + _stack_size;

_user_stack_start = DEFINED(_user_stack_start)?

_user_stack_start : _stack_end;

_user_stack_end = _user_stack_start + _user_stack_size;

} >RAM

}

Important: In this example, no variables were allocated to the TDSRAM. It could have been
possible to put both .data or .bss (init or non-init variables) in this memory. However because
the TDSRAM is managed in a special way, you should refer to the ST92195 Datasheet for in-
formation on how to use it.

Following are the block diagrams obtained for the ROM and the RAM, according to this map-
ping.

36/98

First example: The ST92195

The result for the ROM is:

The RAM mapping is:

EMPTY

0x000000

0x00FFFF

crt9.o (.text)
Reset and Interrupt vectors

CONST
(.data)

ALL OBJECTS left
(.text)

.data
(initial values of initialized variables)

_text_start

_text_end

_etext

_const_start

_const_end

0x008000

DPR1 = 0x01
DPR0 = 0x00

EMPTY

0x22FF00

ALL FILES - non init variables
(.bss)

ALL FILES - init variables
(.data)

system and user stacks

_bss_start

_stack_end

_stack_start
_bss_end

DPR3 = 0x83

_data_start

_data_end

0x22FFFF

37/98

First example: The ST92195

4.5 INITIALIZED VARIABLES

The initialized variables have the particularity of having an initial value located in ROM. This
initial value needs to be copied from ROM to RAM at startup. This is done in the CRT9.ASM
file by doing:
; Init data area

;

ldw rr0,#_data_start ; start of run-time data area

ldw rr4,#_data_end ; end of run time data area

subw rr4,rr0 ; rr4 = length of initialization data

jrz no_data ; if empty

ldw rr2,#_text_end ; end ROMed data area

subw rr2,rr4 ; start of ROMed data area

init_data:

lddp (rr0)+, (rr2)+ ; init data section

dwjnz rr4,init_data

no_data:

As we can see the lddp instruction is used to access a data from the program space (using
CSR) and load it into the data space (using a DPR). There is thus no possible problem of
pointers, because

– CSR = 0 and is always pointing to segment 0.

– DPR3 = 0x83, and is fixed, thus the RAM is always accessible.

One initialized variable has been set in the application program, in MAIN.C:
char Init_var []=” THIS IS AN INITIALIZED VARIABLE ”;

If you have an ST9+ emulator you can to load the ST92195.u file do a reset, visualize that the
Init_var[] table is empty at reset, using the inspect window for example, then after finishing the
init_data routine of the crt9.asm file, the Init_var table should contain the proper code, that is
in ascii ” THIS IS AN INITIALIZED VARIABLE ”.

In this application note, the initialized variables are set directly in the C files. It is advised how-
ever to separate them into different files to keep a better control of these variables, and have
a cleaner set of source files for future updating.

38/98

First example: The ST92195

4.6 COMPILER AND LINKER OPTIONS

The options used in the application for compiling are:

-mlink : Use ST9+ link/unlink instructions

-g: Generate debug information

-O: Use the optimizer

-fomit-frame-pointer : Avoid usage of frame pointer when not needed

-Wall : Get all possible warnings

-tr9 : Use tr9

-Wall,-ahld : Generate a list file

The linker options are:

-mmu : Allow relocation with DPRs

-m: Generate a map file

-T: Use a scriptfile

-v: Set verbose mode on

4.7 APPLICATION FILES

The necessary application files:

– MAKEFILE The file needed to make the application

– MAKEDEP The dependency description file

– MAIN.C Contains the main routine

– CONST.C Contains the CONSTANTS definition

– ACTION.C Contains the various automaton routines

– DISPLAY.C Contains the OSD routines

– CRT9.ASM The startup file, contains the interrupt vectors, and calls main
it also initializes the ST9+ correctly

– ST92195.SCR The scriptfile, contains the memory mapping description

– ST92195.U The executable needed by the debugger

– ST92195.HEX The hexadecimal file needed to program EPROM/OTPs

In addition, all header files and some ST9 macros are used and defined in:
ST9MACRO.H, NEWREG.H, DEFINE.H, DISPLAY.H,OSD_CONS.H

39/98

First example: The ST92195

4.8 EMULATOR CONFIGURATION FILE

To configure the memory used on the ST92195 emulator Version HDS2, the user must use
the file HARDWARE.GDB provided with the application. This file contains:

clear_map

map 0x000000 0xFFFF SR

map 0x20FC00 0xFFFF SW

map 0x228000 0x9FFF SW

chip_reset

40/98

Second example: the ST92R195

5 SECOND EXAMPLE: THE ST92R195

The ST92R195 is a ROMless device, capable of accessing up to 4Mbytes of memory, through
a 16-bit + 6-bit address bus.

The ST92R195 is dedicated to TV applications and has the same peripherals as the ST92195.
It is mainly intended for accessing a large external ROM and only the 512 bytes on-chip RAM.
No additional RAM should be used. It also contain 8 Kbytes of on-chip TDSRAM for OSD dis-
play and teletext data storage.

5.1 ST92R195 MEMORY MAPPING

no memory

TDSRAM
8Kbytes

BOOTROM
reserved

RAM
512 bytes

no memory

no memory

no memory

no memory

from segment 1 to 19h

Segment 0

Segment 20

Segment 21

Segment 22

from segment 23h to 39h

0x000000

0x00FFFF

0x200000

0x20FD00

0x20FFFF

0x210000

0x21FFFF
0x220000

0x227FFF

0x228000

0x229FFF
0x22A000
0x22FFFF

no memory

Externalmemory

Externalmemory

Externalmemory

reserved to internal
memory

Internal Memory External Memory

41/98

Second example: the ST92R195

Three 64 Kbyte blocks are internal:

– Segment 20h: Contains the internal RAM from 0x20FFD0 to 0x20FFFF

– Segment 21h: Contains the bootrom, and is reserved for test purposes

– Segment 22h: Contains the TDSRAM from 0x228000 to 0x229FFF

These 3 segments are fully internal, only the internal memory in segment is accessible to the
user. It is thus not possible, for example to use external memory in segment 20h.

As only external ROM is used, it is clear that both functions and data will require the MMU.

5.2 APPLICATION DESCRIPTION

The application displays an OSD menu, split into 3 different segments, using an automaton.
The events that will successively call the display of the menu management are random, to
avoid implementing a user interface.

This will involve the following topics in detail:

– Far Function management (the functions that call the menus are all far)

– Static Function management

– Data pointer management (as the Menu lines are located in different blocks)

– Memory mapping for large applications

5.3 MANAGING FUNCTIONS

With an application containing more than 64 Kbytes of code, and with the V4.2 C Compiler, it
is only possible to use the Large memory model, which defines all functions as far.

Static functions are automatically called with call and returned with ret . This is normal, as
static functions are not called outside of the file where they are defined, and the mapping of a
file can not overlap 2 segments, they are thus always called from routines located in same
segment.

Note : When declaring a static function, do not forget to declare the prototype of the static func-
tion as well, if the function is called before its definition. Otherwise an error message will be
generated during the link.

If you want to make reference to external functions, defined in an assembly file, these func-
tions must be ended with rets and must always be called in the assembly with calls .

Note : With the calls instruction the code size increases by 1 byte for each call, and the stack
is also increased by 1 byte (for stacking CSR).

42/98

Second example: the ST92R195

5.3.1 Using function pointers

Function pointers are not supported by the compiler version V4.2, they will be supported only
in the future versions.

To workaround this limitation, a solution is to use a structure made of a char and a pointer to
a function, then to use a macro for doing the far call to the function. A possible macro is pro-
vided in the mmu.h file.

What can be obtained is:
typedef struct

{

unsigned char seg;

void *sof;

} StructFuncAddress;

It is thus possible to define:

StructFuncAddress FuncAddress;

and to assign a function address on 24 bits by using:

FuncAddress = AddressOf(foo);

where AddressOf() is defined by

#define AddressOf(f) \

(StructFuncAddress) { SEG(f), SOF(f) }

and to make the function call do:

FarCall (FuncAddress);

where FarCall is defined by

#define FarCall(f) \

asm(”calls (%0),(%1)”: : ”r”(f.seg),”r”(f .sof))

The possibility of using the SEG(x) and SOF(x) is restricted to the program execution. For ex-
ample it is not possible to define a table of functions like:

const StructFuncAddressTab_func[] = {

43/98

Second example: the ST92R195

{ SEG(func0), func0},

{ SEG(func1), func1},

};

because SEG(func0) is not resolved, it is translated to asm(”seg func0”); which is not ac-
cepted by the C compiler.

To avoid this limitation, such a table could be defined in assembly by;

.data

.byte seg func0

.byte func0

.byte seg func1

.byte func1

To avoid having to define all tables of functions in assembly, a possible implementation will
now be proposed.

This solution is based on the use of an automaton taken from the example.

For a normal application (no far function) one can define:

void (*const Tab_func[])(void) = {

{ func0},

{ func1},

};

Then the function call is done by:

void (*pf)(void);

pf = Tab_func[0];

pf();

On V4.2, with a far function, a clean way of doing this would be:

const enum action =

{id_func0, id_func1};

44/98

Second example: the ST92R195

const action Tab_func[] = {

{ id_func0},

{ id_func1},

};

action pf;

pf = Tab_fun[0];

Select_action(pf);

void Select_action(action x)

{

switch (x)

{

case id_func0: func0();

break;

case id_func1: func1();

break;

}

}

Thus instead of doing the call by the function pointer, it is done by the switch.

Note that this method can be automated using the pre-processor. The pre-processor can help
generate the enum and the switch table automatically. The idea is to create a single file which
can be viewed as a ”unique C declaration data base”. This is a very clean and portable
method.

The following is a description of this method. For example it is possible to define the table in a
separate file called tab.rtl:

DEF (func0)

DEF (func1)

where DEF is a macro that will be redefined at pre-processor level as necessary. Note that
more attributes can be associated to a given function, using a macro definition with more pa-
rameters.

Then in a file (here pointer.c) where the array needs to be used :

#undef DEF

#define DEF(A) id_ ## A, <= redefine DEF to generate the enum

enum action

{

#include ”tab.rtl”

45/98

Second example: the ST92R195

};

#undef DEF

#define DEF(A) { id_ ## A }, <= redefine DEF to generate the array

const enum action Tab_func[] =

{

#include ”tab.rtl”

};

#undef DEF

#define DEF(A) {void A(void)), <= redefine DEF to generate prototypes

#include ”tab.rtl”

void Select_action(enumaction);

void main(void)

{

enum action pf;

pf = Tab_func[0]; <= select the function to execute

Select_action(pf);

}

void Select_action(enumaction x)

{

switch (x) <= treat the function to execute according

{ to array.

#undef DEF

#define DEF(A) case id_ ## A: A(); break;

#include ”tab.rtl”

default: fatal();

}

}

void func0(void)

{return;}

void func1(void)

{return;}

The code generated by the C pre-processor is:
1 ”pointer.c”

enum action

{

1 ”tab.rtl” 1

46/98

Second example: the ST92R195

id_func0,

id_func1,

5 ”pointer.c” 2

};

const enum action Tab_func[] =

{

1 ”tab.rtl” 1

{ id_func0 },

{ id_func1 },

12 ”pointer.c” 2

};

void func0(void);

void func1(void);

void Select_action(enumaction);

void main(void)

{

enum action pf;

pf = Tab_func[0];

Select_action(pf);

}

void Select_action(enumaction x)

{

switch (x)

{

1 ”tab.rtl” 1

case id_func0: func0(); break;

case id_func1: func1(); break;

32 ”pointer.c” 2

default: fatal();

}

}

void func0(void)

{return;}

void func1(void)

{return;}

Of course, this can be applied to a more complete table containing several elements, not just
the pointer.

47/98

Second example: the ST92R195

5.4 MANAGING DATA

There is no automatic management of DPRs in the V4.2 compiler. The DPR positioning is left
up to the user.

Taking the example of the ST92R195 we have:

– DPR3 can be fixed to point to the RAM page (page 83h) for stack and variable accesses in
RAM

– DPR2 can be fixed to point to the TDSRAM page (page 8Ah) for OSD and Teletext variables

– DPR0 and DPR1 are free for managing the constants in various pages of ROM

DPR3 and DPR2 will never be modified during program execution. Thus, the initialization of
their value will only be done once.

For DPR0 and DPR1 two solutions are possible:

– Group DPR0-1 and have access to two contiguous 16 Kbyte pages
This case is advantageous because the granularity of the memory is 32K, and data transfers
are supposed to be done from ROM to RAM or TDSRAM only.

– Use DPR0 and DPR1 separately
In this case, it will be necessary to map all the constants by blocks of 16 Kbytes only. The
advantage is you can scan a graph in ROM for example, and access data in ROM in another
segment, at the same time.

The second case is not recommended for the ST92R195, because it makes using the DPRs
more difficult and may generate software errors. It would limit the maximum data size to 16
Kbytes. Code maintainability may also be more difficult.

In the ST92R195, memory usage is as follows:

– RAM: less than 16 Kbytes (512bytes)., thus only one DPR can be used, it is fixed.

– TDSRAM: less than 16 Kbytes (8 Kbytes), thus only one DPR can be used, it is fixed.

– ROM More than 64 Kbytes will be used, two DPRs are left free for the ROM, their contents
can be modified depending on the ROM accessing requirements.

Note also that transfers should occur only either from ROM to RAM, from ROM to TDSRAM,
or in either direction between RAM and TDSRAM.

The proposed scheme is to group DPR0 and DPR1. Thus, the granularity will be 32 Kbytes for
the data. Then, all data transfer (as described above) can be easily implemented just by mod-
ifying the DPR0 and DPR1 as needed.

This scheme will be implemented in the example.

The application example presented here shows access to data located in 4 different seg-
ments, 0, 1, 2 and 3.

48/98

Second example: the ST92R195

It uses a 256 Kbyte external ROM, and the on-chip RAM and TDSRAM.

The mapping used is as follows:

Internal Memory External Memory

RAM
no memory

no memory

ROM
data

no memory

TDSRAM

no memory

ROM
code

ROM
data

ROM
data & code

ROM
data

ROM
data

ROM
code

Segment 0

Segment 1

Segment 2

Segment 3

Segment 20

Segment 22

DPR1 = 05
DPR0 = 04

DPR1 = 01
DPR0 = 00

DPR1 = 03
DPR0 = 02

DPR1 = 07
DPR0 = 06

DPR1 = 09
DPR0 = 08

DPR1 = 0Bh
DPR0 = 0Ah

DPR1 = 0Dh
DPR0 = 0Ch

DPR1 = 0Fh
DPR0 = 0Eh

DPR3 = 83h

DPR2 = 8Ah

49/98

Second example: the ST92R195

5.4.1 C and Assembly directives for managing the data

The assembler provides directives for accessing the page and offset of a specific data.

For example, if Var is located at address 0x20FF00 then:
ld DPR0, #pag Var

ld R2, #pof Var <= #pof Var is a 14-bit address.

will load DPR0 with 0x83 (page 3 of segment 0x20) and R2 with the contents of Var from ad-
dress 0x20FF00.

The same thing is available in C, but using macros that refer to the pag & pof of the assem-
bler. This is:
PAG(Var);

POF(Var);

The result will be the same.

It must be understood that arrays of constants cannot be defined in C with these macros.

In the same way as for functions, they can be defined in assembly.

Note also that if relocation is used, the POF macro is unnecessary because the offset of the
relocated variable will always correspond to the correct DPR access.

5.4.2 Managing the data pointer changes

The ideal would to minimize the DPR modifications.

A very clean way of programming with the constraint of the DPRs would be, for functions that
need to call far variables, to pass the DPR contents as a parameter of the function itself.

For example:
typedef struct fardata

{

unsigned char dpr;

unsigned char *var; <= or even better: void * var;

};

unsigned char STRING1[] = ”This is an example of constant data”;

void main()

{

fardata Var1 ;

...

Var1.dpr = PAG(STRING1);

Var1.var = STRING1;

function_x(Var1)

...

}

50/98

Second example: the ST92R195

void function_x(fardatafar_var)

{

spp(MMU_PG); <= set page 21 for MMU register page

DPR0_P = (far_var.dpr) & 0xFE; <= get DPR0 value

DPR1_P = DPR0_P + 1; <= set DPR1 depending on DPR0 value

...

normal access to far_var variable which is now covered by the DPRs

...

}

DPR0 is ANDed with 0xFE in order to take the even value of the page, DPR0 having always
even values and DPR1 odd ones.

In this example the function function_x will be able to access data located in any page.

This is what is implemented in the file DISPLAY.C. In the example, the menu is split into dif-
ferent files, and these files are mapped in various blocks. This implementation allows you to
map the constants without having to worry where they are mapped. Refer to it for a detailed
example.

Note : This is feasible only because of the chosen memory mapping. The ROM is always ac-
cessed using DPR0 & DPR1 grouped together to form contiguous 32 Kbytes blocks. The RAM
and the TDSRAM are always accessible through DPR3 and DPR2, which are fixed.

Looking at the first application example, the modifications are the following (in bold charac-
ters):

In routine Display_String:
unsigned char * Display_String(unsignedchar *pointer,

fardata string_pointer)

{

SAVE_PAGE; /* Store the Page register */

spp(MMU_PG); /* Set the MMU page (21) */

SAVE_DPR; /* Save the old DPR0 & 1 */

DPR0_P = string_pointer.dpr& 0xFE; /* Set DPR0 to the struct DPR value */

DPR1_P = DPR0_P + 1; /* Set DPR1 contiguous to DPR0 */

while (*string_pointer.var != ’\0’)

pointer = write_character(pointer, *string_pointer.var++);

RESTORE_DPR; /* Restore the DPR0 & 1 */

RESTORE_PAGE; /* Restore the register page */

return pointer; /* Return the incremented address */

}

51/98

Second example: the ST92R195

In routine Show_Menu:

void Show_Menu()

{

unsigned char *j;

fardata x;

Clear_DRAM_Row(10); /* Clear OSD rows */

Clear_DRAM_Row(11);

Clear_DRAM_Row(12);

j = get_DRAM_address(DISPLAY_CHARACTERS,ROW_10);

j = j + 10;

x.var = (unsigned char *) ST92195_STRING; /* Init. the fardata struct */

x.dpr = PAG(ST92195_STRING);

Display_String(j, x); /* Copy the string in TDSRAM */

5.4.3 Data Page Registers and Port Data Registers

In the example the Data Page Registers are located in page 21 of the paged registers (group
F). The port Data Registers are thus located as on ST9, in the system register group, and are
always accessible without having to set a page.

In a structured ST9 application, the page is modified only when accessing peripherals. This al-
lows you to have an application based on:

– High level software routines: Main algorithms, independent of peripherals (either internal or
external hardware).

– Low level software routines: Routines for peripherals and hardware management.

In the ST9, the high level routines do not modify the peripherals, they thus never modify the
Page Pointer (R234) in system register group. The low level routines can then modify the
Page Pointer without having to fear a loss of context in the high level routines.

In the ST9+, if the DPRs are mapped in page 21, the Page Pointer will be modified by the High
Level routines. Thus, the low level routines that modify the Register Page will now have to
save the Page Pointer before modifying it and then restore it before exiting the routine.

52/98

Second example: the ST92R195

5.5 MAPPING THE APPLICATION WITH THE SCRIPTFILE

The scriptfile used for the example is the following:
OUTPUT_FORMAT(”a .out-st9”)

OUTPUT_ARCH(st9)

INPUT(crt9.o const.o main.o display.o code04.o code08.o automat.o)

MEMORY { /* Define your memory mapping */

CODE00 : ORIGIN = 0x000000, LENGTH = 64K, MMU = NO NO NO NO

DATA_CODE04 : ORIGIN = 0x010000, LENGTH = 32K, MMU = DPR0 DPR1

DATA06 : ORIGIN = 0x018000, LENGTH = 32K, MMU = DPR0 DPR1

CODE08 : ORIGIN = 0x020000, LENGTH = 32K, MMU = DPR0 DPR1

DATA0A : ORIGIN = 0x028000, LENGTH = 32K, MMU = DPR0 DPR1

DATA0C : ORIGIN = 0x030000, LENGTH = 32K, MMU = DPR0 DPR1

DATA0E : ORIGIN = 0x038000, LENGTH = 32K, MMU = DPR0 DPR1

RAM : ORIGIN = 0x20FF00, LENGTH = 256

TDSRAM : ORIGIN = 0x228000, LENGTH = 8K

}

SECTIONS {

_stack_size = DEFINED(_stack_size) ? _stack_size : 40;

_user_stack_size = DEFINED(_user_stack_size)? _user_stack_size : 40;

.text : {

_text_start = .;

crt9.o(.text)

display.o(.text)

main.o(.text)

_etext = .;

DO_OPTION_I;

_text_end = .;

} >CODE00

dat_cd04.bk9 :{

const.o(.data)

code04.o(.text)

automat.o(.text)

automat.o(.data)

} > DATA_CODE04

data06.bk9 :{

} > DATA06

53/98

Second example: the ST92R195

code08.bk9 :{

code08.o(.text)

*(.text)

} > CODE08

data0a.bk9 :{

menu1.o(.data)

} > DATA0A

data0c.bk9 :{

menu2.o(.data)

} > DATA0C

data0e.bk9 :{

menu3.o(.data)

} > DATA0E

.data :{

_data_start = .;

*(.data)

_data_end = .;

} >RAM

.bss : {

_bss_start = .;

*(.bss COMMON)

_ebss =.;

_bss_end = .;

_stack_start = DEFINED(_stack_start)?

_stack_start : .;

_stack_end = _stack_start + _stack_size;

_user_stack_start = DEFINED(_user_stack_start)?

_user_stack_start : _stack_end;

_user_stack_end = _user_stack_start + _user_stack_size;

} >RAM

}

Note that if you want to use a 64 Kbyte block instead of 32 Kbyte blocks, it will only be possible
to map code (not data) in these blocks. The maximum data block granularity being 32 Kbytes.

54/98

Second example: the ST92R195

5.6 LIBRARIES

The V4.2 version of the compiler provides a complete set of libraries, depending on the dif-
ferent compilation and link options. It is very important to select the correct libraries that will be
linked with the application.

Refer to the V4.2 release note for the various libraries available.

In the example, the libraries used were:

– STDR9F.L

– LIBR9F.L

What must be understood is that because the far memory model is chosen, the libraries will
also have to be far, that is, called with calls and returned with rets .

It is also important to note that the objects extracted from the libraries will be placed by the
linker at the very end of the .text section. To be precise, they are placed in the segment that
contains the *(.text) in the scriptfile.

The libraries also contain some initialized variables (.data). These variables need to be
mapped correctly in the scriptfile.

5.7 THE COMPILER AND LINKER OPTIONS

For the compiler the options are:

-mfar : For far function memory model

-mlink : For ST9+ new instructions

-g : Get debug options

-O : Set the optimizer on

-tr9 : Use tr9 during compilation chain

-fomit-frame-pointer : Avoid frame pointer when not needed

-Wall : Get all possible warnings

-Wa,-ahld : Get a listing file

For the linker the options are:

-m : Generate a map file

-T : Use a scriptfile

-I : Get copy of init variables at startup

-mmu : Allow relocation and far memory model

55/98

Second example: the ST92R195

5.8 APPLICATION FILES

The necessary application files:

– MAKEFILE The file needed to make the application

– MAKEDEP The dependency description file

– MAIN.C Contains the main routine

– CONST.C Contains some CONSTANTS definition

– AUTOMAT.C Contains the various automaton routines

– MENU1.C Contains one menu line (constant string)

– MENU2.C Contains one menu line (constant string)

– MENU3.C Contains one menu line (constant string)

– CODE04.C Contains some routines of the automaton

– CODE08.C Contains some routines of the automaton

– DISPLAY.C Contains the OSD routines

– CRT9.ASM The startup file, contains the interrupt vectors, and calls main
it also initializes the ST9+ correctly

– ST92R195.SCR The scriptfile, contains the memory mapping description

– ST92R195.U The executable needed by the debugger

– ST92R195.HEX The hexadecimal file needed to program EPROM/OTPs

In addition, all header files and some ST9 macros are used and defined in:

ST9MACRO, DISPLAY.H, NEWREG.H, MMU.H, DEFINE.H and OSD_CONST.H.

5.9 THE DEBUGGER CONFIGURATION FILE

The scriptfile will generate the *.bk9 files. These files correspond to the various segments to
be loaded by the debugger. A file name ST92R195.BL9 was also created by the linker. It con-
tains the loading order of each *.bk9 file needed by the debugger. To force the load of the seg-
ments when loading the application with the debugger, a file needs to be created with the
same name as the executable (here ST92R195.U), with extension .GDB.

This file must contain:
source ST92R195.BL9

The debugger will first load the HARDWARE.GDB file then the ST92R195.u and finally the
ST92R195.GDB.

56/98

APPENDIX - SOURCE FILES

6 APPENDIX - SOURCE FILES

6.1 COMMON SOURCE FILES

6.1.1 DEFINE.H

/*************** ***

DEFINE.H HEADER FILE

================

This file contains:

- The declaration of the automaton type

- Several definitions

---------------- -----------

Author: Thierry CRESPO

Company: STMicroelectronics

Version: V1.0

Date: 25/02/97

---------------- ------------

**************** ***/

#define ON 1

#define OFF 0

#define FALSE 0

#define TRUE 1

#define UP 0x01

#define DOWN 0x02

#define ESCAPE 0x04

#define SET_MENU 0x05

#define BIT0 0x01

#define BIT1 0x02

#define BIT2 0x04

#define RED 0x1F

#define BLUE 0x4F

#define ORANGE 0x02

#define GREEN 0x2F

#define MAX_STATES 20

typedef struct automaton {

unsigned char state;

unsigned char event;

57/98

APPENDIX - SOURCE FILES

unsigned char action;

unsigned char next_state;

} AUTOMATON;

typedef struct fdata{

unsigned char dpr;

unsigned char *var;

} fardata;

6.1.2 MMU.H
/*************** ***/

/* ST9+ family MMU control registers release 1.0 */

/* ST9+ family MMU Control Register */

/* */

/*************** ***/

/*************** *************************/

/* MMU CONTROL REGISTERS DEFINITION */

/*************** *************************/

#define MMU_PG ((unsigned char)21) /* MMU control registers page */

register unsigned char DPR0 asm(”R224”);

register unsigned char DPR1 asm(”R225”);

register unsigned char DPR2 asm(”R226”);

register unsigned char DPR3 asm(”R227”);

/* MMU data page registers located in the page 21 */

register unsigned char DPR0_P asm(”R240”);

register unsigned char DPR1_P asm(”R241”);

register unsigned char DPR2_P asm(”R242”);

register unsigned char DPR3_P asm(”R243”);

register unsigned int DPR01_P asm(”RR240”);

register unsigned int DPR23_P asm(”RR242”);

/* MMU code segment register */

register unsigned char CSR asm(”R244”);

/* MMU interrupt segment register */

register unsigned char ISR asm(”R248”);

/* MMU DMA segment register */

58/98

APPENDIX - SOURCE FILES

register unsigned char DMASR asm(”R249”);

/* MMU configuration registers */

register unsigned char EMR1 asm(”R245”);

#define EMR1_mc ((unsigned char)0x40) /* mode control */

#define EMR1_ds2n ((unsigned char)0x20) /* data strobe 2 enable */

#define EMR1_asaf ((unsigned char)0x10) /* address strobe as alternate

function */

#define EMR1_nmb ((unsigned char)0x08) /* no multiplexed bus */

#define EMR1_eto ((unsigned char)0x04) /* external toggle */

#define EMR1_bsz ((unsigned char)0x02) /* bus size */

#define EMR1_romless ((unsigned char)0x01) /* romless */

register unsigned char EMR2 asm(”R246”);

#define EMR2_bromless ((unsigned char)0x80) /* Boot-Romless */

#define EMR2_encsr ((unsigned char)0x40) /* ENable Code Segment register

*/

#define EMR2_dprrem ((unsigned char)0x20) /* data Page register Reapped */

#define EMR2_memsel ((unsigned char)0x10) /* MEMory SELect */

#define EMR2_pas ((unsigned char)0x0C) /* Program memory Address strobe

Stretch */

#define EMR2_das ((unsigned char)0x03) /* Data memory Address strobe

stretch */

#define SET_DPR_SYSTEMEMR2 |= EMR2_dprrem

#define SEG(f) ({ \

unsigned char __seg; \

asm(”ld %0, #seg %1” : ”=r”(__seg) : ”m”(f)); \

__seg; \

})

#define SOF(f) ({ \

void *__sof; \

asm(”ldw %0, #sof %1” : ”=r”(__sof) : ”m”(f)); \

__sof; \

})

#define PAG(f) ({ \

unsigned char __pag; \

59/98

APPENDIX - SOURCE FILES

asm(”ld %0, #pag %1” : ”=r”(__pag) : ”m”(f)); \

__pag; \

})

#define POF(f) ({ \

void *__pof; \

asm(”ldw %0, #pof %1” : ”=r”(__pof) : ”m”(f)); \

__pof; \

})

/* Inter-segment function call through a 3 byte pointer:

StructFuncAddress x;

...

x = AddressOf (func);

...

FarCall (x);

*/

/* 3 byte structure hosting a far function pointer */

typedef struct {

unsigned char seg;

void *sof;

} StructFuncAddress;

/* Operator creating a temporary object of type StructFuncAddress */

#define AddressOf(f) (StructFuncAddress){ SEG(f), SOF(f) }

/* Call through a StructFuncAddresspointer */

#define FarCall(f) asm(”calls (%0),(%1)” : : ”r”(f.seg),

”r”(f.sof))

#define FarCallPointer(f) FarCall(f)

60/98

APPENDIX - SOURCE FILES

6.1.3 ST9MACRO.H
/*************** ***

ST9MACRO.H header FILE

======================

This file contains macros used in the C

---------------- -----------

Author: Thierry CRESPO

Company: STMicroelectronics

Version: V1.0

Date: 25/02/97

---------------- ------------

**************** ***/

/*************** **********************/

/* C macros for inline assembly code */

/*************** **********************/

#define halt() asm(”halt”); /* halt instruction */

#define spm() asm(”spm”); /* set program memory */

#define sdm() asm(”sdm”); /* set data memory */

#define ei() asm(”ei”); /* enable interrupts*/

#define di() asm(”di”); /* disable interrupts*/

#define NOP asm (”nop”); /* 6 cycle clock tempo */

#define SAVE_PAGE asm(”pushu R234”);

#define RESTORE_PAGE asm(”popu R234”);

/*************** **/

/* C macros for inline assembly code with an operand */

/*************** **/

/* set page pointer to value page */

#define spp(page) asm(”spp %0”:: ”i” (page));

/* set working register pointer to value bank */

#define srp(bank) asm(”srp %0”:: ”i” (bank));

/* load a value to a working register */

#define ldw_rr_xx(reg,value) asm(”ldw rr%Q0,%1”:: ”i” (reg) ,”RR” (value));

61/98

APPENDIX - SOURCE FILES

#define RESTORE_DPR asm(”popw RR240”);

#define SAVE_DPR asm(”pushw RR240”);

6.1.4 DISPLAY.H
/*************** ********STMicroelectronics ************************

FILENAME : DISPLAY.H

VERSION : V0.0

DATE : February 20, 1997

AUTHOR(s) : Thierry CRESPO

PROCESSOR : ST92195

DESCRIPTION : This module contains constant definitions and function

prototypes.

MODIFICATIONS:

-

-

-

**************** **

*/

unsigned char *write_character(unsignedchar *, unsigned char);

const unsigned char *write_MBT_BUFFER(constunsigned char *);

void Init_Display(void);

void Enable_Display(unsignedchar);

void Disable_Display(unsignedchar);

unsigned char *get_DRAM_address(unsignedchar, unsigned char);

void Show_Menu();

void Clear_Menu();

#define DISPLAY_CHARACTERS0x00

#define DISPLAY_ATTRIBUTES 0xFF

#define ROW_ALL 0xFF

#define ROW_1 1

#define ROW_2 2

#define ROW_3 3

#define ROW_4 4

#define ROW_5 5

#define ROW_6 6

#define ROW_7 7

#define ROW_8 8

#define ROW_9 9

#define ROW_10 10

#define ROW_11 11

#define ROW_12 12

#define ROW_13 13

62/98

APPENDIX - SOURCE FILES

#define ROW_14 14

#define ROW_15 15

#define ROW_16 16

#define ROW_17 17

#define ROW_18 18

#define ROW_19 19

#define ROW_20 20

#define ROW_21 21

#define ROW_22 22

#define ROW_23 23

#define FLASH 0x08

#define STEADY 0x09

#define HORIZONTAL_DELAY 0x30

#define HORIZONTAL_POSITION0x70

#define VERTICAL_POSITION0x0E

6.2 THE FIRST APPLICATION EXAMPLE SOURCE FILES : THE ST92195

6.2.1 MAIN.C
/*************** ********STMicroelectronics ************************

FILENAME : MAIN.C

VERSION : V1.0

DATE : February 20, 1997

AUTHOR(s) : Thierry CRESPO

PROCESSOR : ST92195

DESCRIPTION : This file contains:

- the main routine

- the Wait_For_Event routine

The purpose of the main is to do an infini te loop waiting for

events and to treat the received events depending on the

automaton.

MODIFICATIONS:

**************** ***/

#include ”define.h”

#include ”display.h”

#include ”st9macro.h”

#include <stdlib.h>

char Wait_For_Event();

63/98

APPENDIX - SOURCE FILES

void Wait_For_Second(unsignedchar);

AUTOMATON Run_Automaton(AUTOMATON);

/*************** ***

Variable Definitions

**************** **/

extern const struct automaton AUTOMATON_TABLE[9];

char Init_var []=” THIS IS AN INITIALIZED VARIABLE ”;

AUTOMATON OSD_Menu;

/*************** **

void main(void)

Object: Contains the main routine. It init ializes the variables,

waits for an input event, when an input event is

received, it scans the automaton table, then modifies the

state of tit calls the automaton and does the loop forever.

input: none

output: none

**************** ***/

void main() {

Init_Display();

OSD_Menu.state = OFF; /* Initialization of the automaton */

OSD_Menu.event = SET_MENU; /* Set first Event to show the menu */

OSD_Menu = Run_Automaton(OSD_Menu); /* Perform Initial ization of Menu */

while(1) {

OSD_Menu.event = Wait_For_Event(); /* Wait for an input Event */

/* Return the event */

OSD_Menu = Run_Automaton(OSD_Menu);/* Perform Automaton depending on */

/* Event

received */

}

}

/*************** **

AUTOMATON Run_Automaton(AUTOMATONmenu)

Object: This routine scan the automaton depending on the

64/98

APPENDIX - SOURCE FILES

state and event of the current automaton.

It returns the updated automaton.

input: AUTOMATON

output: AUTOMATON => updated automaton

**************** ***/

AUTOMATON Run_Automaton(AUTOMATONmenu)

{

unsigned char count;

count = 0; /* Counter to scan au-

tomaton table */

while(1) /* Scan the AUTOMATON table to */

{ /* find the corresponding one */

if ((menu.state == AUTOMATON_TABLE[count].state)

&& (menu.event == AUTOMATON_TABLE[count] .event)){

/* Get the state and event */

/* Udate the automaton */

/* Perform the action */

menu.action = (void *) AUTOMATON_TABLE[count].action;

menu.state = AUTOMATON_TABLE[count].next_state;

menu.action();

return (menu);

}

else count++;

if (count >= MAX_STATES) return(menu); /* If table overflow

*/

}

return(menu);

}

/*************** **

char Wait_For_Event(void)

Object: The routine selects a random char value, if this value

corresponds to a event (01, 02, 04) then it returns

the event number. It loops until a event is found

input: none

output: Event => a char, the event

65/98

APPENDIX - SOURCE FILES

Events can be:

UP

DOWN

ESCAPE

SET_MENU

**************** ***/

char Wait_For_Event() {

char Event;

while(1) {

Event = (char) rand(); /* Get a random char */

switch (Event) {

case UP:

{

Wait_For_Second(4);

return(UP); /* Return event is same */

}

case DOWN:

{

Wait_For_Second(4);

return(DOWN);

}

case ESCAPE:

{

Wait_For_Second(4);

return(ESCAPE);

}

case SET_MENU:

return(SET_MENU);

default:break;

}

}

}

/*************** **

void Wait_For_Second(unsignedchar number)

This routine does a tempo

Input: number => approximate number of seconds to wait

Ouput: none

**************** **/

66/98

APPENDIX - SOURCE FILES

void Wait_For_Second(unsignedchar number)

{

unsigned int i;

while (number != 0)

{

for (i=0xfff2; i!=0; i--)

{

asm(”nop”);

asm(”nop”);

asm(”nop”);

asm(”nop”);

asm(”nop”);

}

number--;

}

}

6.2.2 ACTIONS.C
/*************** ***

ACTION.C SOURCE FILE

====================

This file contains all the functions implementing

the actions of the automaton.

---------------- -----------

Author: Thierry CRESPO

Company: STMicroelectronics

Version: V1.0

Date: 25/02/97

---------------- ------------

**************** ***/

#include ”define.h”

#include ”display.h”

#include ”st9macro.h”

void Red_to_Blue();

void Blue_to_Red();

void Blue_to_Green();

void Green_to_Blue();

void Green_to_Red();

67/98

APPENDIX - SOURCE FILES

void Switch_Attr(char, char);

/*************** **

void Switch_Attr(char, char);

Object: Set a port bit high or low

input: the bort bit (char), the status (char)

output: none

**************** ***/

void Switch_Attr(char color, char state)

{

unsigned char *j;

unsigned char row_number = RED;

switch (color)

{

case RED: row_number = 10;

break;

case BLUE: row_number = 11;

break;

case GREEN: row_number = 12;

break;

default:

break;

}

if (state == ON)

{

j = get_DRAM_address(DISPLAY_ATTRIBUTES,row_number);

j = j + 9;

j = write_character(j,0xA0);

}

else

{

j = get_DRAM_address(DISPLAY_ATTRIBUTES,row_number);

j = j + 9;

j = write_character(j,0x80);

}

}

68/98

APPENDIX - SOURCE FILES

/*************** **

Object: Toggle the Attr to obtain the state

corresponding to the AUTOMATON table

input: none

output: none

**************** ***/

void Red_to_Green(){

Switch_Attr(GREEN, ON);

Switch_Attr(RED, OFF);

}

void Red_to_Blue(){

Switch_Attr(BLUE, ON);

Switch_Attr(RED, OFF);

}

void Blue_to_Red(){

Switch_Attr(BLUE, OFF);

Switch_Attr(RED, ON);

}

void Blue_to_Green(){

Switch_Attr(BLUE, OFF);

Switch_Attr(GREEN, ON);

}

void Green_to_Blue(){

Switch_Attr(GREEN, OFF);

Switch_Attr(BLUE, ON);

}

void Green_to_Red(){

Switch_Attr(GREEN, OFF);

Switch_Attr(RED, ON);

}

6.2.3 CONST.C
/*************** ***

CONST.C SOURCE FILE

================

This file contains:

- The automaton table to be put in ROM

- The CONSTANT TABLE for On Screen Display

---------------- -----------

69/98

APPENDIX - SOURCE FILES

Author: Thierry CRESPO

Company: STMicroelectronics

Version: V1.0

Date: 25/02/97

---------------- ------------

**************** ***/

#include ”define.h”

#include ”display.h”

extern void Clear_Menu();

extern void Red_to_Green();

extern void Red_to_Blue();

extern void Blue_to_Red();

extern void Blue_to_Green();

extern void Green_to_Blue();

extern void Green_to_Red();

const char CONSTANT1[]=”THIS IS THE FIRST CONSTANT”;

const char BLANK[]=” ”;

const char CONSTANT2[]=”THIS IS THE SECOND CONSTANT”;

const struct automaton AUTOMATON_TABLE[MAX_STATES]= {

{RED, UP, (void *) &Red_to_Green,GREEN},

{RED, DOWN, (void *) &Red_to_Blue,BLUE},

{RED, ESCAPE, (void *) &Clear_Menu,OFF},

{OFF, SET_MENU, (void *) &Show_Menu,RED},

{BLUE, UP, (void *) &Blue_to_Red,RED},

{BLUE, DOWN, (void *) &Blue_to_Green,GREEN},

{BLUE, ESCAPE, (void *) &Clear_Menu,OFF},

{GREEN, UP, (void *) &Green_to_Blue,BLUE},

{GREEN, DOWN, (void *) &Green_to_Red,RED},

{GREEN, ESCAPE, (void *) &Clear_Menu,OFF},

};

const unsigned char ST92195_STRING[]= ”ST92195 Application Note”;

const unsigned char THOMSON_STRING[]= ” STMicroelectronics ”;

const unsigned char DEMO_STRING[] = ” DEMO ”;

70/98

APPENDIX - SOURCE FILES

6.2.4 DISPLAY.C
/*************** ********STMicroelectronics ************************

FILENAME : DISPLAY.C

VERSION : V0.0

DATE : February 20, 1997

AUTHOR(s) : Thierry CRESPO

PROCESSOR : ST92195

DESCRIPTION : This file contains the source code for the On Screen Display

Driver.

MODIFICATIONS:

**************** **

*/

#include ”define.h”

#include ”display.h”

#include ”newreg.h”

#include ”st9macro.h”

#include ”osd_cons.h”

/

**************** **

*

INPUTS : none

OUTPUTS : ST9 OSD registers

DESCRIPTION: This function initializes the display cell for both TV mode (Menu,

Stats...) and Teletext mode.

**************** **

*/

void Init_Display(void)

{

unsigned int i;

spp(SCCR_PG); /* Select synchro controller page */

CSYCT = 0x00; /* Select VSYNC and HSYNC from VSYNC and HSYNC inputs (not

from CVBS) */

/* Select HSYNC and VSYNC polarity as well as the phase

delay */

/*between HSYNC and VSYNC which is chassis hardware

dependant */

CSYSU = 0xc4;

spp(TCCR_PG);

SKCCR = 0x0A;

for (i=0x1fff ; i!=0 ; i--);

SKCCR = 0x8a;

71/98

APPENDIX - SOURCE FILES

for (i=0x1fff ; i!=0 ; i--);

PXCCR = 0x80;

SLCCR = 0x80;

spp(TDSRAMC2_PG);

CONFIG = 0x07;

spp(DCR1_PG);

HBLANK = HORIZONTAL_DELAY;

HPOS = HORIZONTAL_POSITION;

VPOS = VERTICAL_POSITION;

FSC = 0xaf;

HSC = 0x3f; /* header,status 1,2 enable */

NCS = 0x07;

CHPOS = 0x99;

CVPOS = 0x00;

SCL = 0x00; /* SCROLLING DISABLE */

SCH = 0x2F;

DCM0R = 0x84; /* display en,semitransparent en,fr inge en,conceal en,global

fringe en,global rounding en,screen format,single/double*/

DCM1R = 0x0d;

TDSRAML = 0x80;

HSC = 0x0;

DE0 = 0x0;

DE1 = 0x0;

DE2 = 0x0;

spp(DCR2_PG);

DC = 0x7F;

}

/

**************** **

*

INPUTS : Row number to display

OUTPUTS : ST9 OSD registers

DESCRIPTION: This function displays a row.

**************** **

*/

void Enable_Display(unsignedchar row_number)

{

unsigned char i, j; /* Temporary storage */

/* Set bit position depending on the row number */

for (i=1, j=row_number; j>1; j--)

72/98

APPENDIX - SOURCE FILES

asm (”rol %0” : :”r”(i));

/* Enable selected row */

spp(DCR1_PG);

if (row_number == ROW_ALL)

{

DE0 = 0xff;

DE1 = 0xff;

DE2 = 0xff;

return;

}

if (row_number <= ROW_8)

{

DE0 = DE0 | i;

return;

}

if (row_number <= ROW_16)

{

DE1 = DE1 | i;

return;

}

if (row_number <= ROW_23)

{

DE2 = DE2 | i;

}

}

/

**************** **

*

INPUTS : Row number to display

OUTPUTS : ST9 OSD registers

DESCRIPTION: This function displays a row.

**************** **

*/

void Disable_Display(unsignedchar row_number)

{

unsigned char i, j; /* Temporary storage */

/* Set bit position depending on the row number */

for (i=1, j=row_number; j>1; j--)

asm (”rol %0” : :”r”(i));

/* Disable selected row */

spp(DCR1_PG);

if (row_number == ROW_ALL)

73/98

APPENDIX - SOURCE FILES

{

DE0 = 0x00;

DE1 = 0x00;

DE2 = 0x00;

return;

}

if (row_number <= ROW_8)

{

DE0 = DE0 & ~i;

return;

}

if (row_number <= ROW_16)

{

DE1 = DE1 & ~i;

return;

}

if (row_number <= ROW_23)

{

DE2 = DE2 & ~i;

}

}

/

**************** **

*

INPUTS : Row number

OUTPUTS : DRAM position

DESCRIPTION: This function returns the DRAM location to start with according

to the row number.

**************** **

*/

unsigned char *get_DRAM_address(unsignedchar selection, unsigned char

row_position)

{

if (selection == DISPLAY_CHARACTERS)

return (unsigned char *)(0x8000 + ((row_posi tion - 1) * 40));

else

return (unsigned char *)(0x8400 + ((row_posi tion - 1) * 40));

}

/

**************** **

*

INPUTS : Character chain pointer

OUTPUTS : Character chain pointer

DESCRIPTION: This function copies the character chain into the

74/98

APPENDIX - SOURCE FILES

Multi byte transfer buffer.

**************** **

*/

const unsigned char *write_MBT_BUFFER(constunsigned char *cha_pointer)

{

unsigned char i;

spp(TDSRAMC0_PG);

asm volatile (” ld %0,#0xf0

repeat1:

ld (%0)+,%1+

cp %0,#0

jxnz repeat1 ” :”=r”(i) :”m”(*cha_pointer));

spp(TDSRAMC1_PG);

asm volatile (” ld %0,#0xf0

repeat2:

ld (%0)+,%1+

cp %0,#0

jxnz repeat2 ” :”=r”(i) :”m”(*cha_pointer));

spp(TDSRAMC2_PG);

asm volatile (” ld %0,#0xf0

repeat3:

ld (%0)+,%1+

cp %0,#0xf8

jxnz repeat3 ” :”=r”(i) :”m”(*cha_pointer));

BUFC = 0x01;

asm(” nop

nop ”);

while(BUFC & 0x01)

asm(”nop”);

return cha_pointer;

}

/

**************** **

*

INPUTS : DRAM pointer - Point the location to start with

Character to write into the DRAM

OUTPUTS : Return the next DRAM location

DESCRIPTION: This function writes the given character.

**************** **

*/

unsigned char *write_character(unsignedchar *pointer,

unsigned char character)

{

*pointer++ = character;

return pointer;

75/98

APPENDIX - SOURCE FILES

}

/

**************** **

*

INPUTS : .DRAM pointer - Point the location to start with

Character to write into the DRAM

.character

.number

OUTPUTS : Return the next DRAM location

DESCRIPTION: This function writes the given character.

**************** **

*/

unsigned char *write_character_n(unsignedchar *pointer,unsignedchar character

,unsigned char number)

{

while(number!=0)

{

pointer = write_character(pointer,character);

number--;

}

return pointer;

}

/

**************** **

*

INPUTS : DRAM pointer - Point the location to start with

String pointer - Point the first character to write into the DRAM

OUTPUTS : Return the next DRAM location

see write_character

DESCRIPTION: This function writes the given string.

**************** **

*/

unsigned char * Display_String(unsignedchar *pointer,

const unsigned char *string_pointer)

{

/* WARNING - do not modify working registers */

while (*string_pointer != ’\0’)

pointer = write_character(pointer, *string_pointer++);

return pointer;

}

/

**************** **

*

INPUTS : none

76/98

APPENDIX - SOURCE FILES

OUTPUTS : none

DESCRIPTION: This function clear a TDSRAM row in character area

**************** **

*/

void Clear_DRAM_Row(unsignedchar row_number)

{

unsigned char i;

unsigned char *j;

j = get_DRAM_address(DISPLAY_CHARACTERS,row_number);

for (i=40; i!=0; i--)

{

j = write_character(j,0x00);

}

j = get_DRAM_address(DISPLAY_ATTRIBUTES,row_number);

for (i=40; i!=0; i--)

{

j = write_character(j,0x20);

}

}

/

**************** **

*

INPUTS : none

OUTPUTS : none

DESCRIPTION: This function displays a simple menu

**************** **

*/

void Show_Menu()

{

unsigned char *j;

unsigned char *i;

Clear_DRAM_Row(10);

Clear_DRAM_Row(11);

Clear_DRAM_Row(12);

j = get_DRAM_address(DISPLAY_CHARACTERS,ROW_10);

j = j + 10;

i = (unsigned char *) ST92195_STRING;

Display_String(j, i);

j = get_DRAM_address(DISPLAY_ATTRIBUTES,ROW_10);

j = j + 8;

j = write_character(j,RED);

j = write_character(j,0xA0);

77/98

APPENDIX - SOURCE FILES

j = write_character_n(j,RED,24);

j = write_character(j,0x80);

j = get_DRAM_address(DISPLAY_CHARACTERS,ROW_11);

j = j + 10;

i = (unsigned char *) THOMSON_STRING;

Display_String(j, i);

j = get_DRAM_address(DISPLAY_ATTRIBUTES,ROW_11);

j = j + 8;

j = write_character(j,BLUE);

j = write_character(j,0x80);

j = write_character_n(j,BLUE,24);

j = write_character(j,0x80);

j = get_DRAM_address(DISPLAY_CHARACTERS,ROW_12);

j = j + 10;

i = (unsigned char *) DEMO_STRING;

Display_String(j, i);

j = get_DRAM_address(DISPLAY_ATTRIBUTES,ROW_12);

j = j + 8;

j = write_character(j,GREEN);

j = write_character(j,0x80);

j = write_character_n(j,GREEN,24);

j = write_character(j,0x80);

Enable_Display(ROW_10);

Enable_Display(ROW_11);

Enable_Display(ROW_12);

}

/

**************** **

*

INPUTS : none

OUTPUTS : none

DESCRIPTION: This function displays a simple menu

**************** **

*/

void Clear_Menu(void)

{

Disable_Display(ROW_10);

Disable_Display(ROW_11);

Disable_Display(ROW_12);

}

78/98

APPENDIX - SOURCE FILES

6.3 THE SECOND APPLICATION EXAMPLE SOURCE FILES : THE ST92R195

6.3.1 MAIN.C
/*************** ********STMicroelectronics ************************

FILENAME : MAIN.C

VERSION : V1.0

DATE : February 20, 1997

AUTHOR(s) : Thierry CRESPO

PROCESSOR : ST92R195

DESCRIPTION : This file contains:

- the main routine

- the Wait_For_Event routine

The purpose of the main is to do an infini te loop waiting for

events and to treat the received events depending on the

automaton.

MODIFICATIONS:

-

**************** **

*/

#include ”mmu.h”

#include ”define.h”

#include ”display.h”

#include ”st9macro.h”

#include <stdlib.h>

static char Wait_For_Event();

static void Wait_For_Second(unsignedchar);

extern AUTOMATON Run_Automaton(AUTOMATON);

/*************** ***

Variable Definitions

**************** **/

extern const struct automaton AUTOMATON_TABLE[9];

char Init_var []=” THIS IS AN INITIALIZED VARIABLE ”;

AUTOMATON OSD_Menu;

/

**************** **

*

FUNCTION : void main(void)

79/98

APPENDIX - SOURCE FILES

INPUTS : none

OUTPUTS : none

DESCRIPTION:

Contains the main routine. It initializes the varia-

bles,

waits for an input event, when an input event is

received, it scans the automaton table, then modifies the

state of tit calls the automaton and does the loop forever.

**************** ***/

void main() {

Init_Display();

OSD_Menu.state = OFF; /* Initialization of the automaton */

OSD_Menu.event = SET_MENU; /* Set first Event to show the menu */

OSD_Menu = Run_Automaton(OSD_Menu); /* Perform Initial ization of Menu */

while(1) {

OSD_Menu.event = Wait_For_Event(); /* Wait for an input Event */

/* Return the event */

OSD_Menu = Run_Automaton(OSD_Menu);/* Perform Automaton depending on */

/* Event

received */

}

}

/*************** **

FUNCTION : static char Wait_For_Event(void)

INPUTS : Row number to display

OUTPUTS : Event

DESCRIPTION:

The routine selects a random char value, if this value

corresponds to a event (01, 02, 04, 05 ...) then it returns

the event number. It loops until a event is found and

does a small tempo for visual effect.

Events can be:

UP

DOWN

ESCAPE

80/98

APPENDIX - SOURCE FILES

SET_MENU

**************** ***/

static char Wait_For_Event() {

unsigned char Event;

while(1) {

Event = (char) rand() % 6; /* Get a random char */

switch (Event) {

case UP:

{

Wait_For_Second(4);

return(UP); /* Return event is same */

}

case DOWN:

{

Wait_For_Second(4);

return(DOWN);

}

case ESCAPE:

{

Wait_For_Second(4);

return(ESCAPE);

}

case SET_MENU:

return(SET_MENU);

default:break;

}

}

}

/

**************** **

*

FUNCTION : static void Wait_For_Second(unsignedchar number)

INPUTS : number => approximate number of seconds to wait

OUTPUTS : none

DESCRIPTION: This routine does a tempo

**************** **/

static void Wait_For_Second(unsignedchar number)

{

unsigned int i;

while (number != 0)

{

81/98

APPENDIX - SOURCE FILES

for (i=0xfff2; i!=0; i--)

{

asm(”nop”);

asm(”nop”);

asm(”nop”);

asm(”nop”);

asm(”nop”);

}

number--;

}

}

6.3.2 DISPLAY.C

/*************** ********STMicroelectronics ************************

FILENAME : DISPLAY.C

VERSION : V1.0

DATE : February 20, 1997

AUTHOR(s) : Thierry CRESPO

PROCESSOR : ST92R195

DESCRIPTION : This file contains the source code for the On Screen Display

Driver.

MODIFICATIONS:

-

-

-

**************** **

*/

#include ”define.h”

#include ”display.h”

#include ”newreg.h”

#include ”st9macro.h”

#include ”osd_cons.h”

#include ”mmu.h”

/

**************** **

*

INPUTS : none

OUTPUTS : ST9 OSD registers

DESCRIPTION: This function initializes the display cell for both TV mode (Menu,

Stats...) and Teletext mode.

**************** **

*/

void Init_Display(void)

82/98

APPENDIX - SOURCE FILES

{

unsigned int i;

spp(SCCR_PG); /* Select synchro controller page */

CSYCT = 0x00; /* Select VSYNC and HSYNC from VSYNC and HSYNC inputs (not

from CVBS) */

/* Select HSYNC and VSYNC polarity as well as the phase

delay between */

/* HSYNC and VSYNC which is chassis hardware dependant

*/

CSYSU = 0xc4;

spp(TCCR_PG);

SKCCR = 0x0A;

for (i=0x1fff ; i!=0 ; i--);

SKCCR = 0x8a;

for (i=0x1fff ; i!=0 ; i--);

PXCCR = 0x80;

SLCCR = 0x80;

spp(TDSRAMC2_PG);

CONFIG = 0x03;

spp(DCR1_PG);

HBLANK = HORIZONTAL_DELAY;

HPOS = HORIZONTAL_POSITION;

VPOS = VERTICAL_POSITION;

FSC = 0xaf;

HSC = 0x3f; /* header,status 1,2 enable */

NCS = 0x07;

CHPOS = 0x99;

CVPOS = 0x00;

SCL = 0x00; /* SCROLLING DISABLE */

SCH = 0x2F;

DCM0R = 0x84; /* display en,semitransparent en,fringe en,con-

ceal en, */

/* global fringe en,global rounding

en,screen format,single/double */

DCM1R = 0x0d;

TDSRAML = 0x80;

HSC = 0x0;

DE0 = 0x0;

DE1 = 0x0;

DE2 = 0x0;

83/98

APPENDIX - SOURCE FILES

spp(DCR2_PG);

DC = 0x7F;

}

/

**************** **

*

INPUTS : Row number to display

OUTPUTS : ST9 OSD registers

DESCRIPTION: This function enables the display of a row.

**************** **

*/

void Enable_Display(unsignedchar row_number)

{

unsigned char i, j; /* Temporary storage */

SAVE_PAGE; /* Save the register page */

/* Set bit position depending on the row number */

for (i=1, j=row_number; j>1; j--)

asm (”rol %0” : :”r”(i));

/* Enable selected row */

spp(DCR1_PG);

if (row_number == ROW_ALL)

{

DE0 = 0xff;

DE1 = 0xff;

DE2 = 0xff;

RESTORE_PAGE; /* Restore the register page */

return;

}

if (row_number <= ROW_8)

{

DE0 = DE0 | i;

RESTORE_PAGE; /* Restore the register page */

return;

}

if (row_number <= ROW_16)

{

DE1 = DE1 | i;

RESTORE_PAGE; /* Restore the register page */

return;

}

if (row_number <= ROW_23)

{

84/98

APPENDIX - SOURCE FILES

DE2 = DE2 | i;

}

RESTORE_PAGE; /* Restore the register page */

}

/

**************** **

*

INPUTS : Row number to display

OUTPUTS : ST9 OSD registers

DESCRIPTION: This function disable the display of a row.

**************** **

*/

void Disable_Display(unsignedchar row_number)

{

unsigned char i, j; /* Temporary storage */

SAVE_PAGE; /* Save the register page */

/* Set bit position depending on the row number */

for (i=1, j=row_number; j>1; j--)

asm (”rol %0” : :”r”(i));

/* Disable selected row */

spp(DCR1_PG);

if (row_number == ROW_ALL)

{

DE0 = 0x00;

DE1 = 0x00;

DE2 = 0x00;

RESTORE_PAGE; /* Restore the register page */

return;

}

if (row_number <= ROW_8)

{

DE0 = DE0 & ~i;

RESTORE_PAGE; /* Restore the register page */

return;

}

if (row_number <= ROW_16)

{

DE1 = DE1 & ~i;

RESTORE_PAGE; /* Restore the register page */

return;

}

if (row_number <= ROW_23)

85/98

APPENDIX - SOURCE FILES

{

DE2 = DE2 & ~i;

}

RESTORE_PAGE; /* Restore the register page */

}

/

**************** **

*

INPUTS : Row number

OUTPUTS : DRAM position

DESCRIPTION: This function returns the DRAM location to start with according

to the row number. Position needed for writ ing the OSD menus.

**************** **

*/

unsigned char *get_DRAM_address(unsignedchar selection, unsigned char

row_position)

{

if (selection == DISPLAY_CHARACTERS)

return (unsigned char *)(0x8000 + ((row_posi tion - 1) * 40));

else

return (unsigned char *)(0x8400 + ((row_posi tion - 1) * 40));

}

/

**************** **

*

INPUTS : DRAM pointer - Point the location to start with

Character to write into the DRAM

OUTPUTS : Return the next DRAM location

DESCRIPTION: This function writes the given character.

It doesn’t need any DPR management as DPR2 points

always to the TDSRAM.

**************** **

*/

unsigned char *write_character(unsignedchar *pointer,

unsigned char character)

{

*pointer++ = character;

return pointer;

}

/

**************** **

*

INPUTS : .DRAM pointer - Point the location to start with

Character to write into the DRAM

86/98

APPENDIX - SOURCE FILES

.character

.number

OUTPUTS : Return the next DRAM location

DESCRIPTION: This function writes the given character n times.

It doesn’t need any DPR management as DPR2 points

always to the TDSRAM.

**************** **

*/

unsigned char *write_character_n(unsignedchar *pointer,unsignedchar character

,unsigned char number)

{

while(number!=0)

{

pointer = write_character(pointer,character);

number--;

}

return pointer;

}

/

**************** **

*

INPUTS : DRAM pointer - Points the location to start with

String pointer - A struct to write into the DRAM.

This is a struct containing the DPR of the data

and the first character.

OUTPUTS : Return the next DRAM location

see write_character

DESCRIPTION: This function writes the given string in TDSRAM

**************** **

*/

unsigned char * Display_String(unsignedchar *pointer,

fardata string_pointer)

{

SAVE_PAGE; /* Store the Page register */

spp(MMU_PG); /* Set the MMU page (21) */

SAVE_DPR; /* Save the old DPR0 & 1 */

DPR0_P = string_pointer.dpr;/* Set DPR0 to the struct DPR value */

DPR1_P = DPR0_P + 1; /* Set DPR1 contiguous to DPR0 */

/* WARNING - do not modify working registers */

while (*string_pointer.var != ’\0’)

pointer = write_character(pointer, *string_pointer.var++);

RESTORE_DPR; /* Restore the DPR0 & 1 */

RESTORE_PAGE; /* Restore the register page */

87/98

APPENDIX - SOURCE FILES

return pointer; /* Return the incremented address */

}

/

**************** **

*

INPUTS : none

OUTPUTS : none

DESCRIPTION: This function clears a TDSRAM row in character area

**************** **

*/

void Clear_DRAM_Row(unsignedchar row_number)

{

unsigned char i;

unsigned char *j;

j = get_DRAM_address(DISPLAY_CHARACTERS,row_number);

for (i=40; i!=0; i--)

{

j = write_character(j,0x00);

}

j = get_DRAM_address(DISPLAY_ATTRIBUTES,row_number);

for (i=40; i!=0; i--)

{

j = write_character(j,0x20);

}

}

/

**************** **

*

INPUTS : none

OUTPUTS : none

DESCRIPTION: This function displays a simple menu made of 3 lines

in row 10, 11 & 12.

It uses far data.

**************** **

*/

void Show_Menu()

{

unsigned char *j;

fardata x;

Clear_DRAM_Row(10); /* Clear OSD rows */

Clear_DRAM_Row(11);

Clear_DRAM_Row(12);

88/98

APPENDIX - SOURCE FILES

j = get_DRAM_address(DISPLAY_CHARACTERS,ROW_10);

j = j + 10;

x.var = (unsigned char *) ST92195_STRING; /* Initialize the fardata struct

*/

x.dpr = PAG(ST92195_STRING);

Display_String(j, x); /* Copy the string in TDSRAM */

j = get_DRAM_address(DISPLAY_ATTRIBUTES,ROW_10);/* Set attrbutes for row

10 */

j = j + 8;

j = write_character(j,RED);

j = write_character(j,0xA0);

j = write_character_n(j,RED,24);

j = write_character(j,0x80);

j = get_DRAM_address(DISPLAY_CHARACTERS,ROW_11);

j = j + 10;

x.var = (unsigned char *) THOMSON_STRING;

x.dpr = PAG(THOMSON_STRING);

Display_String(j, x);

j = get_DRAM_address(DISPLAY_ATTRIBUTES,ROW_11);

j = j + 8;

j = write_character(j,BLUE);

j = write_character(j,0x80);

j = write_character_n(j,BLUE,24);

j = write_character(j,0x80);

j = get_DRAM_address(DISPLAY_CHARACTERS,ROW_12);

j = j + 10;

x.var = (unsigned char *) DEMO_STRING;

x.dpr = PAG(DEMO_STRING);

Display_String(j, x);

j = get_DRAM_address(DISPLAY_ATTRIBUTES,ROW_12);

j = j + 8;

j = write_character(j,GREEN);

j = write_character(j,0x80);

j = write_character_n(j,GREEN,24);

j = write_character(j,0x80);

Enable_Display(ROW_10);

Enable_Display(ROW_11);

89/98

APPENDIX - SOURCE FILES

Enable_Display(ROW_12);

}

/

**************** **

*

INPUTS : none

OUTPUTS : none

DESCRIPTION: This function displays a simple menu

**************** **

*/

void Clear_Menu(void)

{

Disable_Display(ROW_10);

Disable_Display(ROW_11);

Disable_Display(ROW_12);

}

6.3.2 CONST.C
/*************** ***

CONST.C SOURCE FILE

================

This file contains:

- The automaton table to be put in ROM

- The CONSTANT TABLE for On Screen Display

This is only an example file.

---------------- -----------

Author: Thierry CRESPO

Company: STMicroelectronics

Version: V1.0

Date: 25/02/97

---------------- ------------

**************** ***/

#include ”mmu.h”

#include ”define.h”

#include ”display.h”

const char CONSTANT1[]=”THIS IS THE FIRST CONSTANT”;

const char BLANK[]=” ”;

const char CONSTANT2[]=”THIS IS THE SECOND CONSTANT”;

90/98

APPENDIX - SOURCE FILES

6.3.3 MENU1.C
/*************** ********STMicroelectronics ************************

FILENAME : MENU1.C

VERSION : V1.0

DATE : February 20, 1997

AUTHOR(s) : Thierry CRESPO

PROCESSOR : ST92R195

DESCRIPTION : This file contains one menu line constants.

It could contain up to 32Kbytes of constants ;

MODIFICATIONS:

**************** **

*/

const unsigned char THOMSON_STRING[]= ” STMicroelectronics ”;

6.3.4 MENU2.C
/*************** ********STMicroelectronics ************************

FILENAME : MENU2.C

VERSION : V1.0

DATE : February 20, 1997

AUTHOR(s) : Thierry CRESPO

PROCESSOR : ST92R195

DESCRIPTION : This file contains one menu line constants.

It could contain up to 32Kbytes of constants ;

MODIFICATIONS:

**************** **

*/

const unsigned char ST92195_STRING[]= ”ST92195 Application Note”;

6.3.6 MENU3.C

/*************** ********STMicroelectronics ************************

FILENAME : MENU3.C

VERSION : V1.0

DATE : February 20, 1997

AUTHOR(s) : Thierry CRESPO

PROCESSOR : ST92R195

DESCRIPTION : This file contains one menu line constants.

It could contain up to 32Kbytes of constants ;

MODIFICATIONS:

**************** **

*/

const unsigned char DEMO_STRING[] = ” DEMO ”;

91/98

APPENDIX - SOURCE FILES

6.3.5 CODE04.C
/**

CODE04.C SOURCE FILE

====================

This file contains some functions implementing

the actions of the automaton.

---------------- -----------

Author: Thierry CRESPO

Company: STMicroelectronics

Version: V1.0

Date: 25/02/97

---------------- ------------

**************** ***/

#include ”define.h”

#include ”display.h”

#include ”st9macro.h”

void Switch_Attr(char, char);

void Red_to_Green();

/

**************** **

*

INPUTS : color and state

OUTPUTS : none

DESCRIPTION: Toggle the Attr to obtain the state

corresponding to the AUTOMATON table

**************** ***/

void Switch_Attr(char color, char state)

{

unsigned char *j;

unsigned char row_number = RED;

switch (color)

{

case RED: row_number = 10;

break;

case BLUE: row_number = 11;

break;

92/98

APPENDIX - SOURCE FILES

case GREEN: row_number = 12;

break;

default:

break;

}

if (state == ON)

{

j = get_DRAM_address(DISPLAY_ATTRIBUTES,row_number);

j = j + 9;

j = write_character(j,0xA0);

}

else

{

j = get_DRAM_address(DISPLAY_ATTRIBUTES,row_number);

j = j + 9;

j = write_character(j,0x80);

}

}

/

**************** **

*

INPUTS : none

OUTPUTS : none

DESCRIPTION: Toggle the Attr to obtain the state

corresponding to the AUTOMATON table

**************** ***/

void Red_to_Green(){

Switch_Attr(GREEN, ON);

Switch_Attr(RED, OFF);

}

6.3.8 CODE08.C

/*************** ***

CODE08.C SOURCE FILE

====================

This file contains all the functions implementing

the actions of the automaton.

---------------- -----------

93/98

APPENDIX - SOURCE FILES

Author: Thierry CRESPO

Company: STMicroelectronics

Version: V1.0

Date: 25/02/97

---------------- ------------

**************** ***/

#include ”define.h”

#include ”display.h”

#include ”st9macro.h”

void Red_to_Blue();

void Blue_to_Red();

void Blue_to_Green();

void Green_to_Blue();

void Green_to_Red();

extern void Switch_Attr(char, char);

/

**************** **

*

INPUTS : none

OUTPUTS : none

DESCRIPTION: Toggle the Attr to obtain the state

corresponding to the AUTOMATON table

**************** ***/

void Red_to_Blue(){

Switch_Attr(BLUE, ON);

Switch_Attr(RED, OFF);

}

void Blue_to_Red(){

Switch_Attr(BLUE, OFF);

Switch_Attr(RED, ON);

}

void Blue_to_Green(){

Switch_Attr(BLUE, OFF);

Switch_Attr(GREEN, ON);

}

void Green_to_Blue(){

Switch_Attr(GREEN, OFF);

Switch_Attr(BLUE, ON);

}

void Green_to_Red(){

Switch_Attr(GREEN, OFF);

94/98

APPENDIX - SOURCE FILES

Switch_Attr(RED, ON);

}

6.4 AUTOMAT.C

/*************** ***

AUTOMAT.C FILE

================

This file contains:

- the automaton routine

---------------- -----------

Author: Thierry CRESPO

Company: STMicroelectronics

Version: V1.0

Date: 25/02/97

---------------- ------------

**************** ***/

#include ”mmu.h”

#include ”define.h”

#include ”display.h”

#include ”st9macro.h”

#include <stdlib.h>

extern AUTOMATON Run_Automaton(AUTOMATON);

void fatal(void);

AUTOMATON Run_Automaton(AUTOMATON);

void Switch_Action(unsignedchar);

extern void Blue_to_Green();

extern void Blue_to_Red();

extern void Red_to_Green();

extern void Red_to_Blue();

extern void Green_to_Blue();

extern void Green_to_Red();

extern void Clear_Menu();

extern void Show_Menu();

extern void Do_Nothing();

/*************** ***/

/*************** * This is the action list *** ***************/

1

95/98

APPENDIX - SOURCE FILES

/*************** ***/

enum Action_List

{

id_Blue_to_Green,

id_Blue_to_Red,

id_Red_to_Green,

id_Red_to_Blue,

id_Green_to_Blue ,

id_Green_to_Red,

id_Clear_Menu,

id_Show_Menu,

id_Do_Nothing,

};

/*************** ***/

/*************** * This is the automaton table ***************/

/*************** ***/

const struct automaton AUTOMATON_TABLE[MAX_STATES]=

{

/*STATE EVENT ACTION NEXT STATE*/

{RED, UP, id_Red_to_Green,GREEN},

{RED, DOWN, id_Red_to_Blue,BLUE},

{RED, ESCAPE, id_Clear_Menu,OFF},

{RED, SET_MENU, id_Do_Nothing, RED},

{OFF, UP, id_Show_Menu, RED},

{OFF, DOWN, id_Show_Menu, RED},

{OFF, SET_MENU, id_Show_Menu, RED},

{OFF, ESCAPE, id_Do_Nothing, RED},

{BLUE, UP, id_Blue_to_Red,RED},

{BLUE, DOWN, id_Blue_to_Green, GREEN},

{BLUE, ESCAPE, id_Clear_Menu,OFF},

{BLUE, SET_MENU, id_Do_Nothing,RED},

{GREEN, UP, id_Green_to_Blue, BLUE},

{GREEN, DOWN, id_Green_to_Red,RED},

{GREEN, ESCAPE, id_Clear_Menu,OFF},

{GREEN, SET_MENU, id_Do_Nothing,RED},

};

/*************** **

AUTOMATON Run_Automaton(AUTOMATONmenu)

Object: This routine scan the automaton depending on the

state and event of the current automaton.

1

96/98

APPENDIX - SOURCE FILES

It returns the updated automaton.

input: AUTOMATON

output: AUTOMATON => updated automaton

**************** ***/

AUTOMATON Run_Automaton(AUTOMATONmenu)

{

unsigned char count;

SAVE_PAGE;

spp(MMU_PG);

SAVE_DPR;

DPR0_P = PAG(AUTOMATON_TABLE);

DPR1_P = DPR0_P +1;

count = 0; /* Counter to scan au-

tomaton table */

while(1) /* Scan the AUTOMATON table to */

{ /* find the corresponding one */

if ((menu.state == AUTOMATON_TABLE[count].state)

&& (menu.event == AUTOMATON_TABLE[count] .event)){

/* Get the state and event */

/* Udate the automaton */

/* Perform the action */

menu.action = AUTOMATON_TABLE[count].action;

menu.state = AUTOMATON_TABLE[count].next_state;

Switch_Action(menu.action);

RESTORE_DPR;

RESTORE_PAGE;

return(menu);

}

else count++;

if (count >= MAX_STATES) fatal();

}

}

void Switch_Action(unsignedchar name)

{

switch (name)

{

1

97/98

APPENDIX - SOURCE FILES

case id_Blue_to_Green:Blue_to_Green();break;

case id_Blue_to_Red:Blue_to_Red();break;

case id_Red_to_Green:Red_to_Green(); break;

case id_Red_to_Blue: Red_to_Blue();break;

case id_Green_to_Blue: Green_to_Blue();break;

case id_Green_to_Red:Green_to_Red();break;

case id_Clear_Menu :Clear_Menu();break;

case id_Show_Menu:Show_Menu();break;

case id_Do_Nothing:Do_Nothing();break;

default: fatal(); break;

}

}

void Do_Nothing(void)

{

}

void fatal(void)

{

while(1);

}

1

98/98

APPENDIX - SOURCE FILES

THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 1998 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http:/ /www.st.com

1

