

LASER DIODE

NDL7405P Series

1 310 nm OPTICAL CATV RETURN PATH APPLICATIONS IngaAsP MQW LASER DIODE MODULE WITH ISOLATOR

DESCRIPTION

The NDL7405P Series is a 1 310 nm uncooled isolated coaxial FP (Fabry Perot) laser diode, which has a newly developed Multiple Quantum Well (MQW) structure. It is especially designed for optical CATV return path applications.

FEATURES

Low distortion
 IMD2 = -40 dBc MAX.*1

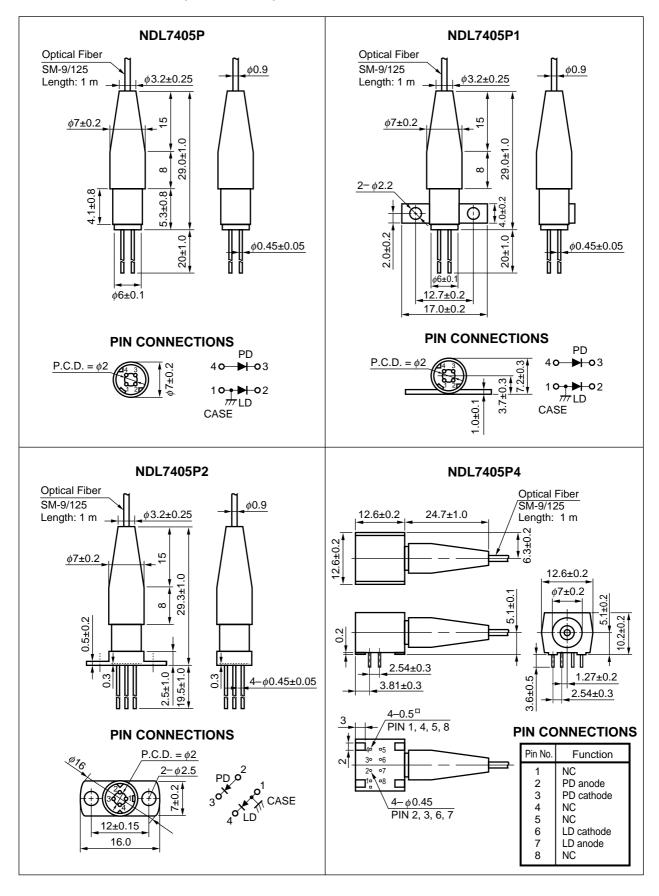
IMD3 = -50 dBc MAX.*1

High CNR = 43 dB MIN.*1

• Output power $P_f = 1.0 \text{ mW}$ • Long wavelength $\lambda c = 1.310 \text{ nm}$

· Internal InGaAs monitor PD and isolator

Single mode fiber pigtail with FC-SPC connector, SC-SPC connector or SC-APC connector


Wide operating temperature range Tc = -40 to +85 °C

*1 2 ch, Fiber loss = 7 dB, OMI = 20 %

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

PACKAGE DIMENSIONS (in millimeters)

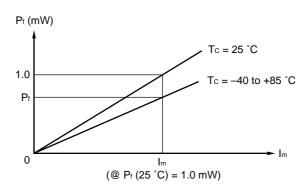
ORDERING INFORMATION

Part Number	Available Connector	Flange Type	
NDL7405PC	With FC-SPC Connector	No Flange	
NDL7405PD	With SC-SPC Connector		
NDL7405PX	With SC-APC Connector		
NDL7405P1C	With FC-SPC Connector	Flat Mount Flange	
NDL7405P1D	With SC-SPC Connector		
NDL7405P1X	With SC-APC Connector		
NDL7405P2C	With FC-SPC Connector	Vertical Flange	
NDL7405P2D	With SC-SPC Connector		
NDL7405P2X	With SC-APC Connector		
NDL7405P4C	With FC-SPC Connector	Lead Bend	
NDL7405P4D	With SC-SPC Connector		
NDL7405P4X	With SC-APC Connector		

ABSOLUTE MAXIMUM RATINGS (Tc = 25 °C, unless otherwise specified)

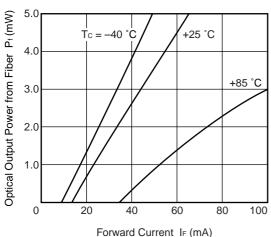
Parameter	Symbol	Ratings	Unit
Forward Current of LD	lF	Ith + 50	mA
Reverse Voltage of LD	VR	2.0	V
Forward Current of PD	lF	10	mA
Reverse Voltage of PD	VR	15	V
Operating Case Temperature	Tc	-40 to +85	°C
Storage Temperature	T _{stg}	-40 to +85	°C
Lead Soldering Temperature (10 s)	T _{sld}	260	°C

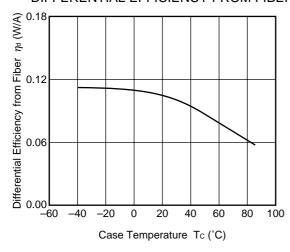
3


ELECTRO-OPTICAL CHARACTERISTICS

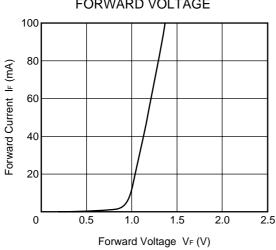
(Tc = 25 °C, Optical Reflection ≤ -40 dB, unless otherwise specified)

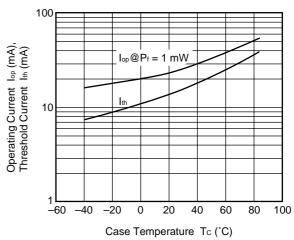
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Forward Voltage	VF	IF = 30 mA		1.1	1.5	V
Threshold Current	Ith	CW		10	25	mA
		CW, Tc = 85 °C		25	50	
Operating Current	lop	CW		25	40	mA
		CW, Tc = 85 °C		50	80	
Differential Efficiency from Fiber	$\eta_{ ext{d}}$	P _f = 1.0 mW	0.050	0.100		W/A
		P _f = 1.0 mW, T _C = 85 °C	0.036	0.070		
Center Wavelength	λο	$P_f = 1.0 \text{ mW}, \text{RMS } (-20 \text{ dB}),$ $T_C = -40 \text{ to } +85 ^{\circ}\text{C}$	1 260	1 310	1 360	nm
Spectral Width	σ	$P_f = 1.0 \text{ mW}, \text{RMS } (-20 \text{ dB}),$ $T_C = -40 \text{ to } +85 ^{\circ}\text{C}$			4.0	nm
2nd Order Inter-modulation Distortion	IMD2	*1			-40	dBc
3rd Order Inter-modulation Distortion	IMD3	*1			-50	dBc
Carrier to Noise Ratio	CNR	*1	43			dB
Monitor Current	Im	V _R = 5 V, P _f = 1.0 mW	100	700	1 000	μΑ
Dark Current	lσ	V _R = 5 V		0.1	10	nA
Tracking Error	γ*2	$I_{m} = const., P_{f} = 1.0 \text{ mW},$ $T_{C} = -40 \text{ to } +85 ^{\circ}\text{C}$	-1.0		1.0	dB

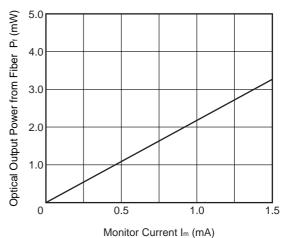

*1 Conditions: P_f = 1.0 mW, T_C = -40 to +85 °C, 2 channel unmodulated carriers 13 MHz and 19 MHz, Optical Reflection = -40 dB, Fiber Loss = 7 dB, OMI = 20 %/ch @ T_C = -40 to +85 °C

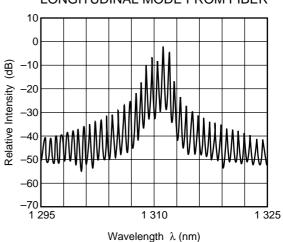


★ TYPICAL CHARACTERISTICS (Tc = 25 °C, unless otherwise specified)




TEMPERATURE DEPENDENCE OF DIFFERENTIAL EFFICIENCY FROM FIBER

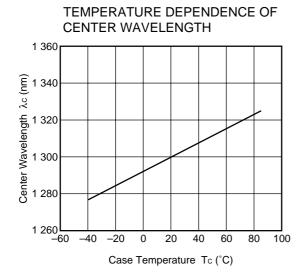

FORWARD CURRENT vs. FORWARD VOLTAGE

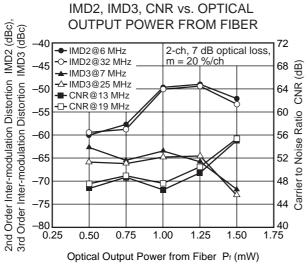

OPERATING CURRENT AND THRESHOLD CURRENT vs. CASE TEMPERATURE

OPTICAL OUTPUT POWER FROM FIBER vs. MONITOR CURRENT

LONGITUDINAL MODE FROM FIBER

CNR@13 MHz


-□- CNR@19 MHz


30

25

40

35

IMD2, IMD3, CNR vs. CASE TEMPERATURE 2nd Order Inter-modulation Distortion IMD2 (dBc), 3rd Order Inter-modulation Distortion IMD3 (dBc) 72 $P_f = 1 \text{ mW}, 2\text{-ch}$ 68 මු 7 dB optical loss m = 20 %/ch64 60 60 56 52 48 Carrier to Noise Ratio CNR ■ IMD2@6 MHz -O- IMD2@32 MHz -55 CNR@13 MHz -□- CNR@19 MHz -60 -65 -70 - IMD3@7 MHz -∆- IMD3@25 MHz -80 40 -60 -40 -20 0 20 40 60 80 100 Case Temperature Tc (°C) IMD2, IMD3, CNR vs. IMD2 (dBc), IMD3 (dBc) **OPTICAL MODULATION INDEX** 72 $P_f = 1 \text{ mW}, 2\text{-ch},$ 7 dB optical loss 68 64 60 69 52 48 44 44 Carrier to Noise Ratio CNR (dB) -45 2nd Order Inter-modulation Distortion 3rd Order Inter-modulation Distortion IMD2@6 MHz -55 -O- IMD2@32 MHz ▲ IMD3@7 MHz -60 △- IMD3@25 MHz

Remark The graphs indicate nominal characteristics.

-65

-70

-75

-80

10

15

20

Optical Modulation Index OMI (%/ch)

REFERENCE

Document Name	Document No.		
NEC semiconductor device reliability/quality control system	C11159E		
Quality grades on NEC semiconductor devices	C11531E		
Semiconductor device mounting technology manual	C10535E		
SEMICONDUCTOR SELECTION GUIDE Products & Packages(CD-ROM)	X13769X		

7

[MEMO]

[MEMO]

[MEMO]

CAUTION

Within this device there exists GaAs (Gallium Arsenide) material which is a harmful substance if ingested. Please do not under any circumstances break the hermetic seal.

SEMICONDUCTOR LASER		

AVOID EXPOSURE-Invisible Laser Radiation is emitted from this aperture NEC Corporation NEC Building, 7-1, Shiba 5-chome, Minato-ku, Tokyo 108-01, Japan

to standards 21 CFR Chapter 1. Subchapter J.

regulations as applicable

11

The export of this product from Japan is prohibited without governmental license. To export or re-export this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these circuits,
 software, and information in the design of the customer's equipment shall be done under the full responsibility
 of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
 parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

M7 98.8