The Infinite Bandwidth Company™ ## MIC4574 ### 200kHz Simple 0.5A Buck Regulator #### **Final Information** ### **General Description** The MIC4574 is a series of easy to use fixed and adjustable BiCMOS step-down (buck) switch-mode voltage regulators. The 200kHz MIC4574 duplicates the pinout and function of the 52kHz LM2574. The higher switching frequency may allow up to a 2:1 reduction in output filter inductor size. The MIC4574 is available in 3.3V, and 5V fixed output versions or a 1.23V to 20V adjustable output version. Both versions are capable of driving a 0.5A load with excellent line and load regulation. The feedback voltage is guaranteed to $\pm 2\%$ tolerance for adjustable versions, and the output voltage is guaranteed to $\pm 3\%$ for fixed versions, within specified voltages and load conditions. The oscillator frequency is guaranteed to $\pm 10\%$. In shutdown mode, the regulator draws less than $200\mu A$ standby current. The regulator performs cycle-by-cycle current limiting and thermal shutdown for protection under fault conditions. This series of simple switch-mode regulators requires a minimum number of external components and can operate using a standard series of inductors. Frequency compensation is provided internally. The MIC4574 is available in DIP (N) and SOIC (WM) packages for the industrial temperature range. #### **Features** - Fixed 200kHz operation - 3.3V, 5V, and adjustable output versions - Voltage over specified line and load conditions: Fixed version: ±3% max. output voltage Adjustable version: ±2% max. feedback voltage - Guaranteed 0.5A switch current - Wide 4V to 24V input voltage range - Wide 1.23V to 20V output voltage range - · Requires minimum external components - < 200μA typical shutdown mode</p> - 75% efficiency (adjustable version > 75% typ.) - Standard inductors and capacitors are 25% of typical LM2574 values - Thermal shutdown - · Overcurrent protection - 100% electrical thermal limit burn-in #### **Applications** - Simple high-efficiency step-down (buck) regulator - · Efficient preregulator for linear regulators - On-card switching regulators - Positive-to-negative converter (inverting buck-boost) - Isolated flyback converter using minimum external components - Negative boost converter ## **Typical Applications** **Fixed Regulator** Adjustable Regulator # **Ordering Information** | Part Number | Voltage | Temperature Range | Package | | |----------------|------------|-------------------|--------------|--| | MIC4574-3.3BN | 3.3V | –40°C to +85°C | 8-pin DIP | | | MIC4574-5.0BN | 5.0V | –40°C to +85°C | 8-pin DIP | | | MIC4574BN | Adjustable | –40°C to +85°C | 8-pin DIP | | | MIC4574-3.3BWM | 3.3V | -40°C to +85°C | 14-lead SOIC | | | MIC4574-5.0BWM | 5.0V | -40°C to +85°C | 14-lead SOIC | | | MIC4574BWM | Adjustable | -40°C to +85°C | 14-lead SOIC | | ## **Pin Configuration** 8-Pin DIP (N) 14-Lead Wide SOIC (WM) ## **Pin Description** | Pin Number
N Package | Pin Number
WM Package | Pin Name | Pin Function | |-------------------------|--------------------------|-----------------|--| | | 1 | NC | Not internally connected. Solder to printed circuit for maximum heat transfer. | | | 2 | NC | Not internally connected. Solder to printed circuit for maximum heat transfer. | | 1 | 3 | FB | Feedback (Input): Output voltage feedback to regulator. Connect to output of supply for fixed versions. Connect to 1.23V tap of resistive divider for adjustable versions. | | 2 | 4 | SGND | Signal Ground | | 3 | 5 | SHDN | Shutdown (Input): Logic low enables regulator. Logic high (> 2.4V) shuts down regulator. | | 4 | 6 | PGND | Power Ground | | | 7 | NC | Not internally connected. Solder to printed circuit for maximum heat transfer. | | | 8 | NC | Not internally connected. Solder to printed circuit for maximum heat transfer. | | | 9 | NC | Not internally connected. Solder to printed circuit for maximum heat transfer. | | 5 | 10 | V _{IN} | Supply Voltage (Input): Unregulated +4V to +24V supply voltage. | | | 11 | NC | Not internally connected. Solder to printed circuit for maximum heat transfer. | | 7 | 12 | SW | Switch (Output): Emitter of NPN output switch. Connect to external storage inductor and Shottky diode. | | 8 | 13 | NC | Not internally connected. Solder to printed circuit for maximum heat transfer. | | | 14 | NC | Not internally connected. Solder to printed circuit for maximum heat transfer. | ## **Absolute Maximum Ratings** # Supply Voltage (V_{IN}) Note 1+40V Shutdown (V_{SHDN})-0.3V to +36V Output Switch (V_{SW}) steady state-1V Junction Temperature (T_{J})+150°C Storage Temperature-65°C to +150°C ## **Operating Ratings** | Supply Voltage (V _{IN}) | +24V | |-----------------------------------|---------| | Package Thermal Resistance | | | θ _{IA} Plastic DIP | 130°C/W | | θ _{JC} SOIC | 120°C/W | #### **Electrical Characteristics** V_{IN} =12V; $I_{I,OAD}$ = 100mA; T_A = 25°C, **bold** values indicate -40°C $\leq T_A \leq$ +85°C; unless noted | Parameter | Condition | Min | Тур | Max | Units | |---------------------------|--|-----------------------|-----------|-----------------------|----------| | MIC4574 [Adjustable] | <u> </u> | • | | | | | Feedback Voltage | | 1.217 | 1.230 | 1.243 | V | | Feedback Voltage | $8V \le V_{IN} \le 24V, 0.1A \le I_{LOAD} \le 0.5A$ | 1.193
1.180 | 1.230 | 1.267
1.280 | V | | Efficiency | I _{LOAD} = 0.5A, V _{OUT} = 5V | | 77 | | % | | Feedback Bias Current | | | 50 | 100
500 | nA
nA | | MIC4574-3.3 | · | • | | | | | Output Voltage | | 3.234 | 3.3 | 3.366 | V | | Output Voltage | $6V \le V_{IN} \le 24V, 0.1A \le I_{LOAD} \le 0.5A$ | 3.168
3.135 | 3.3 | 3.432
3.465 | V | | Efficiency | | | 72 | | % | | MIC4574-5.0 | • | | | • | | | Output Voltage | | 4.900 | 5.0 | 5.100 | V | | Output Voltage | $8V \le V_{IN} \le 24V, 0.1A \le I_{LOAD} \le 0.5A$ | 4.800
4.750 | 5.0 | 5.200
5.250 | V | | Efficiency | | | 77 | | % | | MIC4574 / -3.3 / -5.0 | • | • | | | | | Oscillator Frequency | | 180 | 200 | 220 | kHz | | Saturation Voltage | I _{OUT} = 0.5A | | 1 | 1.3
1.5 | V | | Maximum Duty Cycle (On) | FB connected to 0V | 90 | 95 | | % | | Current Limit | Peak Current, t _{ON} ≤ 3μs | 0.7
0.65 | 1.0 | 1.6
1.8 | A
A | | Output Leakage Current | $V_{IN} = 24V$, FB connected to 6V
Output = 0V
Output = -1V | | 0
7.5 | 2
30 | mA
mA | | Quiescent Current | | | 5 | 10 | mA | | Standby Quiescent Current | SHDN = 5V (regulator off) | | 50 | 200 | μΑ | | SHDN Input Logic Level | V _{OUT} = 0V (regulator off) | 2.2
2.4 | 1.4 | | V
V | | | V _{OUT} = 3.3V or 5V (regulator on) | | 1.2 | 1.0
0.8 | V | | SHDN Input Current | SHDN = 5V (regulator off)
SHDN = 0V (regulator on) | -10 | 4
0.01 | 30
10 | μA
μA | General Note: Devices are ESD protected, however, handling precautions are recommended. Note 1: The MIC4574 is not guaranteed to survive a short circuit to ground for input voltage above 24V. ## **Block Diagrams** Block Diagram with External Components Fixed Step-Down Regulator Block Diagram with External Components Adjustable Step-Down Regulator ### **Functional Description** The MIC4574 is a variable duty cycle switch-mode regulator with an internal power switch. Refer to the block diagrams. #### **Supply Voltage** The MIC4574 operates from a +4V to +24V unregulated input. Highest efficiency operation is from a supply voltage below +15V. #### Enable/Shutdown The shutdown (SHDN) input is TTL compatible. Ground the input if unused. A logic-low enables the regulator. A logic-high shuts down the internal regulator which reduces the current to typically $50\mu A$. #### **Feedback** Fixed versions of the regulator have an internal resistive divider from the feedback (FB) pin. Connect FB directly to the output line. Adjustable versions require an external resistive voltage divider from the output voltage to ground, connected from the 1.23V tap to FB. #### **Duty Cycle Control** A fixed-gain error amplifier compares the feedback signal with a 1.23V bandgap voltage reference. The resulting error amplifier output voltage is compared to a 200kHz sawtooth waveform to produce a voltage controlled variable duty cycle output. A higher feedback voltage increases the error amplifier output voltage. A higher error amplifier voltage (comparator inverting input) causes the comparator to detect only the peaks of the sawtooth, reducing the duty cycle of the comparator output. A lower feedback voltage increases the duty cycle. #### **Output Switching** When the internal switch is on, an increasing current flows from the supply $V_{IN,}$ through external storage inductor L1, to output capacitor C_{OUT} and the load. Energy is stored in the inductor as the current increases with time. When the internal switch is turned off, the collapse of the magnetic field in L1 forces current to flow through fast recovery diode D1, charging \mathbf{C}_{OLIT} . #### **Output Capacitor** External output capacitor C_{OUT} provides stabilization and reduces ripple. #### **Return Paths** During the on portion of the cycle, the output capacitor and load currents return to the supply ground. During the off portion of the cycle, current is being supplied to the output capacitor and load by storage inductor L1, which means that D1 is part of the high-current return path. ## **Applications Information** The applications circuits that follow have been constructed and tested. Refer to Application Note 15 for additional information, including efficiency graphs and manufacturer's addresses and telephone numbers for most circuits. For a mathematical approach to component selection and circuit design, refer to Application Note 14. Figure 1. 6V–24V to 3.3V/0.5A Buck Converter Through Hole Figure 2. 8V–24V to 5V/0.5A Buck Converter Through Hole Figure 3. 16V–24V to 12V/0.5A Buck Converter Through Hole Figure 4. 6V–24V to 3.3V/0.5A Buck Converter Low-Profile Surface Mount Figure 5. 8V–24V to 5V/0.5A Buck Converter Low-Profile Surface Mount Figure 6. 16V–24V to 12V/0.5A Buck Converter Low-Profile Surface Mount Figure 7. 6V-24V to 3.3V/0.5A Buck Converter Low-Cost Surface Mount Figure 8. 8V–24V to 5V/0.5A Buck Converter Low-Cost Surface Mount Figure 9. 16V–24V to 12V/0.5A Buck Converter Low-Cost Surface Mount # **Package Information** 14-Pin SOP (M) #### MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. © 1998 Micrel Incorporated