

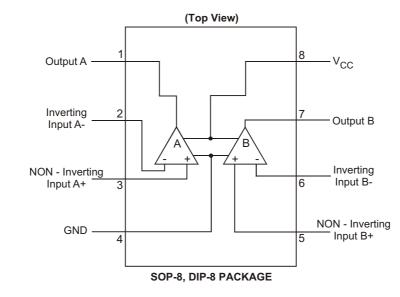
GM393

LOW POWER DUAL DIFFERENTIAL COMPARATOR

Description

The GM393 consist of two independent precision voltage comparators with an offset voltage specification as low as 2.0 mV, max for two comparators which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic. In that, the input common-mode voltage range includes ground, even though operated from a single power supply voltage.

Application areas include limit comparators, simple analog to digital converters; pulse, square wave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The GM393 are designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the GM393 will directly interface with MOS logic, where their low power drain is a distinct advantage over standard comparators.


The GM393 is available in DIP-8 and SOP-8 packages.

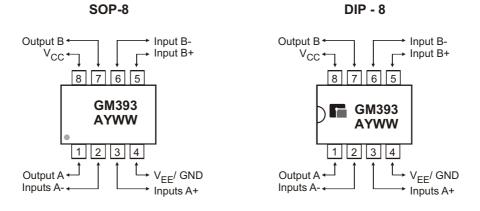
Features

- Single- supply Range: ±1.0V to ±18V
- Wide supply voltage range: ±2.0V to ±36V
- Very low supply current drain (0.4 mA) -
- independent of supply voltage
- Low input biasing current: 25 nA
- ◆ Low input offset current: ±5 nA
- Maximum offset voltage: ±3 mV
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Low output saturation voltage: 250 mV at 4 mA
- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

Application

High precision comparators Reduced V_{OS} drift over temperature Eliminates need for dual supplies Allows sensing near GND Compatible with all forms of logic Power drain suitable for battery operation

CONNECTION DIAGRAM


www.gammamicro.com

GM393

LOW POWER DUAL DIFFERENTIAL COMPARATOR

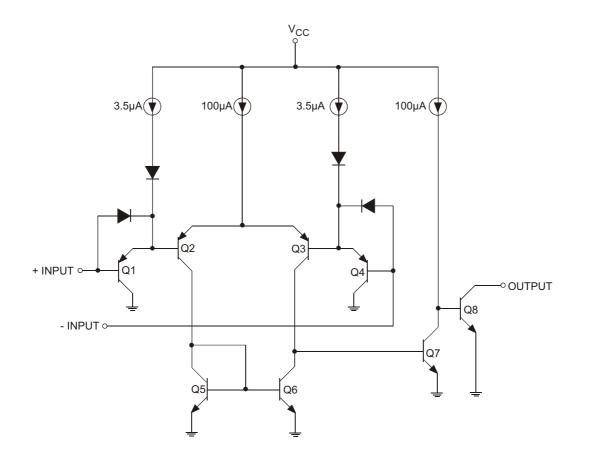
♦ MARKING INFORMATION & PIN CONFIGURATIONS

A : Assembly Location Y : Year WW:Weekly

ORDERING INFORMATION

Ordering Number	Package	Shipping
GM393D8T	DIP-8	60 Units / Tube
GM393S8T	SOP-8	100 Units / Tube
GM393S8R	SOP-8	2,500 Units/Tape & Reel

* For detail Ordering Number identification, please see last page.



LOW POWER DUAL DIFFERENTIAL COMPARATOR

◆ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	VALUE	UNIT
Power Dissipation	DIP package SOP package	P _D	780 510	mW
Supply Voltage		V _{CC}	±36, ±18	V
Input Current		Ι _Ο	50	mA
Operating Temperature Range		Т _Ј	0 to +70	°C
Lead Temperature (Soldering, 10 sce)		T _{LEAD}	260	°C
Storage Temperature Range		T _{STG}	-65 to +150	°C

♦ SCHEMATIC BLOCK DIAGRAM

[€] GM393

LOW POWER DUAL DIFFERENTIAL COMPARATOR

ELECTRICAL CHARACTERISTICS

(V_{CC} = 5V, at specified free - air temperature, unless otherwise specified)

CHARACTERISTICS	SYMBOL	TEST CONDITIONS		MIN	TYP	МАХ	UNIT	
Input Offset Voltage	V _{IO}	$V_{CC} = 5V \text{ to } 30V,$ $V_{CC} = V_{ICR} \text{min}, V_O = 1.4V$	25°C		±2	±5	mV	
			Full range			9		
Input Offset Current	I _{IO}	V _O = 1.4V	25°C		±5	±50	nA	
			Full range			±150		
Input Bias Current	I _{IB}	V _O = 1.4V	25°C		-25	-250	nA	
			Full range			400		
Common - Mode Input Voltage Range **	V _{ICR}		25°C	0 to V _{CC} - 1.5			V	
			Full range	0 to V _{CC} - 2				
Low - Level Output Voltage	V _{OL}	I _{OL} = 4mA, V _{ID} = -1V	25°C		150	400	mV	
			Full range			700		
Large - Signal Differential Voltage Amplification	A _{VD}	V_{CC} = 15V, V_{O} = 14V to 11.4V, R_{L} > 15k to V_{CC}	25°C	50	200		V/ mV	
High - Level Output Curretn	I _{ОН}	V _{OH} = 5V, V _{ID} = 1V	25°C		0.1	50	nA	
		V _{OH} = 30V, V _{ID} = 1V	Full range			1	μA	
Low - Level Output Current	I _{OL}	V _{OL} = 1.5V, V _{ID} = -1V	25°C	6			mA	
Supply Current	Icc	$R_L = \infty$, $V_{CC} = 5V$	25°C		0.8	1.0		
		$R_L = \infty$, $V_{CC} = 30V$	Full range			2.5	mA	

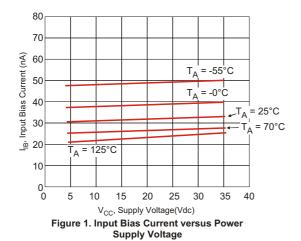
All characteristics are measured under open loop conditions with zero common - mode input voltage unless otherwise specified. Full range is 0°C to 70°C.

** The voltage at either input or common - mode should not be allowed to go negative by more than 0.3V.

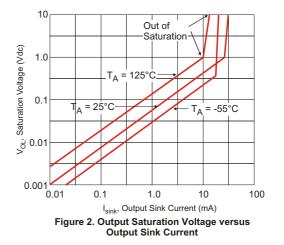
The upper end of the common - mode voltage range is V_{CC} - 1.5V, but either or both inputs can go to 30V without damage.

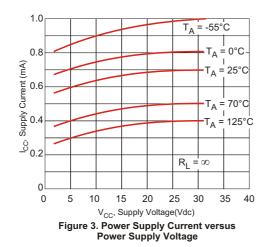
SWITCHING CHARACTERISTICS, V_{CC}= 5V, TA=25°C

PARAMETER	TEST CONDITIONS		MIN	ТҮР	МАХ	UNIT
$\begin{array}{l} R_L \mbox{ Connected to 5V} \\ \mbox{Response time} & through 5.1k \ , \\ C_L = 15pF^* \ (See \ Note \ 1) \end{array}$	100 - mV input step with 5 - mV overdrive		1.3		μs	
	C _L = 15pF* (See Note 1)	TTL - level input step		0.3		- μο


 * C_L includes probe and jig capacitance.

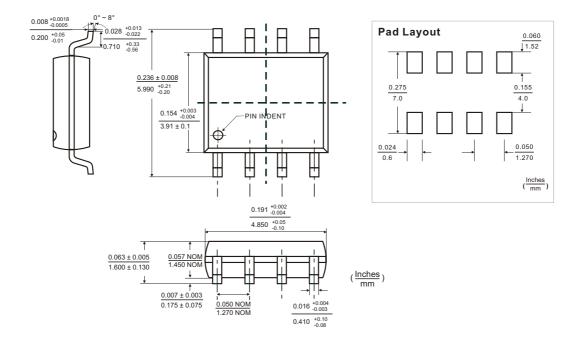
Note 1: The response time specified is the interval between the input step function and the instant when the output crosses 1.4V.

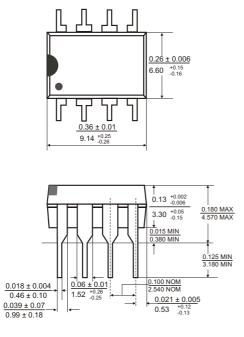


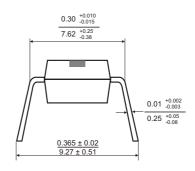

GM393

LOW POWER DUAL DIFFERENTIAL COMPARATOR

Typical Performance Characteristics

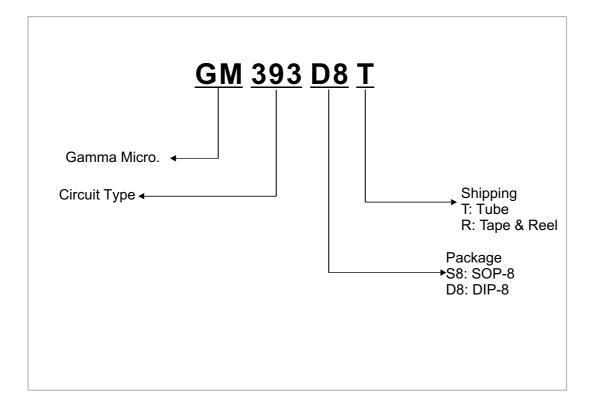





LOW POWER DUAL DIFFERENTIAL COMPARATOR

♦ SOP-8 PACKAGE OUTLINE DIMENSIONS

DIP-8 PACKAGE OUTLINE DIMENSIONS



 $(\frac{\text{Inches}}{\text{mm}})$

LOW POWER DUAL DIFFERENTIAL COMPARATOR

ORDERING NUMBER

GM393

LOW POWER DUAL DIFFERENTIAL COMPARATOR

∝ GM393

GAMMA Micro, GAMMA Micro, GAMMA MICROELECTRONICS INC. GAMMA reserves the right to make changes without further notice to any products herein. Information provided herein is alleged to be exact and consistent and this publication surpasses and replaces all information previously supplied.

GAMMA makes no warranty the suitability of its products for any particular purpose, nor does GAMMA assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability including without limitation special, consequential or incidental damages.

GAMMA products are not authorized for using as critical components in life support devices or systems without prior written approval from GAMMA MICROELECTRONICS INC.

http://www.gammamicro.com